A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives

Peng Liu, Guiliang Chen, Jingchen Zhang, Peng Liu, Guiliang Chen, Jingchen Zhang

Abstract

Liposomes have been considered promising and versatile drug vesicles. Compared with traditional drug delivery systems, liposomes exhibit better properties, including site-targeting, sustained or controlled release, protection of drugs from degradation and clearance, superior therapeutic effects, and lower toxic side effects. Given these merits, several liposomal drug products have been successfully approved and used in clinics over the last couple of decades. In this review, the liposomal drug products approved by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are discussed. Based on the published approval package in the FDA and European public assessment report (EPAR) in EMA, the critical chemistry information and mature pharmaceutical technologies applied in the marketed liposomal products, including the lipid excipient, manufacturing methods, nanosizing technique, drug loading methods, as well as critical quality attributions (CQAs) of products, are introduced. Additionally, the current regulatory guidance and future perspectives related to liposomal products are summarized. This knowledge can be used for research and development of the liposomal drug candidates under various pipelines, including the laboratory bench, pilot plant, and commercial manufacturing.

Keywords: drug delivery; drug loading; lipid excipient; liposomes; marketed products.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Categories and structures of liposomal drug delivery system. (a) Structural illustration of liposome composition. The size of a typical phospholipid bilayer is 4.5 nm, which is much smaller than the one of the inner aqueous core; (b) Classification of liposomal vesicles according to their lamellarity/compartment and particle size; (c) The size and lamellarity of different types of liposomes; (d,e) The cryo-transmission electron microscopy of Doxil [35] and Vyxeos [36]; (f,g) The electron micrographs of DepoFoamTM particles with a typical diameter of 1–100 μm (e.g., DepoCyt) and MLVs with a typical diameter of 0.2–5 μm (e.g., Mepact) [37].
Figure 2
Figure 2
(a) Structural illustration of glycerolphospholipid. R1 and R2 can be saturated or unsaturated fatty acids, such as decanoic acid, lauric acid, palmitic acid, oleic acid, myristic acid, stearic acid, and erucic acid. R3 can be phosphatidylcholine (PC), phosphatidyl ethanolamine (PE), phosphatidyl serine (PS), phosphatidyl inositols (PI), phosphatidic acid (PA), phosphatidylglycerol (PG), and cardiolipin; (b) Structure of sphingomyelin. (c) Structure of cholesterol.
Figure 3
Figure 3
The potential manufacturing processes of the marketed liposomal products, summarized based on the related patents or publications.
Figure 4
Figure 4
Different mechanisms of remote drug loading. (a) Doxil: DOX-loaded by transmembrane gradient of (NH4)2SO4 concentration [35]; (b) Myocet, Marqibo, and DaunoXome: drug loaded by transmembrane gradient of pH; (c) Mepact: MDP chemically conjugated to PE through a peptide spacer, then formed liposomes with other phospholipids. (d) Onivyde: irinote can loaded by transmembrane gradient of the concentration of sucrosofate triethylammonium salt (TEA-SOS). One molecule of SOS can bind 8 molecules of irinotecan.
Figure 5
Figure 5
The phase transition of liposomal bilayer dispersed in aqueous solution. Heating above the melting temperature (Tm), the phase of bilayer transits from “solid” gel phase (: hexagonal lattice untitled chain or Lβ’: quasi hexagonal array with titled chain) (ordered state) to liquid crystalline phase () (disordered state). Cooling below Tc, the phase of bilayer transits from “solid” gel phase ( or Lβ’) (ordered state) to subgel phase or crystalline phase (Lc) (ordered state).
Figure 6
Figure 6
The comparison profiles of publications using setting TITLE-ABS-KEY as “liposome”, “(liposome AND medicine) or (liposome AND drug)”, “(nano AND liposomes AND medicine) or (nano AND liposomes AND drug) and “(nano AND medicine) or (nano AND drug)” in the year range between 1970 and 2020 in Scopus.

References

    1. Liposome Drug Products: Chemistry, Manufacturing, and Controls; Human Pharmacokinetics and Bioavailability; and Labeling Documentation. [(accessed on 1 June 2020)]; Available online: .
    1. Mazur F., Bally M., Städler B., Chandrawati R. Liposomes and lipid bilayers in biosensors. Adv. Colloid Interface Sci. 2017;249:88–99. doi: 10.1016/j.cis.2017.05.020.
    1. Düzgüneş N., Gregoriadis G. Methods in Enzymology. Volume 391. Academic Press; Cambridge, MA, USA: 2005. Introduction: The Origins of Liposomes: Alec Bangham at Babraham; pp. 1–3.
    1. Bangham A.D., Horne R.W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 1964;8:660–668. doi: 10.1016/S0022-2836(64)80115-7.
    1. Mirzavi F., Barati M., Soleimani A., Vakili-Ghartavol R., Jaafari M.R., Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int. J. Pharm. 2021;599:120413. doi: 10.1016/j.ijpharm.2021.120413.
    1. Wang G., Li R., Parseh B., Du G. Prospects and challenges of anticancer agents’ delivery via chitosan-based drug carriers to combat breast cancer: A review. Carbohydr. Polym. 2021;268:118192. doi: 10.1016/j.carbpol.2021.118192.
    1. Watson D.S., Endsley A.N., Huang L. Design considerations for liposomal vaccines: Influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine. 2012;30:2256–2272. doi: 10.1016/j.vaccine.2012.01.070.
    1. Man F., Gawne P.J., de Rosales R.T.M. Nuclear imaging of liposomal drug delivery systems: A critical review of radiolabelling methods and applications in nanomedicine. Adv. Drug Delivery Rev. 2019;143:134–160. doi: 10.1016/j.addr.2019.05.012.
    1. Dos Santos Rodrigues B., Banerjee A., Kanekiyo T., Singh J. Functionalized liposomal nanoparticles for efficient gene delivery system to neuronal cell transfection. Int. J. Pharm. 2019;566:717–730. doi: 10.1016/j.ijpharm.2019.06.026.
    1. Taha E.I., El-Anazi M.H., El-Bagory I.M., Bayomi M.A. Design of liposomal colloidal systems for ocular delivery of ciprofloxacin. Saudi Pharm. J. 2014;22:231–239. doi: 10.1016/j.jsps.2013.07.003.
    1. Han Y., Gao Z., Chen L., Kang L., Huang W., Jin M., Wang Q., Bae Y.H. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm. Sin. B. 2019;9:902–922. doi: 10.1016/j.apsb.2019.01.004.
    1. Mirtaleb M.S., Shahraky M.K., Ekrami E., Mirtaleb A. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications. J. Drug Delivery Sci. Technol. 2021;61:102331. doi: 10.1016/j.jddst.2021.102331.
    1. Mehta P.P., Ghoshal D., Pawar A.P., Kadam S.S., Dhapte-Pawar V.S. Recent advances in inhalable liposomes for treatment of pulmonary diseases: Concept to clinical stance. J. Drug Delivery Sci. Technol. 2020;56:101509. doi: 10.1016/j.jddst.2020.101509.
    1. Yusuf H., Ali A.A., Orr N., Tunney M.M., Mc Carthy H.O., Kett V.L. Novel freeze-dried DDA and TPGS liposomes are suitable for nasal delivery of vaccine. Int. J. Pharm. 2017;533:179–186. doi: 10.1016/j.ijpharm.2017.09.011.
    1. Liu W., Hou Y., Jin Y., Wang Y., Xu X., Han J. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism. Trends Food Sci. Technol. 2020;104:177–189. doi: 10.1016/j.tifs.2020.08.012.
    1. Himeno T., Konno Y., Naito N. Liposomes for Cosmetics. In: Sakamoto K., Lochhead R.Y., Maibach H.I., Yamashita Y., editors. Cosmetic Science and Technology. Elsevier; Amsterdam, The Netherlands: 2017. pp. 539–549.
    1. Niu M., Lu Y., Hovgaard L., Guan P., Tan Y., Lian R., Qi J., Wu W. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: The effect of cholate type, particle size and administered dose. Eur. J. Pharm. Biopharm. 2012;81:265–272. doi: 10.1016/j.ejpb.2012.02.009.
    1. Wang N., Wang T., Li T., Deng Y. Modulation of the physicochemical state of interior agents to prepare controlled release liposomes. Colloids Surf. B. 2009;69:232–238. doi: 10.1016/j.colsurfb.2008.11.033.
    1. Zeng H., Qi Y., Zhang Z., Liu C., Peng W., Zhang Y. Nanomaterials toward the treatment of Alzheimer’s disease: Recent advances and future trends. Chin. Chem. Lett. 2021;32:1857–1868. doi: 10.1016/j.cclet.2021.01.014.
    1. Li C., Zhang Y., Wan Y., Wang J., Lin J., Li Z., Huang P. STING-activating drug delivery systems: Design strategies and biomedical applications. Chin. Chem. Lett. 2021;32:1615–1625. doi: 10.1016/j.cclet.2021.01.001.
    1. Forssen E.A. The design and development of DaunoXome® for solid tumor targeting in vivo. Adv. Drug Delivery Rev. 1997;24:133–150. doi: 10.1016/S0169-409X(96)00453-X.
    1. Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C Mater. Biol Appl. 2019;98:1252–1276. doi: 10.1016/j.msec.2019.01.066.
    1. Zhang M., Gao S., Yang D., Fang Y., Lin X., Jin X., Liu Y., Liu X., Su K., Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B. 2021;11:2265–2285. doi: 10.1016/j.apsb.2021.03.033.
    1. Dana P., Bunthot S., Suktham K., Surassmo S., Yata T., Namdee K., Yingmema W., Yimsoo T., Ruktanonchai U.R., Sathornsumetee S., et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf. B Biointerfaces. 2020;196:111270. doi: 10.1016/j.colsurfb.2020.111270.
    1. Hashemi M., Shamshiri A., Saeedi M., Tayebi L., Yazdian-Robati R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch. Biochem. Biophys. 2020;691:108485. doi: 10.1016/j.abb.2020.108485.
    1. Fernandes M.A., Eloy J.O., Luiz M.T., Junior S.L.R., Borges J.C., de la Fuente L.R., Luis C.O.S., Marchetti J.M., Santos-Martinez M.J., Chorilli M. Transferrin-functionalized liposomes for docetaxel delivery to prostate cancer cells. Colloids Surf. A. 2021;611:125806. doi: 10.1016/j.colsurfa.2020.125806.
    1. Danhier F., Breton A.L., Preat V. RGD-based strategies to target alphav beta3 integrin in cancer therapy and diagnosis. Mol. Pharm. 2012;9:2961–2973. doi: 10.1021/mp3002733.
    1. Kang T., Gao X., Hu Q., Jiang D., Feng X., Zhang X., Song Q., Yao L., Huang M., Jiang X., et al. iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas. Biomaterials. 2014;35:4319–4332. doi: 10.1016/j.biomaterials.2014.01.082.
    1. Liang H., Zou F., Liu Q., Wang B., Fu L., Liang X., Liu J., Liu Q. Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. Int. J. Pharm. 2021;599:120418. doi: 10.1016/j.ijpharm.2021.120418.
    1. Chen Q., Gao M., Li Z., Xiao Y., Bai X., Boakye-Yiadom K.O., Xu X., Zhang X.-Q. Biodegradable nanoparticles decorated with different carbohydrates for efficient macrophage-targeted gene therapy. J. Control. Release. 2020;323:179–190. doi: 10.1016/j.jconrel.2020.03.044.
    1. Pattni B.S., Chupin V.V., Torchilin V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015;115:10938–10966. doi: 10.1021/acs.chemrev.5b00046.
    1. Kim T., Kim J., Kim S. Extended-release formulation of morphine for subcutaneous administration. Cancer Chemother. Pharmacol. 1993;33:187–190. doi: 10.1007/BF00686214.
    1. Fan Y., Marioli M., Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J. Pharm. Biomed. Anal. 2021;192:113642. doi: 10.1016/j.jpba.2020.113642.
    1. Wang N., Chen M., Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release. 2019;303:130–150. doi: 10.1016/j.jconrel.2019.04.025.
    1. Barenholz Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release. 2012;160:117–134. doi: 10.1016/j.jconrel.2012.03.020.
    1. Dicko A., Kwak S., Frazier A.A., Mayer L.D., Liboiron B.D. Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int. J. Pharm. 2010;391:248–259. doi: 10.1016/j.ijpharm.2010.02.014.
    1. Ye Q., Asherman J., Stevenson M., Brownson E., Katre N.V. DepoFoam™ technology: A vehicle for controlled delivery of protein and peptide drugs. J. Control. Release. 2000;64:155–166. doi: 10.1016/S0168-3659(99)00146-7.
    1. Large D.E., Abdelmessih R.G., Fink E., Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Delivery Rev. 2021;176:113851. doi: 10.1016/j.addr.2021.113851.
    1. Guimarães D., Cavaco-Paulo A., Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021;601:120571. doi: 10.1016/j.ijpharm.2021.120571.
    1. He Y., Qin L., Huang Y., Ma C. Advances of Nano-Structured Extended-Release Local Anesthetics. Nanoscale Res. Lett. 2020;15:13. doi: 10.1186/s11671-019-3241-2.
    1. Hillery A.M. Supramolecular lipidic drug delivery systems: From laboratory to clinic A review of the recently introduced commercial liposomal and lipid-based formulations of amphotericin B. Adv. Drug Delivery Rev. 1997;24:345–363. doi: 10.1016/S0169-409X(96)00496-6.
    1. Beiranvand S., Eatemadi A., Karimi A. New Updates Pertaining to Drug Delivery of Local Anesthetics in Particular Bupivacaine Using Lipid Nanoparticles. Nanoscale Res. Lett. 2016;11:307–317. doi: 10.1186/s11671-016-1520-8.
    1. Richter A.M., Waterfield E., Jain A.K., Canaan A.J., Allison B.A., Levy J.G. Liposomal delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model. Photochem. Photobiol. 1993;57:1000–1006. doi: 10.1111/j.1751-1097.1993.tb02962.x.
    1. Alving C.R., Beck Z., Matyas G.R., Rao M. Liposomal adjuvants for human vaccines. Expert Opin. Drug Deliv. 2016;13:807–816. doi: 10.1517/17425247.2016.1151871.
    1. Li Z., Perkins W., Cipolla D. Robustness of aerosol delivery of amikacin liposome inhalation suspension using the eFlow® Technology. Eur. J. Pharm. Biopharm. 2021;166:10–18. doi: 10.1016/j.ejpb.2021.05.021.
    1. Myocet. [(accessed on 1 June 2021)]. Available online: .
    1. Signorell R.D., Luciani P., Brambilla D., Leroux J.C. Pharmacokinetics of lipid-drug conjugates loaded into liposomes. Eur. J. Pharm. Biopharm. 2018;128:188–199. doi: 10.1016/j.ejpb.2018.04.003.
    1. Nogueira E., Gomes A.C., Preto A., Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf. B. 2015;136:514–526. doi: 10.1016/j.colsurfb.2015.09.034.
    1. Kohli A.G., Kierstead P.H., Venditto V.J., Walsh C.L., Szoka F.C. Designer lipids for drug delivery: From heads to tails. J. Control. Release. 2014;190:274–287. doi: 10.1016/j.jconrel.2014.04.047.
    1. Liu Y., Mei Z., Mei L., Tang J., Yuan W., Srinivasan S., Ackermann R., Schwendeman A.S. Analytical method development and comparability study for AmBisome® and generic Amphotericin B liposomal products. Eur. J. Pharm. Biopharm. 2020;157:241–249. doi: 10.1016/j.ejpb.2020.09.008.
    1. Vyxeos Liposomal (Previously Known as Vyxeos) [(accessed on 20 June 2021)]. Available online: .
    1. Takechi-Haraya Y., Matsuoka M., Imai H., Izutsu K., Sakai-Kato K. Detection of material-derived differences in the stiffness of egg yolk phosphatidylcholine-containing liposomes using atomic force microscopy. Chem. Phys. Lipids. 2020;233:104992. doi: 10.1016/j.chemphyslip.2020.104992.
    1. Li J., Wang X., Zhang T., Wang C., Huang Z., Luo X., Deng Y. A review on phospholipids and their main applications in drug delivery systems. Asian J. Pharm. Sci. 2015;10:81–98. doi: 10.1016/j.ajps.2014.09.004.
    1. Luo R., Li Y., He M., Zhang H., Yuan H., Johnson M., Palmisano M., Zhou S., Sun D. Distinct biodistribution of doxorubicin and the altered dispositions mediated by different liposomal formulations. Int. J. Pharm. 2017;519:1–10. doi: 10.1016/j.ijpharm.2017.01.002.
    1. Skupin-Mrugalska P., Piskorz J., Goslinski T., Mielcarek J., Konopka K., Düzgüneş N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov. Today. 2013;18:776–784. doi: 10.1016/j.drudis.2013.04.003.
    1. Visudyne. [(accessed on 20 June 2021)]. Available online: .
    1. Saraf S., Jain A., Tiwari A., Verma A., Panda P.K., Jain S.K. Advances in liposomal drug delivery to cancer: An overview. J. Drug Deliv. Sci. Technol. 2020;56:101549. doi: 10.1016/j.jddst.2020.101549.
    1. Garbuzenko O., Barenholz Y., Priev A. Effect of grafted PEG on liposome size and on compressibility and packing of lipid bilayer. Chem. Phys. Lipids. 2005;135:117–129. doi: 10.1016/j.chemphyslip.2005.02.003.
    1. Song L.Y., Ahkong Q.F., Rong Q., Wang Z., Ansell S., Hope M.J., Mui B. Characterization of the inhibitory effect of PEG-lipid conjugates on the intracellular delivery of plasmid and antisense DNA mediated by cationic lipid liposomes. Biochim. Biophys. Acta Biomembr. 2002;1558:1–13. doi: 10.1016/S0005-2736(01)00399-6.
    1. Varga Z., Wacha A., Vainio U., Gummel J., Bóta A. Characterization of the PEG layer of sterically stabilized liposomes: A SAXS study. Chem. Phys. Lipids. 2012;165:387–392. doi: 10.1016/j.chemphyslip.2011.12.011.
    1. Kim S., Howell S.B. Multivesicular Liposomes Having a Biologically Active Substance Encapsulated Therein in the Presence of a Hydrochloride. 5,723,147. U.S. Patent. 1998 March 3;
    1. Depodur. [(accessed on 20 June 2021)]; Available online: .
    1. Mantripragada S. A lipid based depot (DepoFoam® technology) for sustained release drug delivery. Prog. Lipid Res. 2002;41:392–406. doi: 10.1016/S0163-7827(02)00004-8.
    1. Perkins W., Malinin V., Li X., Miller B., Seidel D., Holzmann P., Schulz H., Hahn M. System for Treating Pulmonary Infections. 9,566,234 B2. U.S. Patent. 2017 February 14;
    1. Borochov H., Shinitzky M., Barenholz Y. Sphingomyelin phase transition in the sheep erythrocyte membrane. Cell Biochem. Biophys. 1979;1:219–228. doi: 10.1007/BF02783664.
    1. Vemuri S., Rhodes C.T. Preparation and characterization of liposomes as therapeutic delivery systems: A review. Pharm. Acta Helv. 1995;70:95–111. doi: 10.1016/0031-6865(95)00010-7.
    1. Takechi-Haraya Y., Sakai-Kato K., Abe Y., Kawanishi T., Okuda H., Goda Y. Atomic Force Microscopic Analysis of the Effect of Lipid Composition on Liposome Membrane Rigidity. Langmuir. 2016;32:6074–6082. doi: 10.1021/acs.langmuir.6b00741.
    1. Pajewski R., Djedovič N., Harder E., Ferdani R., Schlesinger P.H., Gokel G.W. Pore formation in and enlargement of phospholipid liposomes by synthetic models of ceramides and sphingomyelin. Bioorg. Med. Chem. 2005;13:29–37. doi: 10.1016/j.bmc.2004.10.001.
    1. Webb M.S., Bally M.B., Mayer L.D., Miller J.J., Tardi P.G. Sphingosomes for Enhanced Drug Delivery. 5,741,516. U.S. Patent. 1998 April 21;
    1. Silverman J.A., Deitcher S.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2013;71:555–564. doi: 10.1007/s00280-012-2042-4.
    1. Kaddah S., Khreich N., Kaddah F., Charcosset C., Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol. 2018;113:40–48. doi: 10.1016/j.fct.2018.01.017.
    1. Bhattarai A., Likos E.M., Weyman C.M., Shukla G.C. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids. 2021;173:108878. doi: 10.1016/j.steroids.2021.108878.
    1. Sadeghi N., Deckers R., Ozbakir B., Akthar S., Kok R.J., Lammers T., Storm G. Influence of cholesterol inclusion on the doxorubicin release characteristics of lysolipid-based thermosensitive liposomes. Int. J. Pharm. 2018;548:778–782. doi: 10.1016/j.ijpharm.2017.11.002.
    1. Wang M., Liu M., Xie T., Zhang B., Gao X. Chitosan-modified cholesterol-free liposomes for improving the oral bioavailability of progesterone. Colloids Surf. B. 2017;159:580–585. doi: 10.1016/j.colsurfb.2017.08.028.
    1. Kirby C., Gregoriadis G. The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo. Life Sci. 1980;27:2223–2230. doi: 10.1016/0024-3205(80)90388-4.
    1. Najafinobar N., Mellander L.J., Kurczy M.E., Dunevall J., Angerer T.B., Fletcher J.S., Cans A. Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Sci. Rep. 2016;6:33702–33712. doi: 10.1038/srep33702.
    1. Garcon N.M.C., Friede M. Vaccines Contraining a Saponin and a Sterol. US2005/0214322A1. U.S. Patent. 2005 September 29;
    1. Abboud R., Greige-Gerges H., Charcosset C. Effect of Progesterone, Its Hydroxylated and Methylated Derivatives, and Dydrogesterone on Lipid Bilayer Membranes. J. Membrane Biol. 2015;248:811–824. doi: 10.1007/s00232-015-9803-z.
    1. Kapoor M., Lee S.L., Tyner K.M. Liposomal Drug Product Development and Quality: Current US Experience and Perspective. AAPS J. 2017;19:632–641. doi: 10.1208/s12248-017-0049-9.
    1. Adler-Moore J., Gamble R.C., Proffitt R.T. Treatment of Systemic Fungal Infections with Phospholipid Particles Encapsulating Polyene Antibiotics. 5,874,104. U.S. Patent. 1999 February 23;
    1. Lu B., Ma Q., Zhang J., Liu R., Yue Z., Xu C., Li Z., Lin H. Preparation and characterization of bupivacaine multivesicular liposome: A QbD study about the effects of formulation and process on critical quality attributes. Int. J. Pharm. 2021;598:120335. doi: 10.1016/j.ijpharm.2021.120335.
    1. Sala M., Miladi K., Agusti G., Elaissari A., Fessi H. Preparation of liposomes: A comparative study between the double solvent displacement and the conventional ethanol injection—From laboratory scale to large scale. Colloids Surf. A. 2017;524:71–78. doi: 10.1016/j.colsurfa.2017.02.084.
    1. Boni L.T., Miller B.S., Malinin V., Li X. Sustained Release of Antinfectives. 8,802,137B2. U.S. Patent. 2014 August 12;
    1. Catherine C., Audrey J., Jean-Pierre V., Sebastien U., Hatem F. Preparation of liposomes at large scale using the ethanol injection method: Effect of scale-up and injection devices. Chem. Eng. Res. Des. 2015;94:508–515.
    1. Laouini A., Jaafar-Maalej C., Sfar S., Charcosset C., Fessi H. Liposome preparation using a hollow fiber membrane contactor—Application to spironolactone encapsulation. Int. J. Pharm. 2011;415:53–61. doi: 10.1016/j.ijpharm.2011.05.034.
    1. Wagner A., Vorauer-Uhl K., Kreismayr G., Katinger H. The crossflow injection technique: An improvement of the ethanol injection method. J. Liposome Res. 2002;12:259–270. doi: 10.1081/LPR-120014761.
    1. Wagner A., Vorauer-Uhl K., Katinger H. Liposomes produced in a pilot scale: Production, purification and efficiency aspects. Eur. J. Pharm. Biopharm. 2002;54:213–219. doi: 10.1016/S0939-6411(02)00062-0.
    1. Gouda A., Sakr O.S., Nasr M., Sammour O. Ethanol injection technique for liposomes formulation: An insight into development, influencing factors, challenges and applications. J. Drug Delivery Sci. Technol. 2021;61:102174. doi: 10.1016/j.jddst.2020.102174.
    1. Schubert M.A., Müller-Goymann C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 2003;55:125–131. doi: 10.1016/S0939-6411(02)00130-3.
    1. Utsugil T., Nii A., Fan D., Pak C.C., Denkins Y., Hoogevest P.V., Fidler I.J. Comparative efficacy of liposomes containing synthetic bacterial cell wall analogues for tumoricidal activation of monocytes and macrophages. Cancer Immunol. Immunother. 1991;33:285–292. doi: 10.1007/BF01756592.
    1. Frost H. MTP-PE in liposomes as a biological response modifier in the treatment of cancer: Current status. Biotherapy. 1992;4:199–204. doi: 10.1007/BF02174206.
    1. Sone S., Utsugi T., Tandon P., Ogawara M. A dried preparation of liposomes containing muramyl tripeptide phosphatidylethanolamine as a potent activator of human blood monocytes to the antitumor state. Cancer Immunol. Immunother. 1986;22:191–196. doi: 10.1007/BF00200032.
    1. Mepact. [(accessed on 20 June 2021)]. Available online: .
    1. Barenholzt Y., Amselem S.D.L. A new method for preparation of phospholipid vesicles (liposomes)—french press. FEBS Lett. 1979;99:210–214. doi: 10.1016/0014-5793(79)80281-1.
    1. Castile J.D., Taylor K.M.G. Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion. Int. J. Pharm. 1999;188:87–95. doi: 10.1016/S0378-5173(99)00207-0.
    1. Pupo E., Padrón A., Santana E., Sotolongo J., Quintana D., Dueñas S., Duarte C., de la Rosa M.C., Hardy E. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenization–extrusion technique. J. Control. Release. 2005;104:379–396. doi: 10.1016/j.jconrel.2005.02.001.
    1. Johnson S.M., Bangham A.D., Hill M.W., Korn E.D. Single bilayer liposomes. Biochim. Biophys. Acta Biomembr. 1971;223:820–826. doi: 10.1016/0005-2736(71)90273-2.
    1. Lesieur S., Grabielle-Madelmont C., Paternostre M.T., Ollivon M. Size analysis and stability study of lipid vesicles by high-performance gel exclusion chromatography, turbidity, and dynamic light scattering. Anal. Biochem. 1991;192:334–343. doi: 10.1016/0003-2697(91)90545-5.
    1. Hunter D.G., Frisken B.J. Effect of Extrusion Pressure and Lipid Properties on the Size and Polydispersity of Lipid Vesicles. Biophys. J. 1998;74:2996–3002. doi: 10.1016/S0006-3495(98)78006-3.
    1. Berger N., Sachse A., Bender J., Schubert R., Brandl M. Filter extrusion of liposomes using different devices: Comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm. 2001;233:55–68. doi: 10.1016/S0378-5173(01)00721-9.
    1. Ong S.G.M., Chiteni M., Lee K.S., Ming L.C., Yuen K.H.Y. Evaluation of Extrusion Technique for Nanosizing Liposomes. Pharmaceutics. 2016;8:36. doi: 10.3390/pharmaceutics8040036.
    1. Mokhtarieh A.A., Davarpanah S.J., Lee M.K. Ethanol treatment a Non-extrusion method for asymmetric liposome size optimization. DARU J. Pharm. Sci. 2013;21:32. doi: 10.1186/2008-2231-21-32.
    1. Preksha V., Patel J.K., Patel M.M. High-Pressure Homogenization Techniques for Nanoparticles. In: Patel J.K., Pathak Y.V., editors. Emerging Technologies for Nanoparticle Manufacturing. Springer; Cham, Switzerland: 2021. pp. 263–286. Part III.
    1. Kyun S., Gye C., Shin H., Kyo M., In J., Hwang C., Park J. Factors influencing the physicochemical characteristics of cationic polymer-coated liposomes prepared by high-pressure homogenization. Colloids Surf. A. 2014;454:8–15. doi: 10.1016/j.colsurfa.2014.03.095.
    1. Barnadas-Rodríguez R., Sabés M. Factors involved in the production of liposomes with a high-pressure homogenizer. Int. J. Pharm. 2001;213:175–186. doi: 10.1016/S0378-5173(00)00661-X.
    1. Proffitt R.T., Alder-Moore J., Chiang S.M. Amphotericin B Liposome Preparation. 5,965,156. U.S. Patent. 1999 October 12;
    1. Zhang Y., Hill A.T. Amikacin liposome inhalation suspension as a treatment for patients with refractory mycobacterium avium complex lung infection. Expert Rev. Resp. Med. 2020;15:737–744. doi: 10.1080/17476348.2021.1875821.
    1. Arikayce Liposomal. [(accessed on 20 June 2021)]. Available online: .
    1. Gadekar V., Borade Y., Kannaujia S., Rajpoot K., Anup N., Tambe V., Kalia K., Tekade R.K. Nanomedicines accessible in the market for clinical interventions. J. Control. Release. 2021;330:372–397. doi: 10.1016/j.jconrel.2020.12.034.
    1. Kim S., Kim T., Murdande S. Sustained-Release Liposomal Anesthetic Compositions. 8,182,835B2. U.S. Patent. 2012 May 22;
    1. Swenson C.E., Perkins W.R., Roberts P., Janoff A.S. Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate) Breast. 2001;10:1–7. doi: 10.1016/S0960-9776(01)80001-1.
    1. Sarris A.H., Cabanillas F., Logan P.M., Burge C.T.R., Goldie J.H., Webb M.S. Compositions and Methods for Treating Lymphoma. 7,247,316 B2. U.S. Patent. 2007 July 24;
    1. Mayer L.D., Nayar R., Thies R.L., Boman N.L., Cullis P.R., Bally M.B. Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia. Cancer Chemoth. Pharm. 1993;33:17–24. doi: 10.1007/BF00686017.
    1. Nichols J.W., Deamer D.W. Catecholamine uptake and concentration by liposomes maintaining pH gradients. Biochim. Biophys. Acta. 1976;455:269–271. doi: 10.1016/0005-2736(76)90169-3.
    1. Boman N.L., Masin D., Mayer L.D., Cullis P.R., Bally M.B. Liposomal Vincristine Which Exhibits Increased Drug Retention and Increased Circulation Longevity Cures Mice Bearing P388 Tumors. Cancer Res. 1994;54:2830–2833. doi: 10.1007/s002620050086.
    1. Onivyde. [(accessed on 20 June 2021)]. Available online: .
    1. Drummond D.C., Kirpotin D.B., Hayes M.E., Kesper C.N.K., Awad A.M., Moore D.J., O’Brien A.J. Stabilizing Camptothecin Pharmaceutical Compositions. 2020179371A1. U.S. Patent. 2020 June 11;
    1. Hong K., Drummond D.C., Kirpotiin D. Liposome Useful for Drug Delivery. 20160338956A1. U.S. Patent. 2016 June 24;
    1. Irby D., Du C., Li F. Lipid–Drug Conjugate for Enhancing Drug Delivery. Mol. Pharm. 2017;14:1325–1338. doi: 10.1021/acs.molpharmaceut.6b01027.
    1. Schroit A.J., Fidler I.J. Effects of liposome structure and lipid composition on the activation of the tumoricidal properties of macrophages by liposomes containing muramyl dipeptide. Cancer Res. 1982;42:161–167. doi: 10.1016/0304-3835(82)90136-7.
    1. Meyers P.A., Chou A.J. Muramyl Tripeptide-Phosphatidyl Ethanolamine Encapsulated in Liposomes (L-MTP-PE) in the Treatment of Osteosarcoma. In: Kleinerman E.S., editor. Current Advances in Osteosarcoma. Springer; Berlin/Heidelberg, Germany: 2014. pp. 307–322. Part V.
    1. Louie A., Swenson C., Mayer L., Janoff A. Fixed Drug Ratios for Treatment of Hematopoietic Cancers and Proliferative Disorders. 8,092,828 B2. U.S. Patent. 2012 January 10;
    1. Awa D., Paul T., Lawrence M., Sharon J. Liposomal Formulations Comprising Secondary and Tertiary Amines and Methods for Preparing Thereof. 20060846044. EU Patent. 2006 December 22;
    1. Dicko A., Tardi P., Xie X., Mayer L. Role of copper gluconate/triethanolamine in irinotecan encapsulation inside the liposomes. Int. J. Pharm. 2007;337:219–228. doi: 10.1016/j.ijpharm.2007.01.004.
    1. Au J.L.S., Yeung B.Z., Wientjes M.G., Lu Z., Wientjes M.G. Delivery of cancer therapeutics to extracellular and intracellular targets: Determinants, barriers, challenges and opportunities. Adv. Drug Deliv. Rev. 2016;97:280–301. doi: 10.1016/j.addr.2015.12.002.
    1. Li Y., Wang J., Wientjes M.G., Au J.L.S. Delivery of nanomedicines to extracellular and intracellular compartments of a solid tumor. Adv. Drug Deliv. Rev. 2012;64:29–39. doi: 10.1016/j.addr.2011.04.006.
    1. Crommelin D.J.A., van Hoogevest P., Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Release. 2020;318:256–263. doi: 10.1016/j.jconrel.2019.12.023.
    1. Q8(R2) Pharmaceutical Development. [(accessed on 20 June 2021)]. Available online: .
    1. Au J.L.S. Considerations for Bioequivalence Evaluation of Nano-Particulate/Molecular Medicine. [(accessed on 25 June 2021)]; Available online: .
    1. Danaei M., Dehghankhold M., Ataei S., Davarani F.H., Javanmard R., Khorasani S., Mozafari M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics. 2018;18:57. doi: 10.3390/pharmaceutics10020057.
    1. Singh P., Bodycomb J., Travers B., Tatarkiewicz K., Travers S., Matyas G.R., Beck Z. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int. J. Pharm. 2019;566:680–686. doi: 10.1016/j.ijpharm.2019.06.013.
    1. Trucillo P., Reverchon E. Production of PEG-coated liposomes using a continuous supercritical assisted process. J. Supercrit. Fluid. 2021;167:105048. doi: 10.1016/j.supflu.2020.105048.
    1. Drug Products, Including Biological Products, That Contain Nanomaterials Guidance for Industry. [(accessed on 20 June 2021)]; Available online: .
    1. Rabanel J.M., Hildgen P., Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J. Control. Release. 2014;185:71–87. doi: 10.1016/j.jconrel.2014.04.017.
    1. Reflection Paper on Surface Coatings: General Issues for Consideration Regarding Parenteral Administration of Coated Nanomedicine Products. [(accessed on 25 June 2021)]. Available online: .
    1. Marsh D. Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes. Biochim. Biophys. Acta Biomembr. 2010;1798:40–51. doi: 10.1016/j.bbamem.2009.10.010.
    1. Leonenko Z.V., Finot E., Ma H., Dahms T.E.S., Cramb D.T. Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Biophysical Journal Force Microscopy. Biophys. J. 2004;86:3783–3793. doi: 10.1529/biophysj.103.036681.
    1. Huang C., Li S. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. Biochim. Biophys. Acta. 1999;1422:273–307. doi: 10.1016/S0005-2736(99)00099-1.
    1. Pentak D. Alternative methods of determining phase transition temperatures of phospholipids that constitute liposomes on the example of DPPC and DMPC. Thermochim. Acta. 2014;584:36–44. doi: 10.1016/j.tca.2014.03.020.
    1. Tenchov B., Koynova R., Rapp G. New Ordered Metastable Phases between the Gel and Subgel Phases in Hydrated Phospholipids. Biophys. J. 2001;80:1873–1890. doi: 10.1016/S0006-3495(01)76157-7.
    1. Delma K.L., Lechanteur A., Evrard B., Semdé R., Piel G. Sterilization methods of liposomes: Drawbacks of conventional methods and perspectives. Int. J. Pharm. 2021;597:120271. doi: 10.1016/j.ijpharm.2021.120271.
    1. He H., Jiang S., Xie Y., Lu Y., Qi J., Dong X., Zhao W., Yinb Z., Wu W. Reassessment of long circulation via monitoring of integral polymeric nanoparticles justifies a more accurate understanding. Nanoscale Horiz. 2018;3:397–407. doi: 10.1039/C8NH00010G.
    1. Guideline for the Non-Clinical Pharmacokinetics of Nanomedicines (Draft) [(accessed on 25 June 2021)]. Available online: .
    1. Hu X., Dong X., Lu Y., Qi J., Zhao W., Wu W. Bioimaging of nanoparticles: The crucial role of discriminating nanoparticles from free probes. Drug Discov. Today. 2017;22:382–387. doi: 10.1016/j.drudis.2016.10.002.
    1. Qi J., Hu X., Dong X., Lu Y., Lu H., Zhao W., Wu W. Towards more accurate bioimaging of drug nanocarriers: Turning aggregation-caused quenching into a useful tool. Adv. Drug Deliv. Rev. 2019;143:206–225. doi: 10.1016/j.addr.2019.05.009.
    1. Xia F., Chen Z., Zhu Q., Qi J., Dong X., Zhao W., Wu W., Lu Y. Gastrointestinal lipolysis and trans-epithelial transport of SMEDDS via oral route. Acta Pharm. Sin. B. 2021;11:1010–1020. doi: 10.1016/j.apsb.2021.03.006.
    1. He H., Wang L., Ma Y., Yang Y., Lv Y., Zhang Z., Qi J., Dong X., Zhao W., Lu Y., et al. The biological fate of orally administered mPEG-PDLLA polymeric micelles. J. Control. Release. 2020;327:725–736. doi: 10.1016/j.jconrel.2020.09.024.
    1. Li Y., Wang C., Zong S., Qi J., Dong X., Zhao W., Wu W., Fu Q., Lu Y., Chen Z. The Trigeminal Pathway Dominates the Nose-to-Brain Transportation of Intact Polymeric Nanoparticles: Evidence from Aggregation-Caused Quenching Probes. J. Biomed. Nanotechnol. 2019;15:686–702. doi: 10.1166/jbn.2019.2724.
    1. He H., Xie Y., Lv Y., Qi J., Dong X., Zhao W., Wu W. Bioimaging of Intact Polycaprolactone Nanoparticles Using Aggregation-Caused Quenching Probes: Size-Dependent Translocation via Oral Delivery. Adv. Healthc. Mater. 2018;7:e1800711. doi: 10.1002/adhm.201800711.
    1. Aghdam M.A., Bagheri R., Mosafer J., Baradaran B., Hashemzaei M., la Guardia M., Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J. Control. Release. 2019;315:1–22. doi: 10.1016/j.jconrel.2019.09.018.
    1. Bi H., Xue J., Jiang H., Gao S., Yang D., Fang Y., Shi K. Current developments in drug delivery with thermosensitive liposomes. Asian J. Pharm. Sci. 2019;14:365–379. doi: 10.1016/j.ajps.2018.07.006.
    1. Antoniou A.I., Giofrè S., Seneci P., Passarella D., Pellegrino S. Stimulus-responsive liposomes for biomedical applications. Drug Discov. Today. 2021;26:1794–1824. doi: 10.1016/j.drudis.2021.05.010.
    1. Regenold M., Bannigan P., Evans J.C., Waspe A., Temple M.J., Allen C. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine. 2022;40:102484. doi: 10.1016/j.nano.2021.102484.

Source: PubMed

3
구독하다