"Aerobic glycolytic imaging" of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging

Akifumi Hagiwara, Jingwen Yao, Catalina Raymond, Nicholas S Cho, Richard Everson, Kunal Patel, Danielle H Morrow, Brandon R Desousa, Sergey Mareninov, Saewon Chun, David A Nathanson, William H Yong, Gafita Andrei, Ajit S Divakaruni, Noriko Salamon, Whitney B Pope, Phioanh L Nghiemphu, Linda M Liau, Timothy F Cloughesy, Benjamin M Ellingson, Akifumi Hagiwara, Jingwen Yao, Catalina Raymond, Nicholas S Cho, Richard Everson, Kunal Patel, Danielle H Morrow, Brandon R Desousa, Sergey Mareninov, Saewon Chun, David A Nathanson, William H Yong, Gafita Andrei, Ajit S Divakaruni, Noriko Salamon, Whitney B Pope, Phioanh L Nghiemphu, Linda M Liau, Timothy F Cloughesy, Benjamin M Ellingson

Abstract

Purpose: To quantify abnormal metabolism of diffuse gliomas using "aerobic glycolytic imaging" and investigate its biological correlation.

Methods: All subjects underwent a pH-weighted amine chemical exchange saturation transfer spin-and-gradient-echo echoplanar imaging (CEST-SAGE-EPI) and dynamic susceptibility contrast perfusion MRI. Relative oxygen extraction fraction (rOEF) was estimated as the ratio of reversible transverse relaxation rate R2' to normalized relative cerebral blood volume. An aerobic glycolytic index (AGI) was derived by the ratio of pH-weighted image contrast (MTRasym at 3.0 ppm) to rOEF. AGI was compared between different tumor types (N = 51, 30 IDH mutant and 21 IDH wild type). Metabolic MR parameters were correlated with 18F-FDG uptake (N = 8, IDH wild-type glioblastoma), expression of key glycolytic proteins using immunohistochemistry (N = 38 samples, 21 from IDH mutant and 17 from IDH wild type), and bioenergetics analysis on purified tumor cells (N = 7, IDH wild-type high grade).

Results: AGI was significantly lower in IDH mutant than wild-type gliomas (0.48 ± 0.48 vs. 0.70 ± 0.48; P = 0.03). AGI was strongly correlated with 18F-FDG uptake both in non-enhancing tumor (Spearman, ρ = 0.81; P = 0.01) and enhancing tumor (ρ = 0.81; P = 0.01). AGI was significantly correlated with glucose transporter 3 (ρ = 0.71; P = 0.004) and hexokinase 2 (ρ = 0.73; P = 0.003) in IDH wild-type glioma, and monocarboxylate transporter 1 (ρ = 0.59; P = 0.009) in IDH mutant glioma. Additionally, a significant correlation was found between AGI derived from bioenergetics analysis and that estimated from MRI (ρ = 0.79; P = 0.04).

Conclusion: AGI derived from molecular MRI was correlated with glucose uptake (18F-FDG and glucose transporter 3/hexokinase 2) and cellular AGI in IDH wild-type gliomas, whereas AGI in IDH mutant gliomas appeared associated with monocarboxylate transporter density.

Keywords: (18)FDG-PET; Aerobic glycolysis; Glioblasoma; Glioma; IDH; amine CEST.

Conflict of interest statement

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

ASD has previously served as a paid consultant to Agilent Technologies. BME is on advisory board of Hoffman La-Roche, Siemens, Nativis, Medicenna, MedQIA, Bristol Meyers Squibb, Imaging Endpoints, and Agios. BME is a paid consultant of Nativis, MedQIA, Siemens, Hoffman La-Roche, Imaging Endpoints, Medicenna, and Agios. BME has grant funding by Hoffman La-Roche, Siemens, Agios, and Janssen. BME holds a patent on this technology (US Patent #15/577664; International PCT/US2016/034886).

Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Schematic overview of metabolic pathway in IDH wild-type and mutant gliomas. Similar to other malignant tumors, IDH wild-type glioma is characterized by a high level of aerobic glycolysis (Warburg effect). Hypoxia induces upregulation of HIF1α, leading to overexpression of glycolysis-related proteins/enzymes, namely, GLUT, HK2, MCT, and LDHA, thereby accelerating glycolysis. On the other hand, HIF1α response to hypoxia is blunted in IDH mutant glioma, shifting the metabolism to oxidative phosphorylation. In this study, the extent of aerobic glycolysis was estimated by pH- and oxygen-sensitive imaging combined with perfusion imaging. The proteins/enzymes investigated in our study are labeled in black. Notably, MTRasym at 3.0 ppm increases not only in accordance with decrease in pH but also with increase in glutamine related to tumor activity. 2HG = 2-hydroxyglutarate, aKG = alpha-ketoglutarate, acetyl-CoA = acetyl coenzyme A, G6P = glucose-6-phosphate, GDH = glutamate dehydrogenase, GLS = glutaminase, GLUT = glucose transporter, HK2 = hexokinase 2, LAT = L-amino acid transporter, LDHA = lactic dehydrogenase A, MCT = monocarboxylate transporter, mTOR = mammalian target of rapamycin, PDH = pyruvate dehydrogenase, PDK1 = pyruvate dehydrogenase kinase 1, ROS = reactive oxygen species, TA = transaminase, TCA cycle = tricarboxylic acid cycle.
Fig. 2
Fig. 2
Patients with diffuse gliomas with high (A, from Study II), medium (B, from Study II), and low AGI (C, from Study I), and high (A) and low (B) 18F-FDG uptake. IDH wild-type glioblastomas (A and B) show higher AGI than IDH mutant grade II glioma (C). Contrast-enhancing region of the tumor is showing higher AGI than non-contrast-enhancing region of the tumor (A and B). MTRasym at 3.0 ppm is grossly high in the entire tumors for both glioblastomas, while AGI seems to be correlated more with 18F-FDG PET than MTRasym at 3.0 ppm. While 18F-FDG PET shows high physiological uptake in the cortex, quantitative maps, including AGI, derived from MRI do not show high values in the cortex. NAWM = normal-appearing white matter.
Fig. 3
Fig. 3
Comparison of AGI between different tumor and tissue types. Box plots are overlaid on violin plots. (A) Comparison between IDH mutant and wild type. Among IDH mutant gliomas, those with AGI greater than 1 are mostly high grade (4 out of 5). (B) Comparison between low-grade and high-grade gliomas. (C) Comparison across contrast-enhancing tumor, non-enhancing tumor, and normal-appearing white matter. * P < 0.05, ** P < 0.01 *** P < 0.001.
Fig. 4
Fig. 4
Scatterplots of AGI compared with normalized 18F-FDG in the contrast-enhancing plus non-enhancing (A), contrast-enhancing (B), and non-enhancing (C) portions of IDH wild-type glioblastoma and (D) the whole brain. Lines show linear regression fit to the data. Strong correlations were found in all tumor areas, while no significant correlation was found in the whole brain.
Fig. 5
Fig. 5
MR image and AGI map and corresponding H&E and immunohistochemistry staining for MRI-guided biopsy targets (circles). (A) Treatment-naïve IDH wild-type glioblastoma for which an area with low AGI was biopsied. Expressions of GLUT3 and HK2 are low in the slides from a 5-mm radius sample taken from the MRI-guided biopsy target. (B) Treatment naïve IDH wild-type glioblastoma for which an area with high AGI was biopsied. Expressions of GLUT3 and HK2 are high. (C) Post-surgical, chemoradiotherapy-naïve IDH mutant WHO grade III glioma for which an area with low AGI was biopsied. Expression of MCT1 is low. (D) Treatment-naïve IDH mutant WHO grade III glioma for which an area with high AGI was biopsied. Expression of MCT1 is high. For GLUT3, HK2, and MCT1 stains, cells positive for expression are brown. GLUT3 = glucose transporter 3, HK2 = hexokinase 2, MCT1 = monocarboxylate transporter 1.
Fig. 6
Fig. 6
(A) Correlation matrix of AGI compared with immunohistochemistry measurements shown with Spearman’s correlation coefficients. * P < 0.05, ** P < 0.01. Scatterplots of AGI compared with immunohistochemistry measurement of GLUT3 (B), HK2 (C), and MCT1 (D). Lines show linear regression fit to the data. GLUT3 = glucose transporter 3; HK2 = hexokinase 2, LDHA = lactate dehydrogenase A, MCT1 = monocarboxylate transporter 1.
Fig. 7
Fig. 7
MR images/maps of two patients with IDH wild-type glioblastoma that showed higher (A) and lower (B) AGI derived from MRI and extracellular flux bioenergetic analysis. An ROI of contrast-enhancing portion is overlaid on each image/map. (C), (D) Bioenergetic analysis shows higher ECAR and lower basal OCR in (A), leading to higher cellular AGI that explains higher AGI derived from MRI, whereas ECAR and OCR are lower and higher, respectively, for (B), leading to lower cellular AGI that explains lower AGI derived from MRI.
Fig. 8
Fig. 8
Scatterplot of AGI compared with cellular AGI derived from bioenergetic extracellular flux analysis. Lines show linear regression fit to the data. A strong correlation was found between AGI and cellular AGI.

References

    1. Atkinson I.C., Thulborn K.R. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T. Neuroimage. 2010;51(2):723–733.
    1. Bankhead P., Loughrey M.B., Fernandez J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., James J.A., Salto-Tellez M., Hamilton P.W. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878.
    1. Brat D.J., Castellano-Sanchez A.A., Hunter S.B., Pecot M., Cohen C., Hammond E.H., Devi S.N., Kaur B., Van Meir E.G. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004;64(3):920–927.
    1. Chesnelong, C., Chaumeil, M.M., Blough, M.D., Al-Najjar, M., Stechishin, O.D., Chan, J.A., Pieper, R.O., Ronen, S.M., Weiss, S., Luchman, H.A., Cairncross, J.G., 2014. Lactate dehydrogenase A silencing in IDH mutant gliomas. Neuro Oncol 16, 686-695.
    1. Corbet C., Feron O. Tumour acidosis: from the passenger to the driver's seat. Nat. Rev. Cancer. 2017;17(10):577–593.
    1. Divakaruni A.S., Paradyse A., Ferrick D.A., Murphy A.N., Jastroch M. Analysis and interpretation of microplate-based oxygen consumption and pH data. Methods Enzymol. 2014;547:309–354.
    1. Ellingson B.M., Bendszus M., Boxerman J., Barboriak D., Erickson B.J., Smits M., Nelson S.J., Gerstner E., Alexander B., Goldmacher G., Wick W., Vogelbaum M., Weller M., Galanis E., Kalpathy-Cramer J., Shankar L., Jacobs P., Pope W.B., Yang D., Chung C., Knopp M.V., Cha S., van den Bent M.J., Chang S., Yung W.K., Cloughesy T.F., Wen P.Y., Gilbert M.R., Jumpstarting Brain Tumor Drug Development Coalition Imaging Standardization Steering C. Consensus recommendations for a standardized Brain Tumor Imaging Protocol in clinical trials. Neuro Oncol. 2015;17:1188–1198.
    1. Ellingson B.M., Kim H.J., Woodworth D.C., Pope W.B., Cloughesy J.N., Harris R.J., Lai A., Nghiemphu P.L., Cloughesy T.F. Recurrent glioblastoma treated with bevacizumab: contrast-enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of survival in a multicenter clinical trial. Radiology. 2014;271(1):200–210.
    1. Ellingson B.M., Yao J., Raymond C., Nathanson D.A., Chakhoyan A., Simpson J., Garner J.S., Olivero A.G., Mueller L.U., Rodon J., Gerstner E., Cloughesy T.F., Wen P.Y. Multi-parametric MR-PET imaging predicts pharmacokinetics and clinical response to GDC-0084 in patients with recurrent high-grade glioma. Clin. Cancer Res. 2020;26(13):3135–3144.
    1. Fan A.P., An H., Moradi F., Rosenberg J., Ishii Y., Nariai T., Okazawa H., Zaharchuk G. Quantification of brain oxygen extraction and metabolism with [(15)O]-gas PET: A technical review in the era of PET/MRI. Neuroimage. 2020;220:117136. doi: 10.1016/j.neuroimage.2020.117136.
    1. Fujita N., Shinohara M., Tanaka H., Yutani K., Nakamura H., Murase K. Quantitative mapping of cerebral deoxyhemoglobin content using MR imaging. Neuroimage. 2003;20:2071–2083.
    1. Gatenby R.A., Gillies R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer. 2004;4(11):891–899.
    1. Hagiwara A., Fujita S., Ohno Y., Aoki S. Variability and Standardization of Quantitative Imaging: Monoparametric to Multiparametric Quantification, Radiomics, and Artificial Intelligence. Invest. Radiol. 2020;55(9):601–616.
    1. Hamacher K., Coenen H.H., Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med. 1986;27:235–238.
    1. Harris R.J., Cloughesy T.F., Liau L.M., Nghiemphu P.L., Lai A., Pope W.B., Ellingson B.M. Simulation, phantom validation, and clinical evaluation of fast pH-weighted molecular imaging using amine chemical exchange saturation transfer echo planar imaging (CEST-EPI) in glioma at 3 T. NMR Biomed. 2016;29:1563–1576.
    1. Harris R.J., Cloughesy T.F., Liau L.M., Prins R.M., Antonios J.P., Li D., Yong W.H., Pope W.B., Lai A., Nghiemphu P.L., Ellingson B.M. pH-weighted molecular imaging of gliomas using amine chemical exchange saturation transfer MRI. Neuro Oncol. 2015;17(11):1514–1524.
    1. Harris R.J., Yao J., Chakhoyan A., Raymond C., Leu K., Liau L.M., Nghiemphu P.L., Lai A., Salamon N., Pope W.B., Cloughesy T.F., Ellingson B.M. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI) Magn. Reson. Med. 2018;80:1962–1978.
    1. Hustinx R., Pourdehnad M., Kaschten B., Alavi A. PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol. Clin. North Am. 2005;43(1):35–47.
    1. Khurshed M., Molenaar R.J., Lenting K., Leenders W.P., van Noorden C.J.F. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma. Oncotarget. 2017;8(30):49165–49177.
    1. Koivunen P., Lee S., Duncan C.G., Lopez G., Lu G., Ramkissoon S., Losman J.A., Joensuu P., Bergmann U., Gross S., Travins J., Weiss S., Looper R., Ligon K.L., Verhaak R.G.W., Yan H., Kaelin Jr W.G. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483(7390):484–488.
    1. Lai A., Kharbanda S., Pope W.B., Tran A., Solis O.E., Peale F., Forrest W.F., Pujara K., Carrillo J.A., Pandita A., Ellingson B.M., Bowers C.W., Soriano R.H., Schmidt N.O., Mohan S., Yong W.H., Seshagiri S., Modrusan Z., Jiang Z., Aldape K.D., Mischel P.S., Liau L.M., Escovedo C.J., Chen W., Nghiemphu P.L., James C.D., Prados M.D., Westphal M., Lamszus K., Cloughesy T., Phillips H.S. Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J. Clin. Oncol. 2011;29(34):4482–4490.
    1. Laks D.R., Crisman T.J., Shih M.Y.S., Mottahedeh J., Gao F., Sperry J., Garrett M.C., Yong W.H., Cloughesy T.F., Liau L.M., Lai A., Coppola G., Kornblum H.I. Large-scale assessment of the gliomasphere model system. Neuro Oncol. 2016;18(10):1367–1378.
    1. Lebrun-Grandie P., Baron J.C., Soussaline F., Loch'h C., Sastre J., Bousser M.G. Coupling between regional blood flow and oxygen utilization in the normal human brain. A study with positron tomography and oxygen 15. Arch. Neurol. 1983;40:230–236.
    1. Leu K., Boxerman J.L., Lai A., Nghiemphu P.L., Pope W.B., Cloughesy T.F., Ellingson B.M. Bidirectional Contrast agent leakage correction of dynamic susceptibility contrast (DSC)-MRI improves cerebral blood volume estimation and survival prediction in recurrent glioblastoma treated with bevacizumab. J. Magn. Reson. Imaging. 2016;44(5):1229–1237.
    1. Morita T., Nagaki T., Fukuda I., Okumura K. Clastogenicity of low pH to various cultured mammalian cells. Mutat. Res. 1992;268(2):297–305.
    1. Nathanson D.A., Gini B., Mottahedeh J., Visnyei K., Koga T., Gomez G., Eskin A., Hwang K., Wang J., Masui K., Paucar A., Yang H., Ohashi M., Zhu S., Wykosky J., Reed R., Nelson S.F., Cloughesy T.F., James C.D., Rao P.N., Kornblum H.I., Heath J.R., Cavenee W.K., Furnari F.B., Mischel P.S. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science. 2014;343(6166):72–76.
    1. Niesporek S.C., Umathum R., Lommen J.M., Behl N.G.R., Paech D., Bachert P., Ladd M.E., Nagel A.M. Reproducibility of CMRO2 determination using dynamic (17) O MRI. Magn. Reson. Med. 2018;79(6):2923–2934.
    1. Paech D., Nagel A.M., Schultheiss M.N., Umathum R., Regnery S., Scherer M., Wick A., Platt T., Wick W., Bendszus M., Unterberg A., Schlemmer H.-P., Ladd M.E., Niesporek S.C. Quantitative Dynamic Oxygen 17 MRI at 7.0 T for the Cerebral Oxygen Metabolism in Glioma. Radiology. 2020;295(1):181–189.
    1. Paech D., Schuenke P., Koehler C., Windschuh J., Mundiyanapurath S., Bickelhaupt S., Bonekamp D., Baumer P., Bachert P., Ladd M.E., Bendszus M., Wick W., Unterberg A., Schlemmer H.P., Zaiss M., Radbruch A. T1rho-weighted Dynamic Glucose-enhanced MR Imaging in the Human Brain. Radiology. 2017;285:914–922.
    1. Poteet E., Choudhury G.R., Winters A., Li W., Ryou M.-G., Liu R., Tang L., Ghorpade A., Wen Y., Yuan F., Keir S.T., Yan H., Bigner D.D., Simpkins J.W., Yang S.-H. Reversing the Warburg effect as a treatment for glioblastoma. J. Biol. Chem. 2013;288(13):9153–9164.
    1. Salmond R.J. mTOR regulation of glycolytic metabolism in T Cells. Front. Cell Dev. Biol. 2018;6:122.
    1. Schuenke P., Paech D., Koehler C., Windschuh J., Bachert P., Ladd M.E., Schlemmer H.P., Radbruch A., Zaiss M. Fast and quantitative T1rho-weighted dynamic glucose enhanced MRI. Sci. Rep. 2017;7:42093.
    1. Silvennoinen M.J., Clingman C.S., Golay X., Kauppinen R.A., van Zijl P.C.M. Comparison of the dependence of blood R2 and R2* on oxygen saturation at 1.5 and 4.7 Tesla. Magn. Reson. Med. 2003;49(1):47–60.
    1. Spees W.M., Yablonskiy D.A., Oswood M.C., Ackerman J.J.H. Water proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn. Reson. Med. 2001;45(4):533–542.
    1. Sun P.Z., Benner T., Copen W.A., Sorensen A.G. Early experience of translating pH-weighted MRI to image human subjects at 3 Tesla. Stroke. 2010;41:S147–S151.
    1. Toth V., Förschler A., Hirsch N.M., den Hollander J., Kooijman H., Gempt J., Ringel F., Schlegel J., Zimmer C., Preibisch C. MR-based hypoxia measures in human glioma. J. Neurooncol. 2013;115(2):197–207.
    1. Venneti S., Thompson C.B. Metabolic reprogramming in brain tumors. Annu. Rev. Pathol. 2017;12(1):515–545.
    1. Verger, A., Langen, K.J., 2017. PET Imaging in Glioblastoma: Use in Clinical Practice. In: De Vleeschouwer, S. (Ed.), Glioblastoma, Brisbane (AU).
    1. Viswanath P., Najac C., Izquierdo-Garcia J.L., Pankov A., Hong C., Eriksson P., Costello J.F., Pieper R.O., Ronen S.M. Mutant IDH1 expression is associated with down-regulation of monocarboxylate transporters. Oncotarget. 2016;7(23):34942–34955.
    1. Wu B., Warnock G., Zaiss M., Lin C., Chen M., Zhou Z., Mu L., Nanz D., Tuura R., Delso G. An overview of CEST MRI for non-MR physicists. EJNMMI Phys. 2016;3:19.
    1. Wu M., Neilson A., Swift A.L., Moran R., Tamagnine J., Parslow D., Armistead S., Lemire K., Orrell J., Teich J., Chomicz S., Ferrick D.A. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 2007;292(1):C125–C136.
    1. Xu X., Yadav N.N., Knutsson L., Hua J., Kalyani R., Hall E., Laterra J., Blakeley J., Strowd R., Pomper M., Barker P., Chan K.W.Y., Liu G., McMahon M.T., Stevens R.D., van Zijl P.C.M. Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography. 2015;1(2):105–114.
    1. Yablonskiy D.A., Sukstanskii A.L., He X. Blood oxygenation level-dependent (BOLD)-based techniques for the quantification of brain hemodynamic and metabolic properties - theoretical models and experimental approaches. NMR Biomed. 2013;26:963–986.
    1. Yao J., Chakhoyan A., Nathanson D.A., Yong W.H., Salamon N., Raymond C., Mareninov S., Lai A., Nghiemphu P.L., Prins R.M., Pope W.B., Everson R.G., Liau L.M., Cloughesy T.F., Ellingson B.M. Metabolic characterization of human IDH mutant and wild type gliomas using simultaneous pH- and oxygen-sensitive molecular MRI. Neuro Oncol. 2019
    1. Yao J., Ruan D., Raymond C., Liau L.M., Salamon N., Pope W.B., Nghiemphu P.L., Lai A., Cloughesy T.F., Ellingson B.M. Improving B0 correction for pH-weighted amine proton chemical exchange saturation transfer (CEST) imaging by use of k-means clustering and Lorentzian estimation. Tomography. 2018;4(3):123–137.
    1. Yu L., Chen X., Wang L., Chen S. The sweet trap in tumors: aerobic glycolysis and potential targets for therapy. Oncotarget. 2016;7(25):38908–38926.
    1. Yu S. Review of F-FDG synthesis and quality control. Biomed Imaging Interv J. 2006;2
    1. Zhu X.H., Chen W. In vivo(17)O MRS imaging - Quantitative assessment of regional oxygen consumption and perfusion rates in living brain. Anal. Biochem. 2017;529:171–178.

Source: PubMed

3
구독하다