Cerebral changes improved by physical activity during cognitive decline: A systematic review on MRI studies

Alexa Haeger, Ana S Costa, Jörg B Schulz, Kathrin Reetz, Alexa Haeger, Ana S Costa, Jörg B Schulz, Kathrin Reetz

Abstract

Current treatment in late-life cognitive impairment and dementia is still limited, and there is no cure for brain tissue degeneration or reversal of cognitive decline. Physical activity represents a promising non-pharmacological interventional approach in many diseases causing cognitive impairment, but its effect on brain integrity is still largely unknown. Especially research of cerebral alterations in disease state that goes beyond observations of clinical improvement is crucial to understand disease processes and possible effective treatments. In this systematic review, we address the question how physical activity and fitness in mild cognitive impairment (MCI) and Alzheimer's disease (AD) influences brain architecture compared to cognitively healthy elderly. We review both interventional studies comprising aerobic, coordinative and resistance exercises and observational studies on fitness and physical activity combined with Magnetic Resonance imaging (MRI). Different MRI approaches were included such as volumetric and structural analyses, Diffusion Tensor Imaging (DTI), functional MRI and Cerebral Blood Flow (CBF). We evaluate MRI results for different exercise modalities and performed a methodological evaluation of interventional studies in cognitive decline compared to normal aging. According to our results, among 12 interventions in AD/MCI, aerobic exercise is most frequently applied (9 studies). Interventions in AD/MCI altogether reveal a higher methodological quality compared to interventions in healthy elderly (8.33 ± 2.19 vs. 6.25 ± 2.36 out of 13 points), with most frequent missing aspects related to descriptions of complications, lack of intention-to-treat and statistical power analyses. Effects of aerobic exercise and fitness seem to mainly impact brain structures sensitive to neurodegeneration, which especially comprise frontal, temporal and parietal regions, such as the hippocampal/parahippocampal region, precuneus, anterior cingulate and prefrontal cortex, which are reported by several studies. General fitness measured via an objective fitness assessment and questionnaires seems to have a more global cerebral effect, probably due to its long-term application, whereas distinct intervention effects of durations between 3 and 6 months seem to concentrate on more local brain regions as the hippocampus, which can also be influenced by region of interest analyses. There is still a lack of evidence on other or combined types of intervention modalities, such as resistance, coordinative as well as multicomponent exercise during cognitive decline, and complex interventions as dancing. Future research should examine their beneficial effect on brain integrity, since several non-MRI studies already point to their advantageous impact. As a further future prospect, combination and application of newly developed imaging methods such as metabolic imaging should be envisaged to understand physical activity and its cerebral influence under its many-sided facets.

Keywords: Dementia; Exercise; Fitness; MRI; Neuroimaging; Physical activity.

Conflict of interest statement

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Copyright © 2019. Published by Elsevier Inc.

Figures

Fig. 1
Fig. 1
Flow chart of the inclusion process of literature according to the PRISMA criteria. A total of 23 studies is included in this review.
Fig. 2
Fig. 2
Overview of included studies in MCI and AD patients with number of included subjects who underwent MRI.
Fig. 3
Fig. 3
Overview of brain regions affected by intervention studies (A), fitness (B) and physical activity evaluated via questionnaires (C) for MCI/AD patients (blue) and cognitively healthy elderly (red). The color grading (overlay transparency) is shown for a single study for reported brain regions. Therefore, an accumulation resulting in increased color grading will occur when certain ROIs are reported by several studies. For intervention studies (A), relevance of brain regions is weighted by methodological quality (0 to 100% of criteria fulfilled). For observational studies (B and C) total sample size is taken for weighting (categorization into samples of <50 subjects, 50–100, 100–200, 200–500, >500 subjects). For comparison purposes, only results from volume and cortical thickness analyses were included. On the right, corresponding illustration of brain regions reported for intervention and observational studies in relation to sample size and reported number of brain regions belonging to superordinate brain regions is given. These are illustrated via circle size (1–5 reported sub-regions). Overview of the names of the brain regions included in this graphical illustration in detail are listed in the supplementary (volume and cortical thickness). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

References

    1. Abe O., Aoki S., Hayashi N., Yamada H., Kunimatsu A., Mori H.…Ohtomo K. Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis. Neurobiol. Aging. 2002;23(3):433–441.
    1. Anderson-Hanley C., Barcelos N.M., Zimmerman E.A., Gillen R.W., Dunnam M., Cohen B.D.…Kramer A.F. The aerobic and cognitive exercise study (ACES) for community-dwelling older adults with or at-risk for mild cognitive impairment (MCI): neuropsychological, neurobiological and neuroimaging outcomes of a randomized clinical trial. Front. Aging Neurosci. 2018;10(May)
    1. Baker L.D., Frank L.L., Foster-Schubert K., Green P.S., Wilkinson C.W., McTiernan A.…Craft S. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch. Neurol. 2010;67(1):71–79.
    1. Bakker A., Krauss G.L., Albert M.S., Speck C.L., Jones L.R., Stark C.E.…Gallagher M. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron. 2012;74(3):467–474.
    1. Barnes L.L., Mendes de Leon C.F., Wilson R.S., Bienias J.L., Evans D.A. Social resources and cognitive decline in a population of older African Americans and whites. Neurology. 2004;63(12):2322–2326. Retrieved from.
    1. Best J.R., Chiu B.K., Liang Hsu C., Nagamatsu L.S., Liu-Ambrose T. Long-term effects of resistance exercise training on cognition and brain volume in older women: results from a randomized controlled trial. J. Int. Neuropsychol. Soc. 2015;21(10):745–756.
    1. Blankevoort C.G., Van Heuvelen M.J.G., Boersma F., Luning H., De Jong J., Scherder E.J.A. Review of effects of physical activity on strength, balance, mobility and ADL performance in elderly subjects with dementia. Dement. Geriatr. Cogn. Disord. 2010;30(5):392–402.
    1. Boyke J., Driemeyer J., Gaser C., Buchel C., May A. Training-induced brain structure changes in the elderly. J. Neurosci. 2008;28(28):7031–7035.
    1. Braskie M.N., Boyle C.P., Rajagopalan P., Gutman B.A., Toga A.W., Raji C.A.…Thompson P.M. Physical activity, inflammation, and volume of the aging brain. Neuroscience. 2014;273:199–209.
    1. Bugg J.M., Head D. Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiol. Aging. 2011;32(3):506–514.
    1. Burdette J.H., Laurienti P.J., Espeland M.A., Morgan A., Telesford Q., Vechlekar C.D.…Rejeski W.J. Using network science to evaluate exercise-associated brain changes in older adults. Front. Aging Neurosci. 2010;2(Jun):1–10.
    1. Burns J.M., Cronk B.B., Anderson H.S., Donnelly J.E., Thomas G.P., Harsha A.…Swerdlow R.H. Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology. 2008;71(3):210–216.
    1. Cammisuli D.M. Aerobic exercise effects upon cognition in mild cognitive impairment: a systematic review of randomized controlled trials. Arch. Ital. Biol. 2017;155:54–62.
    1. Chapman S.B., Aslan S., Spence J.S., DeFina L.F., Keebler M.W., Didehbani N., Lu H. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front. Aging Neurosci. 2013;5(Nov):1–9.
    1. Chételat G., Landeau B., Eustache F., Mézenge F., Viader F., De La Sayette V.…Baron J.C. Using voxel-based morphometry to map the structural changes associated with rapid conversion in MCI: a longitudinal MRI study. NeuroImage. 2005;27(4):934–946.
    1. Chirles T.J., Reiter K., Weiss L.R., Alfini A.J., Nielson K.A., Smith J.C. Exercise training and functional connectivity changes in mild cognitive impairment and healthy elders. J. Alzheimers Dis. 2017;57(3):845–856.
    1. Colcombe S.J., Erickson K.I., Raz N., Webb A.G., Cohen N.J., McAuley E., Kramer A.F. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. Ser. A Biol. Med. Sci. 2003;58(2):M176–M180.
    1. Colcombe S.J., Kramer A.F., Erickson K.I., Scalf P., McAuley E., Cohen N.J.…Elavsky S. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl. Acad. Sci. 2004;101(9):3316–3321.
    1. Colcombe S.J., Erickson K.I., Scalf P.E., Kim J.S., Prakash R., Mcauley E.…Kramer A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. 2006;61(11):1166–1170.
    1. Cotman C.W., Berchtold N.C., Christie L.A. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30(9):464–472.
    1. Crosson B., Benjamin M., Levy I. Role of the basal ganglia in language and semantics: supporting cast. In: Hart J., Kraut M.A., editors. Neural Basis of Semantic Memory. Cambridge University Press; Cambridge: 2007. pp. 219–244.
    1. de Chastelaine M., Friedman D., Cycowicz Y.M. The development of control processes supporting source memory discrimination as revealed by event-related potentials. J. Cogn. Neurosci. 2007;19(8):1286–1301.
    1. Ding K., Tarumi T., Zhu D.C., Tseng B.Y., Thomas B.P., Turner M.…Zhang R. Cardiorespiratory fitness and white matter neuronal fiber integrity in mild cognitive impairment. J. Alzheimers Dis. 2017;61(2):729–739.
    1. Dougherty R.J., Ellingson L.D., Schultz S.A., Boots E.A., Meyer J.D., Lindheimer J.B.…Cook D.B. Meeting physical activity recommendations may be protective against temporal lobe atrophy in older adults at risk for Alzheimer's disease. Alzheimer's Dement. 2016;4:14–17.
    1. Eadie B.D., Redila V.A., Christie B.R. Voluntary exercise alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J. Comp. Neurol. 2005;486(1):39–47.
    1. Erickson K.I., Raji C.A., Lopez O.L., Becker J.T., Rosano C., Newman A.B.…Kuller L.H. Physical activity predicts gray matter volume in late adulthood: the cardiovascular health study. Neurology. 2010;75(16):1415–1422.
    1. Erickson K.I., Voss M.W., Prakash R.S., Basak C., Szabo A., Chaddock L.…Kramer A.F. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. 2011;108(7):3017–3022.
    1. Farina N., Rusted J., Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int. Psychogeriatr. 2014;26(1):9–18.
    1. Fellgiebel A., Wille P., Müller M.J., Winterer G., Scheurich A., Vucurevic G.…Stoeter P. Ultrastructural hippocampal and White matter alterations in mild cognitive impairment: a diffusion tensor imaging study. Dement. Geriatr. Cogn. Disord. 2004;18(1):101–108.
    1. Fellgiebel A., Müller M.J., Wille P., Dellani P.R., Scheurich A., Schmidt L.G., Stoeter P. Color-coded diffusion-tensor-imaging of posterior cingulate fiber tracts in mild cognitive impairment. Neurobiol. Aging. 2005;26(8):1193–1198.
    1. Fjell A.M., Walhovd K.B. Structural brain changes in aging: courses, causes and cognitive consequences. Rev. Neurosci. 2010;21(3):187–221.
    1. Fleck M.S., Daselaar S.M., Dobbins I.G., Cabeza R. Role of prefrontal and anterior cingulate regions in decision-making processes shared by memory and nonmemory tasks. Cereb. Cortex. 2006;16(11):1623–1630.
    1. Flodin P., Jonasson L.S., Riklund K., Nyberg L., Boraxbekk C.J. Does aerobic exercise influence intrinsic brain activity? An aerobic exercise intervention among healthy old adults. Front. Aging Neurosci. 2017;9 August.
    1. Flöel A., Ruscheweyh R., Krüger K., Willemer C., Winter B., Völker K.…Knecht S. Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? NeuroImage. 2010;49(3):2756–2763.
    1. Forbes D., Forbes S., Morgan D.G., Markle-Reid M., Wood J., Culum I. Physical activity programs for persons with dementia. In: Forbes D., editor. Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd.; Chichester, UK: 2008.
    1. Frederiksen K.S., Larsen C.T., Hasselbalch S.G., Christensen A.N., Høgh P., Wermuth L.…Garde E. A 16-week aerobic exercise intervention does not affect hippocampal volume and cortical thickness in mild to moderate Alzheimer's disease. Front. Aging Neurosci. 2018;10(September):1–10.
    1. Frederiksen K.S., Gjerum L., Waldemar G., Hasselbalch S.G. Physical activity as a moderator of Alzheimer pathology: a systematic review of observational studies. Curr. Alzheimer Res. 2019;16(4):362–378.
    1. Gates N., Singh M.A.F., Sachdev P.S., Valenzuela M. The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. Am. J. Geriatr. Psychiatr. 2013;21(11):1086–1097.
    1. Gauthier S., Reisberg B., Zaudig M., Petersen R.C., Ritchie K., Broich K.…Winblad B. Mild cognitive impairment. Lancet (Lond., Engl.) 2006;367(9518):1262–1270.
    1. Geda Y.E., Roberts R.O., Knopman D.S., Christianson T.J.H., Pankratz V.S., Ivnik R.J.…Rocca W.A. Physical exercise, aging, and mild cognitive impairment a population-based study. Arch. Neurol. 2010;67(1):80–86.
    1. Godde B., Voelcker-Rehage C. Cognitive resources necessary for motor control in older adults are reduced by walking and coordination training. Front. Hum. Neurosci. 2017;11:156.
    1. Gordon B.A., Rykhlevskaia E.I., Brumback C.R., Lee Y., Konopack J.F., Mcauley E.…Fabiani M. Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology. 2008;45(5):825–838.
    1. Gustavsson A., Svensson M., Jacobi F., Allgulander C., Alonso J., Beghi E.…Olesen J. Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 2011;21(10):718–779.
    1. Guyatt G.H., Sackett D.L., Cook D.J., Guyatt G., Bass E., Brill-Edwards P.…Wilson M. Users' guides to the medical literature. JAMA. 1993;270(21):2598.
    1. Guyatt G.H., Sackett D.L., Cook D.J., Guyatt G., Bass E., Brill-Edwards P.…Wilson M. Users' guides to the medical literature. JAMA. 1994;271(1):59.
    1. Haeger A., Lee H., Fell J., Axmacher N. Selective processing of buildings and faces during working memory: the role of the ventral striatum. Eur. J. Neurosci. 2015;41(4):505–513.
    1. Hakamata Y., Lissek S., Bar-Haim Y., Britton J.C., Fox N., Leibenluft E.…Pine D.S. Attention Bias modification treatment: a meta-analysis towards the establishment of novel treatment for anxiety. Biol. Psychiatry. 2010
    1. Hess N.C.L., Dieberg G., Mcfarlane J.R., Smart N.A. The effect of exercise intervention on cognitive performance in persons at risk of, or with, dementia: a systematic review and meta-analysis. Health. Aging Res. 2014:1–10.
    1. Hohenfeld C., Nellessen N., Dogan I., Kuhn H., Müller C., Papa F.…Reetz K. Cognitive improvement and brain changes after real-time functional MRI neurofeedback training in healthy elderly and prodromal Alzheimer's disease. Front. Neurol. 2017;8(384)
    1. Holzschneider K., Wolbers T., Röder B., Hötting K. Cardiovascular fitness modulates brain activation associated with spatial learning. NeuroImage. 2012;59(3):3003–3014.
    1. Honea R.A., Thomas G.P., Harsha A., Anderson H.S., Donnelly J.E., Brooks W.M., Burns J.M. Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2009;23(3):188–197.
    1. Ilg W., Synofzik M., Brötz D., Burkard S., Giese M.A., Schöls L. Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology. 2009;73(22):1823–1830.
    1. Jack C.R., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B.…Silverberg N. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535–562.
    1. Kattenstroth Jan-Christoph, Kalisch Tobias, Holt Stephan, Tegenthoff Martin, Dinse Hubert R. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front. Aging Neurosci. 2013
    1. Johnson S.C., Schmitz T.W., Moritz C.H., Meyerand M.E., Rowley H.A., Alexander A.L.…Alexander G.E. Activation of brain regions vulnerable to Alzheimer's disease: the effect of mild cognitive impairment. Neurobiol. Aging. 2006;27(11):1604–1612.
    1. Johnson N.F., Kim C., Clasey J.L., Bailey A., Gold B.T. Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. NeuroImage. 2012;59(2):1514–1523.
    1. Jonasson L.S., Nyberg L., Kramer A.F., Lundquist A., Riklund K., Boraxbekk C.-J. Aerobic exercise intervention, cognitive performance, and brain structure: results from the physical influences on brain in aging (PHIBRA) study. Front. Aging Neurosci. 2016;8:336.
    1. Kattenstroth J.-C., Kolankowska I., Kalisch T., Dinse H.R. Superior sensory, motor, and cognitive performance in elderly individuals with multi-year dancing activities. Front. Aging Neurosci. 2010;2
    1. Kaufmann L., Ischebeck A., Weiss E., Koppelstaetter F., Siedentopf C., Vogel S.E.…Wood G. An fMRI study of the numerical Stroop task in individuals with and without minimal cognitive impairment. Cortex. 2008;44(9):1248–1255.
    1. Kircher T.T., Weis S., Freymann K., Erb M., Jessen F., Grodd W.…Leube D.T. Hippocampal activation in patients with mild cognitive impairment is necessary for successful memory encoding. J. Neurol. Neurosurg. Psychiatry. 2007;78(8):812–818.
    1. Kleemeyer M.M., Kühn S., Prindle J., Bodammer N.C., Brechtel L., Garthe A.…Lindenberger U. Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults. NeuroImage. 2016;131:155–161.
    1. Köbe T., Witte A.V., Schnelle A., Lesemann A., Fabian S., Tesky V.A.…Flöel A. Combined omega-3 fatty acids, aerobic exercise and cognitive stimulation prevents decline in gray matter volume of the frontal, parietal and cingulate cortex in patients with mild cognitive impairment. NeuroImage. 2016;131:226–238.
    1. Kompus K., Hugdahl K., Öhman A., Marklund P., Nyberg L. Distinct control networks for cognition and emotion in the prefrontal cortex. Neurosci. Lett. 2009;467(2):76–80.
    1. Kronenberg G., Reuter K., Steiner B., Brandt M.D., Jessberger S., Yamaguchi M., Delbru M. Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J. Comp. Neurol. 2003;463:455–463. August. doi: 10.1002/cne.10945.
    1. Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J.…Almeida O.P. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease. JAMA. 2008;300(9):1027.
    1. Lautenschlager N.T., Cox K., Cyarto E.V. The influence of exercise on brain aging and dementia. Biochim. Biophys. Acta Mol. basis Dis. 2012;1822(3):474–481.
    1. Lenzi D., Serra L., Perri R., Pantano P., Lenzi G.L., Paulesu E., Macaluso E. Single domain amnestic MCI: a multiple cognitive domains fMRI investigation. Neurobiol. Aging. 2011;32(9):1542–1557.
    1. Liu C.-J., Latham N.K. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst. Rev. 2009;3
    1. Liu-Ambrose T., Nagamatsu L.S., Graf P., Beattie B.L., Ashe M.C., Handy T.C. Resistance training and executive functions. Arch. Intern. Med. 2010;170(2):170.
    1. Liu-Ambrose T., Nagamatsu L.S., Voss M.W., Khan K.M., Handy T.C. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol. Aging. 2012;33(8):1690–1698.
    1. Maass A., Düzel S., Goerke M., Becke A., Sobieray U., Neumann K.…Düzel E. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol. Psychiatry. 2015;20(5):585–593.
    1. Machulda M.M., Ward H.A., Borowski B., Gunter J.L., Cha R.H., O'Brien P.C., Petersen R.C., Boeve B.F., Knopman D., Tang-Wai D.F., Ivnik R.J., Smith G.E., Tangalos E.G., Jack C.R. Comparison of memory fMRI response among Normal, MCI, and Alzheimer's patients. Neurology. 2003;61(4):500–506.
    1. Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003;83(8):713–721.
    1. Makizako H., Liu-Ambrose T., Shimada H., Doi T., Park H., Tsutsumimoto K.…Suzuki T. Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. J. Gerontol. Ser. A Biol. Med. Sci. 2015;70(4):480–486.
    1. Maldjian J.A., Laurienti P.J., Kraft R.A., Burdette J.H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19(3):1233–1239.
    1. Matura S., Fleckenstein J., Deichmann R., Engeroff T., Füzéki E., Hattingen E.…Pantel J. Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: results of the randomised controlled SMART trial. Transl. Psychiatry. 2017;7(7):e1172.
    1. McGill A., Houston S., Lee R.Y.W. Dance for Parkinson's: a new framework for research on its physical, mental, emotional, and social benefits. Complement. Ther. Med. 2014;22(3):426–432.
    1. Medina D., deToledo-Morrell L., Urresta F., Gabrieli J.D.E., Moseley M., Fleischman D.…Stebbins G.T. White matter changes in mild cognitive impairment and AD: a diffusion tensor imaging study. Neurobiol. Aging. 2006;27(5):663–672.
    1. Mondadori C.R.A., de Quervain D.J.-F., Buchmann A., Mustovic H., Wollmer M.A., Schmidt C.F.…Henke K. Better memory and neural efficiency in young apolipoprotein E 4 carriers. Cereb. Cortex. 2007;17(8):1934–1947.
    1. Moniz-Cook E., Vernooij-Dassen M., Woods B., Orrell M., Interdem Network Psychosocial interventions in dementia care research: the INTERDEM manifesto. Aging Ment. Health. 2011;15(3):283–290.
    1. Morris J.K., Vidoni E., Johnson D.K., Sciver A.V., Mahnken J.D., Honea R.A.…Burns J.M. Aerobic exercise for Alzheimer's disease: a randomized controlled pilot trial. PLoS ONE. 2017;12(2):1–14.
    1. Nagamatsu L.S. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Arch. Intern. Med. 2012;172(8):666.
    1. Nagamatsu L.S., Weinstein A.M., Erickson K.I., Fanning J., Awick E.A., Kramer A.F., McAuley E. Exercise mode moderates the relationship between mobility and basal ganglia volume in healthy older adults. J. Am. Geriatr. Soc. 2016;64(1):102–108.
    1. Nelson M.E., Rejeski W.J., Blair S.N., Duncan P.W., Judge J.O. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1094–1105.
    1. Ngandu T., Lehtisalo J., Solomon A., Levälahti E., Ahtiluoto S., Antikainen R.…Kivipelto M. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–2263.
    1. Nichol K.E., Poon W.W., Parachikova A.I., Cribbs D.H., Glabe C.G., Cotman C.W. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid. J. Neuroinflammation. 2008;5:13.
    1. Niemann C., Godde B., Voelcker-Rehage C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front. Aging Neurosci. 2014;6(Jun):1–24.
    1. Nishiguchi S., Yamada M., Tanigawa T., Sekiyama K., Kawagoe T., Suzuki M.…Tsuboyama T. A 12-week physical and cognitive exercise program can improve cognitive function and neural efficiency in community-dwelling older adults: a randomized controlled trial. J. Am. Geriatr. Soc. 2015;63(7):1355–1363.
    1. Norton S., Matthews F.E., Barnes D.E., Yaffe K., Brayne C. Potential for primary prevention of Alzheimer's disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–794.
    1. Nusbaum A.O., Tang C.Y., Buchsbaum M.S., Wei T.C., Atlas S.W. Regional and global changes in cerebral diffusion with normal aging. Am. J. Neuroradiol. 2001;22(1):136–142. Retrieved from.
    1. Okonkwo O.C., Schultz S.A., Oh J.M., Larson J., Edwards D., Cook D.…Sager M.A. Physical activity attenuates age-related biomarker alterations in preclinical AD. Neurology. 2014;83(19):1753–1760.
    1. Perea R.D., Vidoni E.D., Morris J.K., Graves R.S., Burns J.M., Honea R.A. Cardiorespiratory fitness and white matter integrity in Alzheimer's disease. Brain Imaging Behav. 2016;10(3):660–668.
    1. Peters J., Dauvermann M., Mette C., Platen P., Franke J., Hinrichs T., Daum I. Voxel-based morphometry reveals an association between aerobic capacity and grey matter density in the right anterior insula. Neuroscience. 2009;163(4):1102–1108.
    1. Petrella J.R., Krishnan S., Slavin M.J., Tran T.-T.T., Murty L., Doraiswamy P.M. Mild cognitive impairment: evaluation with 4-T functional MR imaging. Radiology. 2006;240(1):177–186.
    1. Pitkälä K., Savikko N., Poysti M., Strandberg T., Laakkonen M.L. Efficacy of physical exercise intervention on mobility and physical functioning in older people with dementia: a systematic review. Exp. Gerontol. 2013;48(1):85–93.
    1. Porat S., Goukasian N., Hwang K.S., Zanto T., Do T., Pierce J.…Apostolova L.G. Dance experience and associations with cortical gray matter thickness in the aging population. Dement. Geriatr. Cogn. Disord. Extra. 2016;6(3):508–517.
    1. Raji C.A., Merrill D.A., Eyre H., Mallam S., Torosyan N., Erickson K.I.…Kuller L.H. Longitudinal relationships between caloric expenditure and gray matter in the cardiovascular health study. J. Alzheimers Dis. 2016;52(2):719–729.
    1. Redila V.A., Olson A.K., Swann S.E., Mohades G., Webber A.J., Weinberg J., Christie B.R. Hippocampal cell proliferation is reduced following prenatal ethanol exposure but can be rescued with voluntary exercise. Hippocampus. 2006;16(3):305–311.
    1. Reetz K., Romanzetti S., Dogan I., Saß C., Werner C.J., Schiefer J.…Shah N.J. Increased brain tissue sodium concentration in Huntington's disease - a sodium imaging study at 4T. NeuroImage. 2012;63(1):517–524.
    1. Reiter K., Nielson K.A., Smith T.J., Weiss L.R., Alfini A.J., Carson Smith J. Improved cardiorespiratory fitness is associated with increased cortical thickness in mild cognitive impairment. J. Int. Neuropsychol. Soc. 2015;21(10):757–767.
    1. Ringman J.M., Coppola G. New genes and new insights from old genes: update on alzheimer disease. Continuum (Minneap. Minn.) 2013;19(2):358–371.
    1. Romanzetti S., Mirkes C.C., Fiege D.P., Celik A., Felder J., Shah N.J. Mapping tissue sodium concentration in the human brain: a comparison of MR sequences at 9.4Tesla. NeuroImage. 2014;96:44–53.
    1. Rosano C., Aizenstein H.J., Cochran J.L., Saxton J.A., De Kosky S.T., Newman A.B.…Carter C.S. Event-related functional magnetic resonance imaging investigation of executive control in very old individuals with mild cognitive impairment. Biol. Psychiatry. 2005;57(7):761–767.
    1. Rosano C., Guralnik J., Pahor M., Glynn N.W., Newman A.B., Ibrahim T.S.…Aizenstein H.J. Hippocampal response to a 24-month physical activity intervention in sedentary older adults. Am. J. Geriatr. Psychiatry. 2017;25(3):209–217.
    1. Rose S.E. Diffusion indices on magnetic resonance imaging and neuropsychological performance in amnestic mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry. 2006;77(10):1122–1128.
    1. Ruscheweyh R., Willemer C., Krüger K., Duning T., Warnecke T., Sommer J.…Flöel A. Physical activity and memory functions: an interventional study. Neurobiol. Aging. 2011;32(7):1304–1319.
    1. Sacco G., Caillaud C., Ben Sadoun G., Robert P., David R., Brisswalter J. Exercise plus cognitive performance over and above exercise alone in subjects with mild cognitive impairment. J. Alzheimers Dis. 2015;50(1):19–25.
    1. Scherder E.J.A., Van Paasschen J., Deijen J.-B., Van Der Knokke S., Orlebeke J.F.K., Burgers I.…Sergeant J.A. Physical activity and executive functions in the elderly with mild cognitive impairment. Aging Ment. Health. 2005;9(3):272–280.
    1. Schultz S.A. Cardiorespiratory fitness attenuates the influence of amyloid on cognition. J. Int. Neuropsych. Soc. 2015;21(10):841–850.
    1. Smith J.C., Nielson K.A., Woodard J.L., Seidenberg M., Verber M.D., Durgerian S.…Rao S.M. Does physical activity influence semantic memory activation in amnestic mild cognitive impairment? Psychiatry Res. 2011;193(1):60–62.
    1. Smith J.C., Nielson K.A., Antuono P., Lyons J.-A., Hanson R.J., Butts A.M.…Verber M.D. Semantic memory functional MRI and cognitive function after exercise intervention in mild cognitive impairment. J. Alzheimers Dis. 2013;37(1):197–215.
    1. Suo C., Singh M.F., Gates N., Wen W., Sachdev P., Brodaty H., Valenzuela M.J. Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise. Mol. Psychiatry. 2016;21(11):1633–1642.
    1. Suzuki T., Shimada H., Makizako H., Doi T., Yoshida D., Ito K.…Kato T. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS ONE. 2013;8(4)
    1. Tamura M., Nemoto K., Kawaguchi A., Kato M., Arai T., Kakuma T.…Asada T. Long-term mild-intensity exercise regimen preserves prefrontal cortical volume against aging. Int. J. Geriatr. Psychiatr. 2015;30(7):686–694.
    1. Teixeira C.V.L., Rezende T.J.R., Weiler M., Nogueira M.H., Campos B.M., Pegoraro L.F.L.…Balthazar M.L.F. Relation between aerobic fitness and brain structures in amnestic mild cognitive impairment elderly. Age. 2016;38(3)
    1. Ten Brinke L.F., Bolandzadeh N., Nagamatsu L.S., Hsu C.L., Davis J.C., Miran-Khan K., Liu-Ambrose T. Aerobic exercise increases hippocampal volume in older women with probable mild cognitive impairment: a 6-month randomised controlled trial. Br. J. Sports Med. 2015;49(4):248–254.
    1. Tolppanen A.M., Solomon A., Kulmala J., Kåreholt I., Ngandu T., Rusanen M.…Kivipelto M. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimer's Dement. 2015;11(4):434–443.
    1. Tsai C.-L., Pai M.-C., Ukropec J., Ukropcová B. Distinctive effects of aerobic and resistance exercise modes on neurocognitive and biochemical changes in individuals with mild cognitive impairment. Curr. Alzheimer Res. 2019;16(4):316–332.
    1. Van der Borght K., Kóbor-Nyakas D.É., Klauke K., Eggen B.J.L., Nyakas C., Van der Zee E.A., Meerlo P. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus. 2009;19(10):928–936.
    1. van der Kleij L.A., Petersen E.T., Siebner H.R., Hendrikse J., Frederiksen K.S., Sobol N.A.…Garde E. The effect of physical exercise on cerebral blood flow in Alzheimer's disease. NeuroImage Clin. 2018;20(January):650–654.
    1. van Praag H., Kempermann G., Gage F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 1999;2(3):266–270.
    1. Verghese J., Lipton R.B., Katz M.J., Hall C.B., Derby C.A., Kuslansky G.…Buschke H. Leisure activities and the risk of dementia in the elderly. N. Engl. J. Med. 2003;348(25):2508–2516.
    1. Verstynen T.D., Lynch B., Miller D.L., Voss M.W., Prakash R.S., Chaddock L.…Erickson K.I. Caudate nucleus volume mediates the link between cardiorespiratory fitness and cognitive flexibility in older adults. J. Aging Res. 2012;2012
    1. Vidoni E.D., Honea R.A., Billinger S.A., Swerdlow R.H., Burns J.M. Cardiorespiratory fitness is associated with atrophy in Alzheimer's and aging over 2 years. Neurobiol. Aging. 2012;33(8):1624–1632.
    1. Vidoni E.D., Sciver A. Van, Johnson D.K., He J., Honea R., Haines B.…Burns J.M. A community-based approach to trials of aerobic exercise in aging and Alzheimer's disease. Contemp. Clin. Trials. 2012;33(6):1105–1116.
    1. Vidoni E.D., Gayed M.R., Honea R.A., Savage C.R., Hobbs D., Burns J.M. Alzheimer disease alters the relationship of cardiorespiratory fitness with brain activity during the Stroop task. Phys. Ther. 2013;93(7):993–1002.
    1. Voss M.W., Prakash R.S., Erickson K.I., Basak C., Chaddock L., Kim J.S.…Kramer A.F. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2010;2(Aug):1–17.
    1. Voss M.W., Heo S., Prakash R.S., Erickson K.I., Alves H., Chaddock L.…Kramer A.F. The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum. Brain Mapp. 2013;34(11):2972–2985.
    1. Voss M.W., Vivar C., Kramer A.F., van Praag H. Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn. Sci. 2013;17(10):525–544.
    1. Weinstein A.M., Voss M.W., Prakash R.S., Chaddock L., Szabo A., White S.M.…Erickson K.I. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav. Immun. 2012;26(5):811–819.
    1. Whitwell J.L., Przybelski S., Weigand S.D., David S. 3D maps from multiple MRI illustrate changing atrophy patterns as subjects Progress from MCI to AD. Brain. 2007;130(Pt 7):1777–1786.
    1. Xie C., Bai F., Yu H., Shi Y., Yuan Y., Chen G.…Li S.-J. Abnormal insula functional network is associated with episodic memory decline in amnestic mild cognitive impairment. NeuroImage. 2012;63(1):320–327.
    1. Yetkin F.Z., Rosenberg R.N., Weiner M.F., Purdy P.D., Cullum C.M. FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer's disease. Eur. Radiol. 2006;16(1):193–206.
    1. Zheng G., Xia R., Zhou W., Tao J., Chen L. Aerobic exercise ameliorates cognitive function in older adults with mild cognitive impairment: a systematic review and meta-analysis of randomised controlled trials. Br. J. Sports Med. 2016;50(23):1443–1450.

Source: PubMed

3
구독하다