The Relationship among Physical Activity, Intestinal Flora, and Cardiovascular Disease

Qiuyu Yan, Wenhui Zhai, Chenghao Yang, Zihao Li, Longfei Mao, Mingyi Zhao, Xiushan Wu, Qiuyu Yan, Wenhui Zhai, Chenghao Yang, Zihao Li, Longfei Mao, Mingyi Zhao, Xiushan Wu

Abstract

Cardiovascular diseases (CVDs), which are associated with high morbidity and mortality worldwide, include atherosclerosis (AS), hypertension, heart failure (HF), atrial fibrillation, and myocardial fibrosis. CVDs are influenced by the diversity, distribution, and metabolites of intestinal microflora, and their risk can be reduced through physical activity (PA) such as regular exercise. PA benefits the metabolic changes that occur in the gut microbiota (GM). The major metabolites of the GM influence pathogenesis of CVDs through various pathways. However, the relationship between PA and GM is less well understood. In this review, we discuss the impacts of different types of PA on intestinal microflora including the diversity, distribution, metabolites, and intestinal barrier function including intestinal permeability, with a focus on the mechanisms by which PA affects GM. We also discuss how GM influences CVDs. Finally, we summarize current research and knowledge on the effects of PA on CVD via regulation of the GM and intestinal function. More understanding of relevant relationship between PA and GM may provide hope for the prevention or treatment of CVDs. Furthermore, a better understanding of regulation of the GM and intestinal function may lead to novel diagnostic and therapeutic strategies, improving the clinical care of CVD patients.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

Copyright © 2021 Qiuyu Yan et al.

Figures

Figure 1
Figure 1
The effect of GM on blood pressure.
Figure 2
Figure 2
Mechanisms of HF.

References

    1. Virani S. S., Alonso A., Benjamin E. J., et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9) doi: 10.1161/CIR.0000000000000757.
    1. Rook G., Bäckhed F., Levin B. R., McFall-Ngai M. J., McLean A. R. Evolution, human-microbe interactions, and life history plasticity. The Lancet. 2017;390(10093):521–530. doi: 10.1016/S0140-6736(17)30566-4.
    1. MetaHIT Consortium, Li J., Jia H., et al. An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology. 2014;32(8):834–841. doi: 10.1038/nbt.2942.
    1. MetaHIT Consortium, Qin J., Li R., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. doi: 10.1038/nature08821.
    1. Li X. Y., He C., Zhu Y., Lu N. H. Role of gut microbiota on intestinal barrier function in acute pancreatitis. World Journal of Gastroenterology. 2020;26(18):2187–2193. doi: 10.3748/wjg.v26.i18.2187.
    1. Kurilshikov A., van den Munckhof I. C. L., Chen L., et al. Gut microbial associations to plasma metabolites linked to cardiovascular phenotypes and risk. Circ Res. 2019;124(12):1808–1820. doi: 10.1161/CIRCRESAHA.118.314642.
    1. Price K. J., Gordon B. A., Bird S. R., Benson A. C. A review of guidelines for cardiac rehabilitation exercise programmes: is there an international consensus? European Journal of Preventive Cardiology. 2016;23(16):1715–1733. doi: 10.1177/2047487316657669.
    1. Elisabet J., Magnus S., Hans S., Antal B., Riadh S. Physical activity improves symptoms in irritable bowel syndrome: a randomized controlled trial. The American Journal of Gastroenterology. 2011;2011(5):81–82. doi: 10.1016/j.ygas.2011.07.038.
    1. Ortega-Santos C. P., Al-Nakkash L., Whisner C. M. Exercise and/or genistein treatment impact gut microbiota and inflammation after 12 weeks on a high-fat, high-sugar diet in C57BL/6 mice. Nutrients. 2020;12(11):p. 3410. doi: 10.3390/nu12113410.
    1. Mika A., van Treuren W., González A., Herrera J. J., Knight R., Fleshner M. Exercise is more effective at altering gut microbial composition and producing stable changes in lean mass in juvenile versus adult male F344 rats. PLoS One. 2015;10(5) doi: 10.1371/journal.pone.0125889.
    1. Kang S. S., Jeraldo P. R., Kurti A., et al. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Molecular Neurodegeneration. 2014;9(1) doi: 10.1186/1750-1326-9-36.
    1. Mahizir D. C., Briffa J. F., Wood J. L., et al. Exercise improves metabolic function and alters the microbiome in rats with gestational diabetes. The FASEB Journal. 2020;34(1):1728–1744. doi: 10.1096/fj.201901424r.
    1. Denou E., Marcinko K., Surette M. G., Steinberg G. R., Schertzer J. D. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. American Journal of Physiology. 2016;310(11):E982–E993. doi: 10.1152/ajpendo.00537.2015.
    1. Clarke S. F., Murphy E. F., O'Sullivan O., et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–1920. doi: 10.1136/gutjnl-2013-306541.
    1. Gao R., Wang L., Bei Y., et al. Long Noncoding RNA Cardiac Physiological Hypertrophy–Associated Regulator induces cardiac physiological hypertrophy and promotes functional recovery after myocardial ischemia-reperfusion injury. Circulation. 2021;144(4):303–317. doi: 10.1161/CIRCULATIONAHA.120.050446.
    1. Zhao X., Zhang Z., Hu B., Huang W., Yuan C., Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Frontiers in Microbiology. 2018;9:p. 765. doi: 10.3389/fmicb.2018.00765.
    1. Huang C.-C., Lin W.-T., Hsu F.-L., Tsai P.-W., Hou C.-C. Metabolomics investigation of exercise-modulated changes in metabolism in rat liver after exhaustive and endurance exercises. European Journal of Applied Physiology. 2010;108(3):557–566. doi: 10.1007/s00421-009-1247-7.
    1. Arakawa K., Hosono A., Shibata K., et al. Changes in blood biochemical markers before, during, and after a 2-day ultramarathon. Open Access Journal of Sports Medicine. 2016;7 doi: 10.2147/OAJSM.S97468.
    1. Bekos C., Zimmermann M., Unger L., et al. Non-professional marathon running: RAGE axis and ST2 family changes in relation to open-window effect, inflammation and renal function. Scientific reports. 2016;6(1) doi: 10.1038/srep32315.
    1. Rettedal E. A., Cree J. M. E., Adams S. E., et al. Short-term high‐intensity interval training exercise does not affect gut bacterial community diversity or composition of lean and overweight men. Experimental Physiology. 2020;105(8):1268–1279. doi: 10.1113/EP088744.
    1. Tran C. D., Grice D. M., Wade B., et al. Gut permeability, its interaction with gut microflora and effects on metabolic health are mediated by the lymphatics system, liver and bile acid. Future microbiology. 2015;10(8):1339–1353. doi: 10.2217/FMB.15.54.
    1. Ohland C. L., MacNaughton W. K. Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology. 2010;298(6):G807–G819. doi: 10.1152/ajpgi.00243.2009.
    1. Huttenhower C., Kostic A. D., Xavier R. J. Inflammatory bowel disease as a model for translating the microbiome. Immunity. 2014;40(6):843–854. doi: 10.1016/j.immuni.2014.05.013.
    1. Karl J. P., Margolis L. M., Madslien E. H., et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2017;312(6):G559–G571. doi: 10.1152/ajpgi.00066.2017.
    1. De Oliveira E. P., Burini R. C. The impact of physical exercise on the gastrointestinal tract. Current Opinion in Clinical Nutrition and Metabolic Care. 2009;12(5):533–538. doi: 10.1097/MCO.0b013e32832e6776.
    1. Micah Z., Suzanne S., Katherine L., Carole C., Karol D., Pope M. Exercise regulation of intestinal tight junction proteins. British Journal of Sports Medicine. 2014;48(12)
    1. Lambert J. E., Myslicki J. P., Bomhof M. R., Belke D. D., Shearer J., Reimer R. A. Exercise training modifies gut microbiota in normal and diabetic mice. Applied Physiology, Nutrition, and Metabolism. 2015;40(7):749–752. doi: 10.1139/apnm-2014-0452.
    1. Evans C. C., LePard K. J., Kwak J. W., et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS One. 2014;9(3) doi: 10.1371/journal.pone.0092193.
    1. Potera C. Running Interference? Exercise and PCB-induced changes in the gut microbiome. Environmental Health Perspectives. 2013;121(6) doi: 10.1289/ehp.121-a199.
    1. Allen J. M., Berg Miller M. E., Pence B. D., et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. Journal of Applied Physiology. 2015;118(8):1059–1066. doi: 10.1152/japplphysiol.01077.2014.
    1. Aoki T., Oyanagi E., Watanabe C., et al. The effect of voluntary exercise on gut microbiota in partially hydrolyzed guar gum intake mice under high-fat diet feeding. Nutrients. 2020;12(9):p. 2508. doi: 10.3390/nu12092508.
    1. Kellermayer R., Dowd S. E., Harris R. A., et al. Colonic mucosal DNA methylation, immune response, and microbiome patterns in Toll-like receptor 2-knockout mice. The FASEB Journal. 2011;25(5):1449–1460. doi: 10.1096/fj.10-172205.
    1. Taniguchi H., Tanisawa K., Sun X., et al. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiological Reports. 2018;6(23) doi: 10.14814/phy2.13935.
    1. Allen J. M., Mailing L. J., Niemiro G. M., et al. Exercise alters gut microbiota composition and function in lean and obese humans. Medicine and science in sports and exercise. 2018;50(4):747–757. doi: 10.1249/MSS.0000000000001495.
    1. Kern T., Blond M. B., Hansen T. H., et al. Structured exercise alters the gut microbiota in humans with overweight and obesity--A randomized controlled trial. International Journal of Obesity. 2020;44(1):125–135. doi: 10.1038/s41366-019-0440-y.
    1. Tottey W., Feria-Gervasio D., Gaci N., et al. Colonic transit time is a driven force of the gut microbiota composition and metabolism: in vitro evidence. Journal of neurogastroenterology and motility. 2017;23(1):124–134. doi: 10.5056/jnm16042.
    1. Merenstein D. J., D'Amico F., Palese C., et al. Short-term, daily intake of yogurt containingBifidobacterium animalisssp. lactisBf-6 (LMG 24384) does not affect colonic transit time in women. The British journal of nutrition. 2014;111(2):279–286. doi: 10.1017/S0007114513002237.
    1. Walker A. W., Duncan S. H., McWilliam Leitch E. C., Child M. W., Flint H. J. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and environmental microbiology. 2005;71(7):3692–3700. doi: 10.1128/AEM.71.7.3692-3700.2005.
    1. Nakamura A., Osonoi T., Terauchi Y. Relationship between urinary sodium excretion and pioglitazone-induced edema. Journal of Diabetes Investigation. 2010;1(5):208–211. doi: 10.1111/j.2040-1124.2010.00046.x.
    1. Reynolds R. M., Labad J., Strachan M. W. J., et al. Elevated fasting plasma cortisol is associated with ischemic heart disease and its risk factors in people with type 2 diabetes: the Edinburgh type 2 diabetes study. The Journal of Clinical Endocrinology & Metabolism. 2010;95(4):1602–1608. doi: 10.1210/jc.2009-2112.
    1. Magne F., Gotteland M., Gauthier L., et al. The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients. 2020;12(5):p. 1474. doi: 10.3390/nu12051474.
    1. Tropini C., Moss E. L., Merrill B. D., et al. Transient osmotic perturbation causes long-term alteration to the gut microbiota. Cell. 2018;173(7):1742–1754.e17. doi: 10.1016/j.cell.2018.05.008.
    1. Li J., Zhao F., Wang Y., et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1) doi: 10.1186/s40168-016-0222-x.
    1. Richards E. M., Pepine C. J., Raizada M. K., Kim S. The gut, its microbiome, and hypertension. Current Hypertension Reports. 2017;19(4) doi: 10.1007/s11906-017-0734-1.
    1. Jie Z., Xia H., Zhong S.-L., et al. The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications. 2017;8(1) doi: 10.1038/s41467-017-00900-1.
    1. Wilson A., McLean C., Kim R. B. Trimethylamine-N-oxide. Current Opinion in Lipidology. 2016;27(2):148–154. doi: 10.1097/MOL.0000000000000274.
    1. Tang W. H. W., Backhed F., Landmesser U., Hazen S. L. Intestinal Microbiota in Cardiovascular Health and Disease: Journal of the American College of Cardiology. 2019;73(16):2089–2105. doi: 10.1016/j.jacc.2019.03.024.
    1. Wang Z., Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein & Cell. 2018;9(5):416–431. doi: 10.1007/s13238-018-0549-0.
    1. Li D. Y., Tang W. H. W. Gut microbiota and atherosclerosis. Current Atherosclerosis Reports. 2017;19(10):p. 39. doi: 10.1007/s11883-017-0675-9.
    1. Chen Y. W., Tang H. J., Tsai Y. S., et al. Risk of non-typhoidal _Salmonella_ vascular infections is increased with degree of atherosclerosis and inflammation: A multicenter study in southern Taiwan. Journal of Microbiology, Immunology and Infection. 2021;S1684-1182(21) doi: 10.1016/j.jmii.2021.04.007.
    1. Haghikia A., Li X. S., Liman T. G., et al. Gut microbiota-dependent TrimethylamineN-Oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arteriosclerosis, Thrombosis, and Vascular Biology. 2018;38(9):2225–2235. doi: 10.1161/ATVBAHA.118.311023.
    1. Kelly T. N., Bazzano L. A., Ajami N. J., et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among bogalusa heart study participants. Circulation Research. 2016;119(8):956–964. doi: 10.1161/CIRCRESAHA.116.309219.
    1. Singh V., Yeoh B. S., Vijay-Kumar M. Gut microbiome as a novel cardiovascular therapeutic target. Current Opinion in Pharmacology. 2016;27:8–12. doi: 10.1016/j.coph.2016.01.002.
    1. Jonsson A. L., Bäckhed F. Role of gut microbiota in atherosclerosis. Nature Reviews. Cardiology. 2017;14(2):79–87. doi: 10.1038/nrcardio.2016.183.
    1. Liu H., Chen X., Hu X., et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome. 2019;7(1) doi: 10.1186/s40168-019-0683-9.
    1. Chen M. L., Yi L., Zhang Y., et al. Resveratrol attenuates trimethylamine-n-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. mBio. 2016;7(2) doi: 10.1128/mBio.02210-15.
    1. Lin H., Zhu Y., Zheng C., et al. Antihypertrophic memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779. Circulation. 2021;143(23):2277–2292. doi: 10.1161/CIRCULATIONAHA.120.047000.
    1. Organ C. L., Otsuka H., Bhushan S., et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circulation. 2016;9(1) doi: 10.1161/CIRCHEARTFAILURE.115.002314.
    1. Kamo T., Akazawa H., Suda W., et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3) doi: 10.1371/journal.pone.0174099.
    1. Leylabadlo H. E., Ghotaslou R., Feizabadi M. M., et al. The critical role of _Faecalibacterium prausnitzii_ in human health: An overview. Microbial Pathogenesis. 2020;149 doi: 10.1016/j.micpath.2020.104344.
    1. Richard M. L., Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nature Reviews Gastroenterology & Hepatology. 2019;16(6) doi: 10.1038/s41575-019-0121-2.
    1. Tang W. H., Kitai T., Hazen S. L. Gut microbiota in cardiovascular health and disease. Circulation Research. 2017;120(7):1183–1196. doi: 10.1161/CIRCRESAHA.117.309715.
    1. Ahmad A. F., Ward N. C., Dwivedi G. The gut microbiome and heart failure. Current Opinion in Cardiology. 2019;34(2):225–232. doi: 10.1097/HCO.0000000000000598.
    1. Fiuza-Luces C., Santos-Lozano A., Joyner M., et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nature Reviews. Cardiology. 2018;15(12):731–743. doi: 10.1038/s41569-018-0065-1.
    1. Green D. J., O'Driscoll G., Joyner M. J., Cable N. T. Exercise and cardiovascular risk reduction: time to update the rationale for exercise? Journal of applied physiology. 2008;105(2):766–768. doi: 10.1152/japplphysiol.01028.2007.
    1. Chen J., Guo Y., Gui Y., Xu D. Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids in Health and Disease. 2018;17(1) doi: 10.1186/s12944-017-0653-9.
    1. Patel P. N., Shah R. Y., Ferguson J. F., Reilly M. P. Human experimental endotoxemia in modeling the pathophysiology, genomics, and therapeutics of innate immunity in complex cardiometabolic diseases. Arteriosclerosis, thrombosis, and vascular biology. 2015;35(3):525–534. doi: 10.1161/ATVBAHA.114.304455.
    1. Lanter B. B., Sauer K., Davies D. G. Bacteria present in carotid arterial plaques are found as biofilm deposits which may contribute to enhanced risk of plaque rupture. mBio. 2014;5(3) doi: 10.1128/mBio.01206-14.
    1. Wilck N., Matus M. G., Kearney S. M., et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551(7682):585–589. doi: 10.1038/nature24628.
    1. Wang Z., Roberts A. B., Buffa J. A., et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–1595. doi: 10.1016/j.cell.2015.11.055.

Source: PubMed

3
구독하다