Assessment of Alzheimer's disease-related biomarkers in patients with obstructive sleep apnea: A systematic review and meta-analysis

Wenqi Cui, Zhenghao Duan, Zijian Li, Juan Feng, Wenqi Cui, Zhenghao Duan, Zijian Li, Juan Feng

Abstract

Increasing evidence links Alzheimer's disease (AD) to various sleep disorders, including obstructive sleep apnea (OSA). The core AD cerebrospinal fluid (CSF) biomarkers, including amyloid-β 42 (Aβ42), total tau (t-tau), and phosphorylated tau (p-tau), can reflect key elements of AD pathophysiology before the emergence of symptoms. Besides, the amyloid-β (Aβ) and tau burden can also be tested by positron emission tomography (PET) scans. Electronic databases (PubMed, Embase, Web of Science, and The Cochrane Library) were searched until August 2022 to assess the AD-related biomarkers measured by PET scans and CSF in OSA patients. The overall analysis showed significant differences in Aβ42 levels (SMD = -0.93, 95% CI:-1.57 to -0.29, P < 0.001) and total tau (t-tau) levels (SMD = 0.24, 95% CI: 0.01-0.48, P = 0.308) of CSF, and Aβ burden (SMD = 0.37, 95% CI = 0.13-0.61, P = 0.69) tested by PET scans between the OSA and controls. Furthermore, CSF Aβ42 levels showed significant differences in patients with moderate/severe OSA compared with healthy control, and levels of CSF Aβ42 showed differences in OSA patients with normal cognition as well. Besides, age and BMI have influences on heterogeneity. Our meta-analysis indicated abnormal AD-related biomarkers (CSF and PET scans) in patients with OSA, supporting the current hypothesis that OSA, especially moderate/severe OSA, may start the AD neuropathological process.

Systematic review registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42021289559].

Keywords: Alzheimer’s disease; PET scans; amyloid-β 42 (Aβ42); obstructive sleep apnea; phosphorylated tau (p-tau); total tau.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Cui, Duan, Li and Feng.

Figures

FIGURE 1
FIGURE 1
Flowchart of search strategy and study selection.
FIGURE 2
FIGURE 2
Forest plot comparing levels of cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers in subjects with obstructive sleep apnea (OSA) and controls: (A) CSF Aβ42 level; (B) CSF t-tau level; (C) CSF p-tau level; (D) PET Aβ burden.
FIGURE 3
FIGURE 3
Funnel plot analysis used to detect publication bias: (A) CSF Aβ42 level (P = 0.072 in Begg’s test); (B) Cerebrospinal fluid (CSF) t-tau level (P = 0.452 in Begg’s test).
FIGURE 4
FIGURE 4
Sub-group analysis: (A) Cerebrospinal fluid (CSF) Aβ42 level based on age; (B) CSF Aβ42 level based on BMI; (C) CSF t-tau level based on BMI; (D) CSF p-tau level based on BMI; and (E) CSF Aβ42 level based on cognition status.
FIGURE 5
FIGURE 5
Forest plot of cerebrospinal fluid (CSF) Aβ42 level: (A) Mild obstructive sleep apnea (OSA) compared with healthy control; (B) Moderate/severe OSA compared with healthy control; (C) Mild OSA compared with moderate/severe OSA.

References

    1. André C., Rehel S., Kuhn E., Landeau B., Moulinet I., Touron E., et al. (2020). Association of sleep-disordered breathing with Alzheimer disease biomarkers in community-dwelling older adults: A secondary analysis of a randomized clinical trial. JAMA Neurol. 77 716–724. 10.1001/jamaneurol.2020.0311
    1. Begg C. B., Mazumdar M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics 50 1088–1101.
    1. Benjafield A. V., Ayas N. T., Eastwood P. R., Heinzer R., Ip M. S. M., Morrell M. J., et al. (2019). Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 7 687–698. 10.1016/S2213-2600(19)30198-5
    1. Blackwell T., Yaffe K., Laffan A., Redline S., Ancoli-Israel S., Ensrud K. E., et al. (2015). Associations between sleep-disordered breathing, nocturnal hypoxemia, and subsequent cognitive decline in older community-dwelling men: The osteoporotic fractures in men sleep study. J. Am. Geriatr. Soc. 63 453–461. 10.1111/jgs.13321
    1. Bubu O. M., Pirraglia E., Andrade A. G., Sharma R. A., Gimenez-Badia S., Umasabor-Bubu O. Q., et al. (2019). Obstructive sleep apnea and longitudinal Alzheimer’s disease biomarker changes. Sleep 42:zsz048. 10.1093/sleep/zsz048
    1. Chang H. P., Chen Y. F., Du J. K. (2020). Obstructive sleep apnea treatment in adults. Kaohsiung J. Med. Sci. 36 7–12. 10.1002/kjm2.12130
    1. Dennis E. L., Thompson P. M. (2014). Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24 49–62. 10.1007/s11065-014-9249-6
    1. Diáz-Román M., Pulopulos M. M., Baquero M., Salvador A., Cuevas A., Ferrer I., et al. (2021). Obstructive sleep apnea and Alzheimer’s disease-related cerebrospinal fluid biomarkers in mild cognitive impairment. Sleep 4:zsaa1334. 10.1093/sleep/zsaa133
    1. Duce B., Milosavljevic J., Hukins C. (2015). The 2012 AASM respiratory event criteria increase the incidence of hypopneas in an adult sleep center population. J. Clin. Sleep Med. 11 1425–1431. 10.5664/jcsm.5280
    1. Egger M., Davey Smith G., Schneider M., Minder C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ 315 629–634. 10.1136/bmj.315.7109.629
    1. Elias A., Cummins T., Tyrrell R., Lamb F., Dore V., Williams R., et al. (2018). Risk of Alzheimer’s disease in obstructive sleep apnea syndrome: Amyloid-β and tau imaging. J. Alzheimers Dis. 66 733–741. 10.3233/JAD-180640
    1. Fernandes M., Mari L., Chiaravalloti A., Paoli B., Nuccetelli M., Izzi F., et al. (2022). (18)F-FDG PET, cognitive functioning, and CSF biomarkers in patients with obstructive sleep apnoea before and after continuous positive airway pressure treatment. J. Neurol. 269 5356–5367. 10.1007/s00415-022-11182-z
    1. Graff-Radford J., Yong K. X. X., Apostolova L. G., Bouwman F. H., Carrillo M., Dickerson B. C., et al. (2021). New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 20 222–234. 10.1016/S1474-4422(20)30440-3
    1. Higgins J. P., Thompson S. G., Deeks J. J., Altman D. G. (2003). Measuring inconsistency in meta-analyses. BMJ 327 557–560. 10.1136/bmj.327.7414.557
    1. Ishii M., Iadecola C. (2020). Risk factor for Alzheimer’s disease breaks the blood-brain barrier. Nature 581 31–32. 10.1038/d41586-020-01152-8
    1. Jack C. R., Jr., Bennett D. A., Blennow K., Carrillo M. C., Dunn B., Haeberlein S. B., et al. (2018). NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14 535–562. 10.1016/j.jalz.2018.02.018
    1. Jackson M. L., Cavuoto M., Schembri R., Doré V., Villemagne V. L., Barnes M., et al. (2020). Severe obstructive sleep apnea is associated with higher brain amyloid burden: A preliminary PET imaging study. J. Alzheimers Dis. 78 611–617. 10.3233/jad-200571
    1. Jorge C., Targa A., Benitez D. I., Dakterzada F., Torres G., Minguez O., et al. (2020). Obstructive sleep apnoea and cognitive decline in mild-to-moderate Alzheimer’s disease. Eur. Respir. J. 56:2000523. 10.1183/13993003.00523-2020
    1. Ju Y. E. S., Finn M. B., Sutphen C. L., Herries E. M., Jerome G. M., Ladenson J. H., et al. (2016). Obstructive sleep apnea decreases central nervous system–derived proteins in the cerebrospinal fluid. Ann. Neurol. 80 154–159. 10.1002/ana.24672
    1. Kandimalla R. J., Prabhakar S., Bk B., Wani W. Y., Sharma D. R., Grover V. K., et al. (2011). Cerebrospinal fluid profile of amyloid beta42 (Abeta42), hTau and ubiquitin in North Indian Alzheimer’s disease patients. Neurosci. Lett. 487 134–138. 10.1016/j.neulet.2010.06.075
    1. Kazim S. F., Sharma A., Saroja S. R., Seo J. H., Larson C. S., Ramakrishnan A., et al. (2022). Chronic intermittent hypoxia enhances pathological tau seeding, propagation, and accumulation and exacerbates alzheimer-like memory and synaptic plasticity deficits and molecular signatures. Biol. Psychiatry 91 346–358. 10.1016/j.biopsych.2021.02.973
    1. Kerner N. A., Roose S. P. (2016). Obstructive sleep apnea is linked to depression and cognitive impairment: Evidence and potential mechanisms. Am. J. Geriatr. Psychiatry 24 496–508. 10.1016/j.jagp.2016.01.134
    1. Lane C. A., Hardy J., Schott J. M. (2018). Alzheimer’s disease. Eur. J. Neurol. 25 59–70. 10.1111/ene.13439
    1. Liguori C., Mercuri N. B., Izzi F., Romigi A., Cordella A., Sancesario G., et al. (2017). Obstructive sleep apnea is associated with early but possibly modifiable Alzheimer’s disease biomarkers changes. Sleep 40:zsx011. 10.1093/sleep/zsx011
    1. Liguori C., Mercuri N. B., Nuccetelli M., Izzi F., Cordella A., Bernardini S., et al. (2019). Obstructive sleep apnea may induce orexinergic system and cerebral β-amyloid metabolism dysregulation: Is it a further proof for Alzheimer’s disease risk? Sleep Med. 56 171–176. 10.1016/j.sleep.2019.01.003
    1. Lim D. C., Pack A. I. (2014). Obstructive sleep apnea and cognitive impairment: Addressing the blood-brain barrier. Sleep Med. Rev. 18 35–48. 10.1016/j.smrv.2012.12.003
    1. Lo C. K., Mertz D., Loeb M. (2014). Newcastle-Ottawa Scale: Comparing reviewers’ to authors’ assessments. BMC Med. Res. Methodol. 14:45. 10.1186/1471-2288-14-45
    1. Lu Y., Jiang X., Liu S., Li M. (2018). Changes in cerebrospinal fluid tau and beta-amyloid levels in diabetic and prediabetic patients: A meta-analysis. Front. Aging Neurosci. 10:271. 10.3389/fnagi.2018.00271
    1. McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 263–269. 10.1016/j.jalz.2011.03.005
    1. Mohajer B., Abbasi N., Mohammadi E., Khazaie H., Osorio R. S., Rosenzweig I., et al. (2020). Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing. Hum. Brain Mapp. 41 3034–3044. 10.1002/hbm.24995
    1. Mysliwiec V., Martin J. L., Ulmer C. S., Chowdhuri S., Brock M. S., Spevak C., et al. (2020). The management of chronic insomnia disorder and obstructive sleep apnea: Synopsis of the 2019 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guidelines. Ann. Intern. Med. 172 325–336. 10.7326/M19-3575
    1. Nakazawa T., Ohara T., Hirabayashi N., Furuta Y., Hata J., Shibata M., et al. (2022). Multiple-region grey matter atrophy as a predictor for the development of dementia in a community: The Hisayama study. J. Neurol. Neurosurg. Psychiatry 93 263–271. 10.1136/jnnp-2021-326611
    1. Olsson B., Lautner R., Andreasson U., Ohrfelt A., Portelius E., Bjerke M., et al. (2016). CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Lancet Neurol. 15 673–684. 10.1016/S1474-4422(16)00070-3
    1. Osorio R. S., Ayappa I., Mantua J., Gumb T., Varga A., Mooney A. M., et al. (2014). The interaction between sleep-disordered breathing and apolipoprotein E genotype on cerebrospinal fluid biomarkers for Alzheimer’s disease in cognitively normal elderly individuals. Neurobiol. Aging 35 1318–1324. 10.1016/j.neurobiolaging.2013.12.030
    1. Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., et al. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 372:n71. 10.1136/bmj.n71
    1. Pontecorvo M. J., Devous M. D., Sr., Navitsky M., Lu M., Salloway S., Schaerf F. W., et al. (2017). Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140 748–763. 10.1093/brain/aww334
    1. Rabin L. A., Smart C. M., Amariglio R. E. (2017). Subjective cognitive decline in preclinical Alzheimer’s disease. Annu. Rev. Clin. Psychol. 13 369–396. 10.1146/annurev-clinpsy-032816-045136
    1. Rabinovici G. D., Furst A. J., O’Neil J. P., Racine C. A., Mormino E. C., Baker S. L., et al. (2007). 11C-PIB PET imaging in Alzheimer disease and frontotemporal lobar degeneration. Neurology 68 1205–1212. 10.1212/01.wnl.0000259035.98480.ed
    1. Shamseer L., Moher D., Clarke M., Ghersi D., Liberati A., Petticrew M., et al. (2016). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. Erratum for: BMJ 2015;350:g7647. BMJ 354:i4086. 10.1136/bmj.i4086
    1. Semelka M., Wilson J., Floyd R. (2016). Diagnosis and treatment of obstructive sleep apnea in adults. Am. Fam. Physician 94 355–360.
    1. Sharma R. A., Varga A. W., Bubu O. M., Pirraglia E., Kam K., Parekh A., et al. (2018). Obstructive sleep apnea severity affects amyloid burden in cognitively normal elderly: A longitudinal study. Am. J. Respir. Crit. Care Med. 197 933–943. 10.1164/rccm.201704-0704OC
    1. Stang A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 25 603–605. 10.1007/s10654-010-9491-z
    1. Valotassiou V., Malamitsi J., Papatriantafyllou J., Dardiotis E., Tsougos I., Psimadas D., et al. (2018). SPECT and PET imaging in Alzheimer’s disease. Ann. Nucl. Med. 32 583–593. 10.1007/s12149-018-1292-6
    1. Yun C. H., Lee H. Y., Lee S. K., Kim H., Seo H. S., Bang S. A., et al. (2017). Amyloid burden in obstructive sleep apnea. J. Alzheimers Dis. 59 21–29. 10.3233/JAD-161047
    1. Zolotoff C., Bertoletti L., Gozal D., Mismetti V., Flandrin P., Roche F., et al. (2021). Obstructive sleep apnea, hypercoagulability, and the blood-brain barrier. J. Clin. Med. 10:3099. 10.3390/jcm10143099

Source: PubMed

3
구독하다