Determining the optimal time for liberation from renal replacement therapy in critically ill patients: a systematic review and meta-analysis (DOnE RRT)

Riley Jeremy Katulka, Abdalrhman Al Saadon, Meghan Sebastianski, Robin Featherstone, Ben Vandermeer, Samuel A Silver, R T Noel Gibney, Sean M Bagshaw, Oleksa G Rewa, Riley Jeremy Katulka, Abdalrhman Al Saadon, Meghan Sebastianski, Robin Featherstone, Ben Vandermeer, Samuel A Silver, R T Noel Gibney, Sean M Bagshaw, Oleksa G Rewa

Abstract

Introduction: Renal replacement therapy (RRT) is associated with high mortality and costs; however, no clinical guidelines currently provide specific recommendations for clinicians on when and how to stop RRT in recovering patients. Our objective was to systematically review the current evidence for clinical and biochemical parameters that can be used to predict successful discontinuation of RRT.

Methods: A systematic review and meta-analysis were performed with a peer-reviewed search strategy combining the themes of renal replacement therapy (IHD, CRRT, SLED), predictors of successful discontinuation or weaning (defined as an extended period of time free from further RRT), and patient outcomes. Major databases were searched and citations were screened using predefined criteria. Studied parameters were reported and, where possible, data was analyzed in the pooled analysis.

Results: Our search yielded 23 studies describing 16 variables for predicting the successful discontinuation of RRT. All studies were observational in nature. None were externally validated. Fourteen studies described conventional biochemical criteria used as surrogates of glomerular filtration rate (serum urea, serum creatinine, creatinine clearance, urine urea excretion, urine creatinine excretion). Thirteen studies described physiologic parameters such as urine output before and after cessation of RRT, and 13 studies reported on newer kidney biomarkers, such as serum cystatin C and serum neutrophil gelatinase-associated lipocalin (NGAL). Six studies reported sensitivity and specificity characteristics of multivariate models. Urine output prior to discontinuation of RRT was the most-studied variable, with nine studies reporting. Pooled analysis found a sensitivity of 66.2% (95% CI, 53.6-76.9%) and specificity of 73.6% (95% CI, 67.5-79.0%) for urine output to predict successful RRT discontinuation. Due to heterogeneity in the thresholds of urine output used across the studies, an optimal threshold value could not be determined.

Conclusions: Numerous variables have been described to predict successful discontinuation of RRT; however, available studies are limited by study design, variable heterogeneity, and lack of prospective validation. Urine output prior to discontinuation of RRT was the most commonly described and robust predictor. Further research should focus on the determination and validation of urine output thresholds, and the evaluation of additional clinical and biochemical parameters in multivariate models to enhance predictive accuracy.

Keywords: Acute kidney injury; Biomarkers; Creatinine; Intensive care unit; Prediction; Renal replacement therapy; Systematic review.

Conflict of interest statement

Dr. Bagshaw reports having received speaking fees and unrestricted funding support from Baxter Healthcare Corp.

Dr. Gibney reports having received speaking fees from Baxter Healthcare.

Dr. Silver reports having received speaking fees from Baxter Healthcare.

Figures

Fig. 1
Fig. 1
PRISMA flow diagram of retrieved and included records. Of the 23 included trials, 5 were abstracts and 18 were full text
Fig. 2
Fig. 2
Summary of findings’ table for urine output prior to discontinuation of RRT
Fig. 3
Fig. 3
Pooled analysis for studies using urine output prior to discontinuation of RRT to predict successful weaning

References

    1. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–1423. doi: 10.1007/s00134-015-3934-7.
    1. Prowle JR, Bellomo R. Continuous renal replacement therapy: recent advances and future research. Nat Rev Nephrol. 2010;6(9):521–529. doi: 10.1038/nrneph.2010.100.
    1. Hsu RK, McCulloch CE, Dudley RA, Lo LJ, Hsu CY. Temporal changes in incidence of dialysis-requiring AKI. J Am Soc Nephrol. 2013;24(1):37–42. doi: 10.1681/ASN.2012080800.
    1. Nct: Standard vs. Accelerated Initiation of RRT in Acute Kidney Injury (STARRT-AKI: principal Trial). . 2015.
    1. Gaudry S, Hajage D, Schortgen F, Martin-Lefevre L, Pons B, Boulet E, Boyer A, Chevrel G, Lerolle N, Carpentier D, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016;375(2):122–133. doi: 10.1056/NEJMoa1603017.
    1. Zarbock A, Kellum JA, Schmidt C, Van Aken H, Wempe C, Pavenstadt H, Boanta A, Gerss J, Meersch M. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA. 2016;315(20):2190–2199. doi: 10.1001/jama.2016.5828.
    1. Ferreira JA, Johnson DW. The incidence of thrombocytopenia associated with continuous renal replacement therapy in critically ill patients. Ren Fail. 2015;37(7):1232–1236. doi: 10.3109/0886022X.2015.1057799.
    1. Guru PK, Singh TD, Akhoundi A, Kashani KB. Association of thrombocytopenia and mortality in critically ill patients on continuous renal replacement therapy. Nephron. 2016;133(3):175–182. doi: 10.1159/000447543.
    1. Hoste EA, Blot SI, Lameire NH, Vanholder RC, De Bacquer D, Colardyn FA. Effect of nosocomial bloodstream infection on the outcome of critically ill patients with acute renal failure treated with renal replacement therapy. J Am Soc Nephrol. 2004;15(2):454–462. doi: 10.1097/01.ASN.0000110182.14608.0C.
    1. Ronco C, Bellomo R. Complications with continuous renal replacement therapy. Am J Kidney Dis. 1996;28(5):S100–S104. doi: 10.1016/S0272-6386(96)90087-6.
    1. Silversides JA, Pinto R, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, Adhikari NK. Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care. 2014;18(6):624. doi: 10.1186/s13054-014-0624-8.
    1. van de Wetering J, Westendorp RG, van der Hoeven JG, Stolk B, Feuth JD, Chang PC. Heparin use in continuous renal replacement procedures: the struggle between filter coagulation and patient hemorrhage. J Am Soc Nephrol. 1996;7(1):145–150.
    1. Cerdá J, Liu KD, Cruz DN, Jaber BL, Koyner JL, Heung M, Okusa MD, Faubel S. Promoting kidney function recovery in patients with AKI requiring RRT. Clin J Am Soc Nephrol. 2015;10(10):1859–1867. doi: 10.2215/CJN.01170215.
    1. Schiffl H. Renal recovery after severe acute renal injury. Eur J Med Res. 2008;13(12):552–556.
    1. Ferreira V, Neto MM, da Cardeal Costa JA. Association of Infections with the use of a temporary double-lumen catheter for hemodialysis. Nephrol Nurs J. 2018;45(3):261–267.
    1. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–c184.
    1. Yoshida T, Matsuura R, Komaru Y, Miyamoto Y, Yoshimoto K, Hamasaki Y, Noiri E, Morimura N, Nangaku M, Doi K. Kinetic estimated glomerular filtration rate as a predictor of successful continuous renal replacement therapy discontinuation. Nephrol. 2019;24(3):287–293. doi: 10.1111/nep.13396.
    1. Han SS, Bae E, Song SH, Kim DK, Kim YS, Han JS, Joo KW. NT-proBNP is predictive of the weaning from continuous renal replacement therapy. Tohoku J Exp Med. 2016;239(1):1–8. doi: 10.1620/tjem.239.1.
    1. Chen Xiaohan, Chen Zhiwen, Wei Tiantian, Li Peiyun, Zhang Ling, Fu Ping. The Effect of Serum Neutrophil Gelatinase-Associated Lipocalin on the Discontinuation of Continuous Renal Replacement Therapy in Critically Ill Patients with Acute Kidney Injury. Blood Purification. 2019;48(1):10–17. doi: 10.1159/000499026.
    1. Frohlich S, Donnelly A, Solymos O, Conlon N. Use of 2-hour creatinine clearance to guide cessation of continuous renal replacement therapy. J Crit Care. 2012;27(6):744.e741–744.e745. doi: 10.1016/j.jcrc.2012.08.012.
    1. Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, et al. Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med. 2009;37(9):2576–2582. doi: 10.1097/CCM.0b013e3181a38241.
    1. Katayama S, Uchino S, Uji M, Ohnuma T, Namba Y, Kawarazaki H, Toki N, Takeda K, Yasuda H, Izawa J, et al. Factors predicting successful discontinuation of continuous renal replacement therapy. Anaesth Intensive Care. 2016;44(4):453–457. doi: 10.1177/0310057X1604400401.
    1. Gleeson PJ, Crippa IA, Sexton DJ, Fontana V, Taccone F, Creteur J, Vincent JL. Determinants of renal recovery and mortality in patients undergoing continuous renal replacement therapy in the ICU. Intensive Care Med Exp. 2015;3:A54. doi: 10.1186/2197-425X-3-S1-A54.
    1. Dewitte A, Joannes-Boyau O, Sidobre C, Fleureau C, Bats ML, Derache P, Leuillet S, Ripoche J, Combe C, Ouattara A. Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol. 2015;10(11):1900–1910. doi: 10.2215/CJN.12651214.
    1. Aniort J, Ait Hssain A, Pereira B, Coupez E, Pioche PA, Leroy C, Heng AE, Souweine B, Lautrette A. Daily urinary urea excretion to guide intermittent hemodialysis weaning in critically ill patients. Crit Care. 2016;20:43. doi: 10.1186/s13054-016-1225-5.
    1. Viallet N, Brunot V, Kuster N, Daubin D, Besnard N, Platon L, Buzancais A, Larcher R, Jonquet O, Klouche K. Daily urinary creatinine predicts the weaning of renal replacement therapy in ICU acute kidney injury patients. Ann Intensive Care. 2016;6(1):71. doi: 10.1186/s13613-016-0176-y.
    1. Raurich JM, Llompart-Pou JA, Novo MA, Talavera C, Ferreruela M, Ayestaran I. Successful weaning from continuous renal replacement therapy. Associated risk factors. J Crit Care. 2018;45:144–148. doi: 10.1016/j.jcrc.2018.02.009.
    1. Kim CS, Bae EH, Ma SK, Kim SW. A prospective observational study on the predictive value of serum cystatin C for successful weaning from continuous renal replacement therapy. Kidney Blood Press Res. 2018;43(3):872–881. doi: 10.1159/000490335.
    1. Yang T, Sun S, Lin L, Han M, Liu Q, Zeng X, Zhao Y, Li Y, Su B, Huang S, et al. Predictive factors upon discontinuation of renal replacement therapy for long-term chronic dialysis and death in acute kidney injury patients. Artif Organs. 2017;23:23.
    1. Yang T, Sun S, Zhao Y, Liu Q, Han M, Lin L, Su B, Huang S, Yang L. Biomarkers upon discontinuation of renal replacement therapy predict 60-day survival and renal recovery in critically ill patients with acute kidney injury. Hemodial. 2017;11:11.
    1. Zhang Z, Xu X, Ni H, Jin N. Serum cystatin C is associated with renal function recovery in critically ill patients undergoing continuous renal replacement therapy. Nephron. 2012;122(3–4):86–92.
    1. Higgins JPT TJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA: Cochrane Handbook for Systematic Reviews of Interventions. In. Edited by JPT H. Cochrane; 2019.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Al Saadon A, Katulka R, Sebastianski M, Featherstone R, Vandermeer B, Gibney RTN, Rewa OG, Bagshaw SM. Determining the optimal time for liberation from renal replacement therapy in critically ill patients: protocol for a systematic review and meta-analysis (DOnE RRT) BMJ Open. 2018;8(11):e023306. doi: 10.1136/bmjopen-2018-023306.
    1. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses .. Accessed 19 Oct 2018.
    1. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58(10):982–990. doi: 10.1016/j.jclinepi.2005.02.022.
    1. Jeon J, Kim DH, Baeg SI, Lee EJ, Chung CR, Jeon K, Lee JE, Huh W, Suh GY, Kim YG, et al. Association between diuretics and successful discontinuation of continuous renal replacement therapy in critically ill patients with acute kidney injury. Crit Care. 2018;22(1):255. doi: 10.1186/s13054-018-2192-9.
    1. Itenov TS, Berthelsen RE, Jensen JU, Gerds TA, Pedersen LM, Strange D, Thormar K, Loken J, Andersen MH, Tousi H, et al. Predicting recovery from acute kidney injury in critically ill patients: development and validation of a prediction model. Crit Care Resusc. 2018;20(1):54–60.
    1. Romero-Gonzalez G, Clark WR, Ferrari F, Lorenzin A, Ronco C. Factors related with effective discontinuation of CRRT in ICU. Blood Purif. 2017;44(3):170–171.
    1. Kim C, Oh T, Kim H, Yong U, Bae E, Ma S, Lee J, Kim S. Kidney Week 2016. vol. 27. Chicago: Journal of the American Society of Nephrology; 2016. Predictive value of cystatin C-based eGFR for successful weaning from continuous renal replacement therapy: a prospective observational study; p. 249A.
    1. Ohnuma T, Suzuki J, Sanayama H, Ito K, Fujiwara T, Yamada H, Sanui M. Higher urine output in patients with acute kidney injury after discontinuation of continuous renal replacement therapy is associated with lower mortality and improved renal recovery. Intensive Care Med. 2013;39:S442.
    1. Heise D, Gries D, Moerer O, Bleckmann A, Quintel M. Predicting restoration of kidney function during CRRT-free intervals. J Cardiothorac Surg. 2012;7:6. doi: 10.1186/1749-8090-7-6.
    1. Solymos O, Frohlich S, Conlon N. Use of 2-hourly creatinine clearance to inform cessation of renal replacement therapy. Crit Care. 2011;15:S47. doi: 10.1186/cc9550.
    1. Franzen D, Rupprecht C, Hauri D, Bleisch JA, Staubli M, Puhan MA. Predicting outcomes in critically ill patients with acute kidney injury undergoing intermittent hemodialysis--a retrospective cohort analysis. Int J Artif Organs. 2010;33(1):15–21. doi: 10.1177/039139881003300103.
    1. Wu VC, Ko WJ, Chang HW, Chen YW, Lin YF, Shiao CC, Chen YM, Chen YS, Tsai PR, Hu FC, et al. Risk factors of early redialysis after weaning from postoperative acute renal replacement therapy. Intensive Care Med. 2008;34(1):101–108. doi: 10.1007/s00134-007-0813-x.
    1. van der Voort PH, Boerma EC, Koopmans M, Zandberg M, de Ruiter J, Gerritsen RT, Egbers PH, Kingma WP, Kuiper MA. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit Care Med. 2009;37(2):533–538. doi: 10.1097/CCM.0b013e318195424d.
    1. Ouellette DR, Patel S, Girard TD, Morris PE, Schmidt GA, Truwit JD, Alhazzani W, Burns SM, Epstein SK, Esteban A, et al. Liberation From Mechanical Ventilation in Critically Ill Adults: An Official American College of Chest Physicians/American Thoracic Society Clinical Practice Guideline: Inspiratory Pressure Augmentation During Spontaneous Breathing Trials, Protocols Minimizing Sedation, and Noninvasive Ventilation Immediately After Extubation. Chest. 2017;151(1):166–180. doi: 10.1016/j.chest.2016.10.036.
    1. Boles J-M, Bion J, Connors A, Herridge M, Marsh B, Melot C, Pearl R, Silverman H, Stanchina M, Vieillard-Baron A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033–1056. doi: 10.1183/09031936.00010206.
    1. Citerio G, Bakker J, Bassetti M, Benoit D, Cecconi M, Curtis JR, Hernandez G, Herridge M, Jaber S, Joannidis M, et al. Year in review in Intensive Care Medicine 2013: I. Acute kidney injury, ultrasound, hemodynamics, cardiac arrest, transfusion, neurocritical care, and nutrition. Intensive Care Med. 2014;40(2):147–159. doi: 10.1007/s00134-013-3184-5.
    1. Fealy N, Aitken L, Toit E, Baldwin I. Continuous renal replacement therapy: current practice in Australian and New Zealand intensive care units. Crit Care Resusc. 2015;17(2):83–91.
    1. Rewa OG, Villeneuve PM, Lachance P, Eurich DT, Stelfox HT, Gibney RTN, Hartling L, Featherstone R, Bagshaw SM. Quality indicators of continuous renal replacement therapy (CRRT) care in critically ill patients: a systematic review. Intensive Care Med. 2017;43(6):750–763. doi: 10.1007/s00134-016-4579-x.
    1. Schiffl H. Discontinuation of renal replacement therapy in critically ill patients with severe acute kidney injury: predictive factors of renal function recovery. Int Urol Nephrol. 2018;50(10):1845–1851. doi: 10.1007/s11255-018-1947-1.
    1. Klouche K, Gibney RTN, Forni LG. Can this patient be safely weaned from RRT? Intensive Care Med. 2018;44(5):639–642. doi: 10.1007/s00134-017-4948-0.

Source: PubMed

3
구독하다