Delirium

Jo Ellen Wilson, Matthew F Mart, Colm Cunningham, Yahya Shehabi, Timothy D Girard, Alasdair M J MacLullich, Arjen J C Slooter, E Wesley Ely, Jo Ellen Wilson, Matthew F Mart, Colm Cunningham, Yahya Shehabi, Timothy D Girard, Alasdair M J MacLullich, Arjen J C Slooter, E Wesley Ely

Abstract

Delirium, a syndrome characterized by an acute change in attention, awareness and cognition, is caused by a medical condition that cannot be better explained by a pre-existing neurocognitive disorder. Multiple predisposing factors (for example, pre-existing cognitive impairment) and precipitating factors (for example, urinary tract infection) for delirium have been described, with most patients having both types. Because multiple factors are implicated in the aetiology of delirium, there are likely several neurobiological processes that contribute to delirium pathogenesis, including neuroinflammation, brain vascular dysfunction, altered brain metabolism, neurotransmitter imbalance and impaired neuronal network connectivity. The Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) is the most commonly used diagnostic system upon which a reference standard diagnosis is made, although many other delirium screening tools have been developed given the impracticality of using the DSM-5 in many settings. Pharmacological treatments for delirium (such as antipsychotic drugs) are not effective, reflecting substantial gaps in our understanding of its pathophysiology. Currently, the best management strategies are multidomain interventions that focus on treating precipitating conditions, medication review, managing distress, mitigating complications and maintaining engagement to environmental issues. The effective implementation of delirium detection, treatment and prevention strategies remains a major challenge for health-care organizations globally.

Figures

Figure 1.. Risk factors for delirium.
Figure 1.. Risk factors for delirium.
Risk factors for delirium relate to premorbid or predisposing factors (that is, a patient’s characteristics) and to precipitating factors, which are factors relating to the presenting illness or that occur after hospital admission.
Figure 2.. Bioenergetic insufficiency may underpin delirium…
Figure 2.. Bioenergetic insufficiency may underpin delirium in multiple scenarios.
Neurons and astrocytes both use glucose supplied by the microvasculature to generate ATP by glycolysis. In addition, in the astrocyte–neuron lactate shuttle (ANLS), lactate synthesised by astrocytes after glycolysis can be exported for use by neurons, which convert the lactate to pyruvate that is imported into the mitochondria and used to fuel the tricarboxylic acid (TCA) cycle. There are many ways in which the brain, or regions of the brain, may become dysfunctional due to energy insufficiency and there is support for the idea that these may contribute to precipitation of delirium. First, respiratory distress produces hypoxaemia and can cause brain hypoxia, limiting neuronal energy metabolism. That is, in hypoxic conditions, insufficient oxygen (O2) supply leads to impaired mitochondrial oxidative phosphorylation (OXPHOS) and insufficient generation of energy, in the form of ATP. In these conditions, glycolysis-generated pyruvate (Pyr), instead of being imported into the mitochondria, forms excess lactate (Lac), which can be measured in the extracellular fluid. Second, septic shock reduces blood flow, producing both hypoxia and impaired glucose supply. Third, even with adequate systemic blood flow, brain microcapillary dysfunction may produce brain tissue hypoxia and neuroglycopenia. Fourth, even with normal blood pressure, if neurovascular coupling is impaired, vessels may fail to meet the specific demands of regional neuronal activity and thereby block higher order brain functions. Fifth, systemic hypoglycaemia can lead to insufficient brain glucose supply, delirium and coma. Sixth, even with adequate delivery of glucose to the brain, insulin resistance may result in impaired glucose utilization (not shown). Seventh, altered expression of glucose transporters (GLUT1 and GLUT3), for example, in the degenerating brain, may limit glucose uptake by the endothelium, astrocytes or neurons, thereby limiting the glucose-6-phosphate (G6P) required for glycolysis and limiting the generation of Pyr required for the TCA cycle. Last,impairment of astrocyte function may limit their ability to release glycogen from intracellular stores, metabolize glucose and provide lactate to neurons for energy metabolism.
Figure 3.. Inflammatory mechanisms in delirium.
Figure 3.. Inflammatory mechanisms in delirium.
Inflammatory trauma, surgery, infection and sepsis can trigger delirium. These diverse stressors may share pathogenetic mechanisms, including increased local and circulating levels of damage-associated molecular patterns (in surgery and trauma) and pathogen-associated molecular patterns (in infection and sepsis). These stimuli trigger tissue macrophage and blood monocyte activation and secretion of inflammatory mediators, such as IL-1, IL-1β, IL-6, tumour necrosis factor (TNF), and prostaglandin E2 (PGE2). These molecules may, to a limited extent, cross the blood–brain barrier (BBB) but their production is also induced in the brain endothelium and epithelium (not shown) and secreted directly into the brain parenchyma by endothelial, epithelial and brain perivascular macrophages. By mechanisms that are not entirely clear, microglia are then triggered to produce pro-inflammatory cytokines and reactive oxygen and nitrogen species. If primed by prior pathology in the brain (such as amyloid or prior neurodegeneration), these microglia produce increased levels of these mediators, which affect both astrocytes and neurons. Cytokine-stimulated astrocytes produce increased levels of chemokines, contributing to recruitment of monocytes and other immune cell populations to the brain, but their activation also leads to a loss of metabolic support for neuronal energy metabolism. Microglial-derived inflammatory mediators, such as IL-1β and TNF, directly affect neuronal function to produce both dysfunction and injury or cell death, which collectively may contribute to acute behavioural manifestations in the delirium syndrome but also produce new brain injury that promotes long-term cognitive decline. NO, nitric oxide; ROS, reactive oxygen species.
Figure 4.. Major mechanisms in delirium pathophysiology.
Figure 4.. Major mechanisms in delirium pathophysiology.
Major perturbations leading to delirium during acute illness include robust acute systemic inflammation (involving increased circulating pro-inflammatory cytokines (such as IL-1, IL-1β and tumour necrosis factor (TNF)), pathogen-associated molecular patterns and damage-associated molecular patterns), hypoxemia, impaired blood flow and tissue perfusion, and impaired metabolism (hyponatremia, hypernatremia and hypoglycaemia). Given the altered arousal states present in different subtypes of delirium, it is widely assumed that alteration of function in the ascending arousal system may be involved. These distributed mid-brain and brainstem nuclei include strong cholinergic drive from the tegmentum to the thalamus to activate cortical arousal and multiple monoaminergic nuclei that activate the cortex to modulate and integrate cortical activation. Medications, prominently including, but not limited to, GABAergic sedatives and anaesthetics and anti-cholinergic and anti-histamine drugs, can therefore substantially alter arousal and are known to contribute to delirium. Microglia can be primed by existing pathology in the brain and further activated by acute inflammatory stimuli, secreting pro-inflammatory cytokines and reactive oxygen and nitrogen species into the surrounding brain tissue. These mediators can directly affect neuronal function but also act directly on astrocytes. Astrocytes can also be primed during chronic brain pathology, becoming hypersensitive to acute inflammatory stimulation and secreting increased levels of chemokines, which can drive recruitment of additional peripheral inflammatory cells to the brain. Activated astrocytes may also lose aspects of the energy metabolism support that they provide to neuronal function. The vasculature may become impaired, both by existing degenerative pathology and by superimposed stressors such as systemic inflammation, leading to endothelial injury and blood–brain barrier (BBB) damage, but vascular supply of oxygen and glucose may also become impaired due to microvascular dysfunction and/or impaired neurovascular coupling, contributing to a metabolic (bioenergetic) insufficiency. All of these mechanisms contribute to the most obvious proximate cause of delirium: acute neuronal dysfunction and network disintegration. 5-HT, 5-hydroxytryptamine; ACh, acetylcholine; BBB, blood–brain barrier; BF, basal forebrain; DA, dopamine; GABA, gamma-aminobutyric acid; His, histamine; LC, locus coeruleus; LDT, laterodorsal tegmental nucleus; LH, lateral hypothalamus; MCH, melanin-concentrating hormone; NA, noradrenaline; NO, nitric oxide; ORX, orexin; PPT, pedunculopontine tegmentum; ROS, reactive oxygen species; TMN, tuberomammillary nucleus; vPAG, ventral periaqueductal gray. Adapted with permission from ref..
Figure 5.. Common tools to screen for…
Figure 5.. Common tools to screen for delirium in different settings.
Once there is suspicion of delirium based on the presence of symptoms such as acute disturbance of attention, reduced environmental awareness and/or changes in cognition, the choice of screening tool is made based on the setting. The 4 A’s test (4AT) is a 4-item test used in general hospital settings. A score ≥4 indicates delirium is likely. Confusion assessment method (CAM)-based tools, such as the CAM, CAM-ICU, brief-CAM, paediatric-CAM and preschool-CAM, assess four features, Features A–D (or Features 1–4 depending on the specific tool). For delirium to be present according to CAM based tools, A and B must be present, plus either C or D. The Intensive Care Delirium Screening Checklist (ICDSC) is a delirium assessment tool measuring 8 domains, recorded as yes (present; score 1) or no (absent; score 0) answers. Delirium is likely for a score ≥4. The clinical tools described, except for ICDSC, are snapshot assessments. *depending on the tool used, Features A–D may be called 1–4 and will be assessed in different ways. DOB, date of birth; LOC, level of consciousness.
Figure 6.. Associations between performance of the…
Figure 6.. Associations between performance of the ABCDEF bundle and outcomes.
Results from the Collaborative of over 15,000 patients from 68 academic, community and federal ICUs, which showed percent performance of the ABCDEF bundle and symptom-related outcomes. ABCDEF bundle components include A (Assess, prevent, and manage pain), B (Both spontaneous awakening and breathing trials), C (Choice of analgesia and sedation), D (Delirium: assess, prevent, and manage), E (Early mobility and exercise) and F (Family engagement and empowerment). Each graph shows the relationship between the proportion of eligible elements of the ABCDEF bundle performed on a particular day and the probability that the patient would experience that symptom-related outcome on the following day. The outcomes include requiring mechanical ventilation (part a), significant pain (part b), coma (part c), delirium (part d) and requiring physical constraints (part e). and confidence bands represent the probability of the outcomes and the 95% confidence interval, adjusted for baseline ICU admission characteristics and daily covariates. The relationships between proportion of elements performed and each outcome was significant (P <0.0001) for all outcomes. Adapted with permission from ref..
Figure 7.. Antipsychotic drugs are ineffective in…
Figure 7.. Antipsychotic drugs are ineffective in delirium treatment.
In the MIND-USA trial, the efficacy of the antipsychotics haloperidol and ziprasidone was compared to placebo for the treatment of delirium in critically ill patients. There was no significant association between study drug (the atypical antipsychotic ziprasidone, the typical antipsychotic haloperidol or placebo) and days free from delirium or coma (part a), days with delirium (part b) or days with coma (part c). Adapted with permission from ref..
Figure 8.. Proportion of delirious patients according…
Figure 8.. Proportion of delirious patients according to sedation regimen in the ICU.
ICU patients with a sedation level at Richmond Agitation Sedation Scale (RASS) of –2 or greater were assessed with the Confusion Assessment Method-Intensive Care Unit (CAM-ICU). There were more patients with positive CAM-ICU result during the first 24 hours among ICU patients receiving dexmedetomidine (Dex), an α2-adrenergic receptor agonist, than among those receiving the usual care sedation regimen (mainly the GABAergic agents propofol or midazolam) as directed by the treating physician. CAM-ICU positivity declined significantly faster over the subsequent treatment days in patients receiving dexmedetomidine than in those on usual care regimen (overall P value = 0.01). The data for this figure are from ref..
Figure 9.. Relationship between delirium and post-ICU…
Figure 9.. Relationship between delirium and post-ICU quality of life.
With critical Illness as the backdrop, this schematic depicts the association between delirium during an intensive care unit (ICU) stay and downstream impairments that lead to poor quality of life. Multiple potential pre-existing and precipitating risk factors can lead to delirium during critical illness. The development and duration of delirium increase the risk of cognitive, psychiatric and physical impairments, which accumulate to reduce a patients’ quality of life. PTSD, post-traumatic stress disorder.

References

    1. Adamis D, Treloar A, Martin FC & Macdonald AJ A brief review of the history of delirium as a mental disorder. Hist Psychiatry 18, 459–469, doi:10.1177/0957154X07076467 (2007).
    1. Williams ST, Dhesi JK & Partridge JSL Distress in delirium: causes, assessment and management. Eur Geriatr Med 11, 63–70, doi:10.1007/s41999-019-00276-z (2020).
    1. Pandharipande PP et al. Long-term cognitive impairment after critical illness. The New England journal of medicine 369, 1306–1316, doi:10.1056/NEJMoa1301372 (2013).

      This prospective longitudinal cohort study demonstrated that critically ill patients are at risk of LTCI after critical illness and that this new LTCI can persist at 3 and 12 months follow up and is associated with duration of delirium.

    1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®). (American Psychiatric Association Publishing, 2013).
    1. Cole MG et al. Partial and No Recovery from Delirium in Older Hospitalized Adults: Frequency and Baseline Risk Factors. Journal of the American Geriatrics Society 63, 2340–2348, doi:10.1111/jgs.13791 (2015).
    1. Ouimet S. et al. Subsyndromal delirium in the ICU: evidence for a disease spectrum. Intensive care medicine 33, 1007–1013, doi:10.1007/s00134-007-0618-y (2007).
    1. Cole M, McCusker J, Dendukuri N. & Han L. The prognostic significance of subsyndromal delirium in elderly medical inpatients. Journal of the American Geriatrics Society 51, 754–760 (2003).
    1. Slooter AJC et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten Societies. Intensive care medicine 46, 1020–1022, doi:10.1007/s00134-019-05907-4 (2020).

      A joint position paper of 10 international societies on the near complete segregation of the literature on delirium from that on encephalopathy, with recommendations to separate the underlying brain pathological state, namely encephalopathy, from the manifest clinical features, namely delirium.

    1. Casey P. et al. Hospital discharge data under-reports delirium occurrence: results from a point prevalence survey of delirium in a major Australian health service. Intern Med J 49, 338–344, doi:10.1111/imj.14066 (2019).
    1. Oldham MA & Holloway RG Delirium disorder: Integrating delirium and acute encephalopathy. Neurology 95, 173–178, doi:10.1212/WNL.0000000000009949 (2020).
    1. Ely EW et al. The impact of delirium in the intensive care unit on hospital length of stay. Intensive care medicine 27, 1892–1900, doi:10.1007/s00134-001-1132-2 (2001).
    1. Teodorczuk A. & MacLullich A. New waves of delirium understanding. International journal of geriatric psychiatry 33, 1417–1419, doi:10.1002/gps.4848 (2018).
    1. Lipowski ZJ Transient cognitive disorders (delirium, acute confusional states) in the elderly. Am J Psychiatry 140, 1426–1436, doi:10.1176/ajp.140.11.1426 (1983).
    1. Khachaturian AS et al. International drive to illuminate delirium: A developing public health blueprint for action. Alzheimers Dement 16, 711–725, doi:10.1002/alz.12075 (2020).
    1. Davis DH et al. The epidemiology of delirium: challenges and opportunities for population studies. Am J Geriatr Psychiatry 21, 1173–1189, doi:10.1016/j.jagp.2013.04.007 (2013).
    1. Gibb K. et al. The consistent burden in published estimates of delirium occurrence in medical inpatients over four decades: a systematic review and meta-analysis study. Age and ageing 49, 352–360, doi:10.1093/ageing/afaa040 (2020).
    1. Marcantonio ER Delirium in Hospitalized Older Adults. New England Journal of Medicine 377, 1456–1466, doi:10.1056/NEJMcp1605501 (2017).
    1. Smith TO et al. Factors predicting incidence of post-operative delirium in older people following hip fracture surgery: a systematic review and meta-analysis. International Journal Of Geriatric Psychiatry 32, 386–396, doi:10.1002/gps.4655 (2017).
    1. Watt J. et al. Identifying Older Adults at Risk of Delirium Following Elective Surgery: A Systematic Review and Meta-Analysis. J Gen Intern Med 33, 500–509, doi:10.1007/s11606-017-4204-x (2018).
    1. Greaves D. et al. Cognitive outcomes following coronary artery bypass grafting: A systematic review and meta-analysis of 91,829 patients. Int J Cardiol 289, 43–49, doi:10.1016/j.ijcard.2019.04.065 (2019).
    1. Abawi M. et al. Postoperative Delirium in Individuals Undergoing Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis. Journal of the American Geriatrics Society 66, 2417–2424, doi:10.1111/jgs.15600 (2018).
    1. Shaw RC, Walker G, Elliott E. & Quinn TJ Occurrence Rate of Delirium in Acute Stroke Settings: Systematic Review and Meta-Analysis. Stroke 50, 3028–3036, doi:10.1161/STROKEAHA.119.025015 (2019).
    1. Watt CL et al. The incidence and prevalence of delirium across palliative care settings: A systematic review. Palliat Med 33, 865–877, doi:10.1177/0269216319854944 (2019).
    1. Hosie A, Davidson PM, Agar M, Sanderson CR & Phillips J. Delirium prevalence, incidence, and implications for screening in specialist palliative care inpatient settings: a systematic review. Palliat Med 27, 486–498, doi:10.1177/0269216312457214 (2013).
    1. Morichi V. et al. A Point Prevalence Study of Delirium in Italian Nursing Homes. Dement Geriatr Cogn Disord 46, 27–41, doi:10.1159/000490722 (2018).
    1. Andrew MK, Freter SH & Rockwood K. Prevalence and outcomes of delirium in community and non-acute care settings in people without dementia: a report from the Canadian Study of Health and Aging. BMC Med 4, 15, doi:10.1186/1741-7015-4-15 (2006).
    1. Inouye SK, Westendorp RG & Saczynski JS Delirium in elderly people. Lancet 383, 911–922, doi:10.1016/S0140-6736(13)60688-1 (2014).
    1. Krewulak KD, Stelfox HT, Leigh JP, Ely EW & Fiest KM Incidence and Prevalence of Delirium Subtypes in an Adult ICU: A Systematic Review and Meta-Analysis. Crit Care Med 46, 2029–2035, doi:10.1097/CCM.0000000000003402 (2018).
    1. Almeida IC et al. The impact of acute brain dysfunction in the outcomes of mechanically ventilated cancer patients. PLoS One 9, e85332, doi:10.1371/journal.pone.0085332 (2014).
    1. Janssen NJ et al. On the utility of diagnostic instruments for pediatric delirium in critical illness: an evaluation of the Pediatric Anesthesia Emergence Delirium Scale, the Delirium Rating Scale 88, and the Delirium Rating Scale-Revised R-98. Intensive care medicine 37, 1331–1337, doi:10.1007/s00134-011-2244-y (2011).
    1. Larsen GY, Donaldson AE, Parker HB & Grant MJ Preventable harm occurring to critically ill children. Pediatr Crit Care Med 8, 331–336, doi:10.1097/01.PCC.0000263042.73539.99 (2007).
    1. Schieveld JN et al. Pediatric delirium in critical illness: phenomenology, clinical correlates and treatment response in 40 cases in the pediatric intensive care unit. Intensive care medicine 33, 1033–1040, doi:10.1007/s00134-007-0637-8 (2007).
    1. Silver G. et al. Detecting pediatric delirium: development of a rapid observational assessment tool. Intensive care medicine 38, 1025–1031, doi:10.1007/s00134-012-2518-z (2012).
    1. Smith HA et al. Diagnosing delirium in critically ill children: Validity and reliability of the Pediatric Confusion Assessment Method for the Intensive Care Unit. Crit Care Med 39, 150–157, doi:10.1097/CCM.0b013e3181feb489 (2011).
    1. Traube C. et al. Cornell Assessment of Pediatric Delirium: a valid, rapid, observational tool for screening delirium in the PICU*. Crit Care Med 42, 656–663, doi:10.1097/CCM.0b013e3182a66b76 (2014).
    1. Smith HA et al. The Preschool Confusion Assessment Method for the ICU: Valid and Reliable Delirium Monitoring for Critically Ill Infants and Children. Crit Care Med 44, 592–600, doi:10.1097/CCM.0000000000001428 (2016).
    1. Gross AL et al. Delirium and Long-term Cognitive Trajectory Among Persons With Dementia. Arch Intern Med 172, 1324–1331, doi:10.1001/archinternmed.2012.3203 (2012).
    1. Silver G. et al. Pediatric delirium and associated risk factors: a single-center prospective observational study. Pediatr Crit Care Med 16, 303–309, doi:10.1097/PCC.0000000000000356 (2015).
    1. Smith PJ, Attix DK, Weldon BC, Greene NH & Monk TG Executive function and depression as independent risk factors for postoperative delirium. Anesthesiology 110, 781–787, doi:10.1097/aln.0b013e31819b5bc2 (2009).
    1. Wilson K, Broadhurst C, Diver M, Jackson M. & Mottram P. Plasma insulin growth factor-1 and incident delirium in older people. International journal of geriatric psychiatry 20, 154–159, doi:10.1002/gps.1265 (2005).
    1. Velayati A, Vahdat Shariatpanahi M, Shahbazi E. & Vahdat Shariatpanahi Z. Association between preoperative nutritional status and postoperative delirium in individuals with coronary artery bypass graft surgery: A prospective cohort study. Nutrition 66, 227–232, doi:10.1016/j.nut.2019.06.006 (2019).
    1. Sanford AM & Flaherty JH Do nutrients play a role in delirium? Curr Opin Clin Nutr Metab Care 17, 45–50, doi:10.1097/MCO.0000000000000022 (2014).
    1. Persico I. et al. Frailty and Delirium in Older Adults: A Systematic Review and Meta-Analysis of the Literature. Journal of the American Geriatrics Society 66, 2022–2030, doi:10.1111/jgs.15503 (2018).
    1. Jung P. et al. The impact of frailty on postoperative delirium in cardiac surgery patients. J Thorac Cardiovasc Surg 149, 869–875 e861–862, doi:10.1016/j.jtcvs.2014.10.118 (2015).
    1. Davis DH et al. Worsening cognitive impairment and neurodegenerative pathology progressively increase risk for delirium. Am J Geriatr Psychiatry 23, 403–415, doi:10.1016/j.jagp.2014.08.005 (2015).

      This paper represents the clearest demonstration that progressive cognitive decline is a progressively increasing risk factor for delirium and also demonstrates, in mice, that this decline is correlated with increasing synaptic loss and can precede frank neurodegeneration. The study also validates the first animal model of delirium superimposed on dementia.

    1. Nitchingham A, Kumar V, Shenkin S, Ferguson KJ & Caplan GA A systematic review of neuroimaging in delirium: predictors, correlates and consequences. International journal of geriatric psychiatry 33, 1458–1478, doi:10.1002/gps.4724 (2018).
    1. Ferguson KJ & MacLullich AMJ in Brain disorders in critical illness (eds Stevens RD, Sharshar T, & Ely EW) (Cambridge University Press, 2013).
    1. McCoy TH Jr., Hart K, Pellegrini A. & Perlis RH Genome-wide association identifies a novel locus for delirium risk. Neurobiol Aging 68, 160 e169–160 e114, doi:10.1016/j.neurobiolaging.2018.03.008 (2018).
    1. Adamis D, Meagher D, Williams J, Mulligan O. & McCarthy G. A systematic review and meta-analysis of the association between the apolipoprotein E genotype and delirium. Psychiatr Genet 26, 53–59, doi:10.1097/YPG.0000000000000122 (2016).
    1. Laurila JV, Laakkonen ML, Laurila JV, Timo SE & Reijo TS Predisposing and precipitating factors for delirium in a frail geriatric population. Journal of Psychosomatic Research 65, 249–254 (2008).
    1. Cirbus J. et al. Delirium etiology subtypes and their effect on six-month function and cognition in older emergency department patients. Int Psychogeriatr 31, 267–276, doi:10.1017/S1041610218000777 (2019).
    1. Clegg A. & Young JB Which medications to avoid in people at risk of delirium: a systematic review. Age and ageing 40, 23–29, doi:afq140 [pii] 10.1093/ageing/afq140 (2011).
    1. Sampson EL, West E. & Fischer T. Pain and delirium: mechanisms, assessment, and management. Eur Geriatr Med 11, 45–52, doi:10.1007/s41999-019-00281-2 (2020).
    1. Van Rompaey B. et al. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit Care 13, R77, doi:10.1186/cc7892 (2009).
    1. Shehabi Y. et al. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit Care Med 38, 2311–2318, doi:10.1097/CCM.0b013e3181f85759 (2010).
    1. Ely EW et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA : the journal of the American Medical Association 286, 2703–2710, doi:10.1001/jama.286.21.2703 (2001).
    1. Pandharipande P. et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J Trauma 65, 34–41, doi:10.1097/TA.0b013e31814b2c4d (2008).
    1. Sharma A, Malhotra S, Grover S. & Jindal SK Incidence, prevalence, risk factor and outcome of delirium in intensive care unit: a study from India. Gen Hosp Psychiatry 34, 639–646, doi:10.1016/j.genhosppsych.2012.06.009 (2012).
    1. Tsuruta R. et al. Prevalence and associated factors for delirium in critically ill patients at a Japanese intensive care unit. Gen Hosp Psychiatry 32, 607–611, doi:10.1016/j.genhosppsych.2010.09.001 (2010).
    1. Lindroth H. et al. Systematic review of prediction models for delirium in the older adult inpatient. BMJ open 8, e019223, doi:10.1136/bmjopen-2017-019223 (2018).
    1. Rudolph JL et al. Derivation and validation of a preoperative prediction rule for delirium after cardiac surgery. Circulation 119, 229 (2009).
    1. O’Keeffe S. & Lavan J. Predicting delirium in elderly patients: development and validation of a risk-stratification model. Age and ageing 25, 317–321 (1996).
    1. Fisher BW & Flowerdew G. A simple model for predicting postoperative delirium in older patients undergoing elective orthopedic surgery. Journal of the American Geriatrics Society 43, 175–178 (1995).
    1. Kalisvaart KJ et al. Risk factors and prediction of postoperative delirium in elderly hip-surgery patients: Implementation and validation of a medical risk factor model. Journal of the American Geriatrics Society 54, 817–822 (2006).
    1. Böhner H. et al. Predicting delirium after vascular surgery: a model based on pre-and intraoperative data. Annals of surgery 238, 149 (2003).
    1. Kennedy M. et al. Delirium risk prediction, healthcare use and mortality of elderly adults in the emergency department. Journal of the American Geriatrics Society 62, 462–469 (2014).
    1. Wassenaar A. et al. Multinational development and validation of an early prediction model for delirium in ICU patients. Intensive care medicine 41, 1048–1056 (2015).
    1. Van den Boogaard M. et al. Development and validation of PRE-DELIRIC (PREdiction of DELIRium in ICu patients) delirium prediction model for intensive care patients: observational multicentre study. BMJ 344, e420 (2012).
    1. Linkaite G, Riauka M, Buneviciute I. & Vosylius S. Evaluation of PRE-DELIRIC (PREdiction of DELIRium in ICu patients) delirium prediction model for the patients in the intensive care unit. Acta Med Litu 25, 14–22, doi:10.6001/actamedica.v25i1.3699 (2018).
    1. Paton L, Elliott S. & Chohan S. Utility of the PRE-DELIRIC delirium prediction model in a Scottish ICU cohort. J Intensive Care Soc 17, 202–206, doi:10.1177/1751143716638373 (2016).
    1. Sosa FA et al. Assessment of delirium using the PRE-DELIRIC model in an intensive care unit in Argentina. Rev Bras Ter Intensiva 30, 50–56, doi:10.5935/0103-507x.20180010 (2018).
    1. Rudberg MA, Pompei P, Foreman MD, Ross RE & Cassel CK The natural history of delirium in older hospitalized patients: a syndrome of heterogeneity. Age and ageing 26, 169–174, doi:10.1093/ageing/26.3.169 (1997).
    1. Cole MG, Ciampi A, Belzile E. & Zhong L. Persistent delirium in older hospital patients: a systematic review of frequency and prognosis. Age and ageing 38, 19–26, doi:10.1093/ageing/afn253 (2009).
    1. Meagher D, Adamis D, Trzepacz P. & Leonard M. Features of subsyndromal and persistent delirium. Br J Psychiatry 200, 37–44, doi:10.1192/bjp.bp.111.095273 (2012).
    1. Witlox J. et al. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA : the journal of the American Medical Association 304, 443–451, doi:10.1001/jama.2010.1013 (2010).

      This meta-analysis provides evidence that, in elderly patients, delirium is associated with poor outcomes (mortality, institutionalization and dementia), independent of important confounders.

    1. Jackson TA, Wilson D, Richardson S. & Lord JM Predicting outcome in older hospital patients with delirium: a systematic literature review. International Journal Of Geriatric Psychiatry 31, 392–399, doi:10.1002/gps.4344 (2016).
    1. Davis DH et al. Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain 135, 2809–2816, doi:10.1093/brain/aws190 (2012).
    1. Goldberg TE et al. Association of delirium with long-term cognitive decline: a meta-analysis. JAMA Neurol, doi:10.1001/jamaneurol.2020.2273 (2020).
    1. Engel GL & Romano J. Delirium II Reversibility of the electroencephalogram with experimental procedures. Arch Neuro Psychiatr 51, 378–392, doi:DOI 10.1001/archneurpsyc.1944.02290280076004 (1944).
    1. Itil T. & Fink M. Anticholinergic drug-induced delirium: experimental modification, quantitative EEG and behavioral correlations. J Nerv Ment Dis 143, 492–507 (1966).
    1. Girard TD et al. Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir Med 6, 213–222, doi:10.1016/S2213-2600(18)30062-6 (2018).
    1. Inouye SK & Charpentier PA Precipitating factors for delirium in hospitalized elderly persons. Predictive model and interrelationship with baseline vulnerability. JAMA : the journal of the American Medical Association 275, 852–857 (1996).
    1. Tijms BM et al. Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol Aging 34, 2023–2036, doi:10.1016/j.neurobiolaging.2013.02.020 (2013).
    1. Cunningham C, Wilcockson DC, Campion S, Lunnon K. & Perry VH Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 9275–9284, doi:10.1523/JNEUROSCI.2614-05.2005 (2005).
    1. Hennessy E, Griffin EW & Cunningham C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1beta and TNF-alpha. J. Neurosci. 35, 8411–8422, doi: 10.1523/JNEUROSCI.2745-14.2015 (2015).
    1. Hasel P. et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat Commun 8, 15132, doi:10.1038/ncomms15132 (2017).
    1. Sweeney MD, Kisler K, Montagne A, Toga AW & Zlokovic BV The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 21, 1318–1331, doi:10.1038/s41593-018-0234-x (2018).
    1. Yang AC et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430, doi:10.1038/s41586-020-2453-z (2020).
    1. Alagiakrishnan K. & Wiens CA An approach to drug induced delirium in the elderly. Postgrad Med J 80, 388–393, doi:10.1136/pgmj.2003.017236 (2004).
    1. Engel GL & Romano J. Delirium, a syndrome of cerebral insufficiency. Journal of chronic disease 9, 260–277 (1959).

      This perspective piece gathers together many key observations on clinical and volunteer neurophysiology studies detailing the relationship between EEG and delirium symptoms as well as making a compelling case for the role of disturbed brain energy metabolism as a driver of delirium.

    1. Taccone FS et al. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care 14, R140, doi:10.1186/cc9205 (2010).
    1. Yokota H, Ogawa S, Kurokawa A. & Yamamoto Y. Regional cerebral blood flow in delirium patients. Psychiatry and clinical neurosciences 57, 337–339, doi:10.1046/j.1440-1819.2003.01126.x (2003).
    1. Pfister D. et al. Cerebral perfusion in sepsis-associated delirium. Crit Care 12, R63, doi:10.1186/cc6891 (2008).
    1. Caplan GA et al. Cerebrospinal fluid in long-lasting delirium compared with Alzheimer’s dementia. J Gerontol A Biol Sci Med Sci 65, 1130–1136, doi:10.1093/gerona/glq090 (2010).
    1. Kealy J. et al. Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. The Journal of Neuroscience : the official journal of the Society for Neuroscience 40, 5681–5696, doi:10.1523/JNEUROSCI.2876-19.2020 (2020).
    1. Bendahan N, Neal O, Ross-White A, Muscedere J. & Boyd JG Relationship between near-infrared spectroscopy-derived cerebral oxygenation and delirium in critically ill patients: a systematic review. J Intensive Care Med 34, 514–520, doi:10.1177/0885066618807399 (2019).
    1. Rosengarten B. et al. Microcirculatory dysfunction in the brain precedes changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc Dis 23, 140–147, doi:10.1159/000097051 (2007).
    1. Polito A. et al. Pattern of brain injury in the acute setting of human septic shock. Crit Care 17, R204, doi:10.1186/cc12899 (2013).
    1. Reddy PH & Beal MF Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol Med 14, 45–53, doi:10.1016/j.molmed.2007.12.002 (2008).
    1. Shehab N. et al. US emergency department visits for outpatient adverse drug events, 2013–2014. JAMA : the journal of the American Medical Association 316, 2115–2125, doi:10.1001/jama.2016.16201 (2016).
    1. Sejling AS et al. Hypoglycemia-associated changes in the electroencephalogram in patients with type 1 diabetes and normal hypoglycemia awareness or unawareness. Diabetes 64, 1760–1769, doi:10.2337/db14-1359 (2015).
    1. Gugger JJ, Geocadin RG & Kaplan PW A multimodal approach using somatosensory evoked potentials for prognostication in hypoglycemic encephalopathy. Clin Neurophysiol Pract 4, 194–197, doi:10.1016/j.cnp.2019.09.001 (2019).
    1. Sonneville R. et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive care medicine 43, 1075–1084, doi:10.1007/s00134-017-4807-z (2017).
    1. Thorell A, Efendic S, Gutniak M, Haggmark T. & Ljungqvist O. Insulin resistance after abdominal surgery. Br J Surg 81, 59–63 (1994).
    1. Virkamaki A, Puhakainen I, Koivisto VA, Vuorinen-Markkola H. & Yki-Jarvinen H. Mechanisms of hepatic and peripheral insulin resistance during acute infections in humans. J Clin Endocrinol Metab 74, 673–679, doi:10.1210/jcem.74.3.1740504 (1992).
    1. Meltzer CC et al. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47, 454–461, doi:10.1212/wnl.47.2.454 (1996).
    1. Holscher C. Insulin signalling Impairment in the brain as a risk factor in Alzheimer’s disease. Frontiers in Aging Neuroscience 11, 1–11, doi:10.3389/fnagi.2019.00088 (2019).
    1. Semmler A. et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation 5, 38, doi:10.1186/1742-2094-5-38 (2008).
    1. Haggstrom LR, Nelson JA, Wegner EA & Caplan GA 2-(18)F-fluoro-2-deoxyglucose positron emission tomography in delirium. Journal of Cerebral Blood Flow and Metabolism 37, 3556–3567, doi:10.1177/0271678× (2017).
    1. Zimmer ER et al. [(18)F]FDG PET signal is driven by astroglial glutamate transport. Nat Neurosci 20, 393–395, doi:10.1038/nn.4492 (2017).
    1. Maclullich AM, Ferguson KJ, Miller T, de Rooij SE & Cunningham C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res 65, 229–238, doi:10.1016/j.jpsychores.2008.05.019 (2008).
    1. Yu M. et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26, 174–179, doi:10.1097/01.shk.0000225404.51320.82 (2006).
    1. Deiner S. et al. Human plasma biomarker responses to inhalational general anaesthesia without surgery. Br J Anaesth, doi:10.1016/j.bja.2020.04.085 (2020).
    1. Dantzer R, O’Connor JC, Freund GG, Johnson RW & Kelley KW From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9, 46–56 (2008).
    1. Cunningham C. Microglia and neurodegeneration: The role of systemic inflammation. Glia 61, 71–90, doi:10.1002/glia.22350 (2013).
    1. Subramaniyan S. & Terrando N. Neuroinflammation and perioperative neurocognitive disorders. Anesth Analg 128, 781–788, doi:10.1213/ANE.0000000000004053 (2019).
    1. Banks WA, Farr SA & Morley JE Entry of blood-borne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation 10, 319–327, doi:10.1159/000071472 (2002).
    1. Cerejeira J, Firmino H, Vaz-Serra A. & Mukaetova-Ladinska EB The neuroinflammatory hypothesis of delirium. Acta neuropathologica 119, 737–754, doi:10.1007/s00401-010-0674-1 (2010).
    1. van Gool WA, van de Beek D. & Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375, 773–775, doi:10.1016/S0140-6736(09)61158-2 (2010).
    1. van den Boogaard M. et al. Biomarkers associated with delirium in critically ill patients and their relation with long-term subjective cognitive dysfunction; indications for different pathways governing delirium in inflamed and noninflamed patients. Crit Care 15, R297, doi:10.1186/cc10598 (2011).
    1. Vasunilashorn SM et al. High C-reactive protein predicts delirium incidence, duration, and feature severity after major noncardiac surgery. Journal of the American Geriatrics Society 65, e109–e116, doi:10.1111/jgs.14913 (2017).
    1. Vasunilashorn SM et al. Cytokines and postoperative delirium in older patients undergoing major elective surgery. J Gerontol A Biol Sci Med Sci 70, 1289–1295, doi:10.1093/gerona/glv083 (2015).
    1. Henjum K. et al. CSF sTREM2 in delirium-relation to Alzheimer’s disease CSF biomarkers Abeta42, t-tau and p-tau. J Neuroinflammation 15, 304, doi:10.1186/s12974-018-1331-1 (2018).
    1. van Munster BC et al. Neuroinflammation in delirium: a postmortem case-control study. Rejuvenation Res 14, 615–622, doi:10.1089/rej.2011.1185 (2011).
    1. Feng X. et al. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2, e91229, doi:10.1172/jci.insight.91229 (2017).
    1. Cibelli M. et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol 68, 360–368, doi:10.1002/ana.22082 (2010).
    1. Frank MG et al. IL-1RA blocks E. coli-induced suppression of Arc and long-term memory in aged F344xBN F1 rats. Brain Behav Immun 24, 254–262, doi:S0889-1591(09)00469-3 [pii] 10.1016/j.bbi.2009.10.005 (2010).
    1. Pugh CR et al. Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav Brain Res 106, 109–118 (1999).
    1. Skelly DT et al. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms. Mol Psychiatry 24, 1533–1548, doi:10.1038/s41380-018-0075-8 (2019).

      This paper provides a partial mechanistic basis for acute LPS-induced delirium-like deficits, selectively in mice with prior neurodegeneration. The data suggest that acute cognitive deficits and acute brain injury may be dissociable, driven by systemic and centrally produced IL-1β, respectively.

    1. Cape E. et al. Cerebrospinal fluid markers of neuroinflammation in delirium: a role for interleukin-1beta in delirium after hip fracture. J Psychosom Res 77, 219–225, doi:10.1016/j.jpsychores.2014.06.014 (2014).
    1. Serantes R. et al. Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem 281, 14632–14643, doi:10.1074/jbc.M512489200 (2006).
    1. Liu X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50, 764–766, doi:10.1016/j.immuni.2019.02.012 (2019).
    1. Lopez-Rodriguez AB et al. Microglial and Astrocyte priming in the APP/PS1 model of Alzheimer’s Disease: increased vulnerability to acute inflammation and cognitive deficits. bioRxiv, doi:10.1101/344218 (2018).
    1. Andonegui G. et al. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment. JCI Insight 3, doi:10.1172/jci.insight.99364 (2018).
    1. Vacas S, Degos V, Tracey KJ & Maze M. High-mobility group box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages. Anesthesiology 120, 1160–1167, doi:10.1097/ALN.0000000000000045 (2014).
    1. Waltl I. et al. Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiol Dis 110, 192–205, doi:10.1016/j.nbd.2017.12.001 (2018).
    1. MacLullich AM et al. Cerebrospinal fluid interleukin-8 levels are higher in people with hip fracture with perioperative delirium than in controls. Journal of the American Geriatrics Society 59, 1151–1153, doi:10.1111/j.1532-5415.2011.03428.x (2011).
    1. van Munster BC et al. Time-course of cytokines during delirium in elderly patients with hip fractures. Journal of the American Geriatrics Society 56, 1704–1709, doi:10.1111/j.1532-5415.2008.01851.x (2008).
    1. Hall RJ et al. CSF biomarkers in delirium: a systematic review. International Journal Of Geriatric Psychiatry 33, 1479–1500, doi:10.1002/gps.4720 (2018).
    1. Skrede K, Wyller TB, Watne LO, Seljeflot I. & Juliebo V. Is there a role for monocyte chemoattractant protein-1 in delirium? Novel observations in elderly hip fracture patients. BMC Res Notes 8, 186, doi:10.1186/s13104-015-1129-5 (2015).
    1. Campbell SJ et al. Sickness behaviour is induced by a peripheral CXC-chemokine also expressed in multiple sclerosis and EAE. Brain Behav Immun 24, 738–746, doi:10.1016/j.bbi.2010.01.011 (2010).
    1. Le Thuc O. et al. Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Rep 17, 1738–1752, doi:10.15252/embr.201541499 (2016).
    1. Marciniak E. et al. The Chemokine MIP-1alpha/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep 5, 15862, doi:10.1038/srep15862 (2015).
    1. Varatharaj A. & Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun 60, 1–12, doi:10.1016/j.bbi.2016.03.010 (2017).
    1. Hov KR et al. Blood-Cerebrospinal Fluid Barrier Integrity in Delirium Determined by Q-Albumin. Dementia and geriatric cognitive disorders 41, 192–198, doi:10.1159/000443789 (2016).
    1. COVID-19 coagulopathy: an evolving story. Lancet Haematol 7, e425, doi:10.1016/S2352-3026(20)30151-4 (2020).
    1. Forsberg A. et al. The immune response of the human brain to abdominal surgery. Ann Neurol 81, 572–582, doi:10.1002/ana.24909 (2017).
    1. Ebert U. & Kirch W. Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest 28, 944–949, doi:10.1046/j.1365-2362.1998.00393.x (1998).
    1. Trzepacz PT Anticholinergic Model For Delirium. Seminars in clinical neuropsychiatry 1, 294–303, doi:10.1053/SCNP00100294 (1996).
    1. Tune LE Serum anticholinergic activity levels and delirium in the elderly. Seminars in clinical neuropsychiatry 5, 149–153 (2000).
    1. Carnahan RM, Lund BC, Perry PJ, Pollock BG & Culp KR The Anticholinergic Drug Scale as a measure of drug-related anticholinergic burden: associations with serum anticholinergic activity. J Clin Pharmacol 46, 1481–1486, doi:46/12/1481 [pii] 10.1177/0091270006292126 (2006).
    1. Liptzin B, Laki A, Garb JL, Fingeroth R. & Krushell R. Donepezil in the prevention and treatment of post-surgical delirium. Am J Geriatr Psychiatry 13, 1100–1106, doi:10.1176/appi.ajgp.13.12.1100 (2005).
    1. Marcantonio ER, Palihnich K, Appleton P. & Davis RB Pilot randomized trial of donepezil hydrochloride for delirium after hip fracture. Journal of the American Geriatrics Society 59 Suppl 2, S282–288, doi:10.1111/j.1532-5415.2011.03691.x (2011).
    1. van Eijk MM et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet 376, 1829–1837, doi:10.1016/S0140-6736(10)61855-7 (2010).
    1. Field RH, Gossen A. & Cunningham C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. The Journal of neuroscience 32 6288–6294 (2012).
    1. McKeith I. et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet 356, 2031–2036, doi:10.1016/S0140-6736(00)03399-7 (2000).
    1. Roy R, Niccolini F, Pagano G. & Politis M. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging 43, 1376–1386, doi:10.1007/s00259-016-3349-x (2016).
    1. Agar MR et al. Efficacy of Oral Risperidone, Haloperidol, or Placebo for Symptoms of Delirium Among Patients in Palliative Care: A Randomized Clinical Trial. JAMA Intern Med 177, 34–42, doi:10.1001/jamainternmed.2016.7491 (2017).
    1. Girard TD et al. Haloperidol and Ziprasidone for Treatment of Delirium in Critical Illness. The New England journal of medicine 379, 2506–2516, doi:10.1056/NEJMoa1808217 (2018).

      This randomized, double-blind, placebo-controlled trial (MIND-USA) evaluated haloperidol, ziprasidone or placebo for treating delirium in critically ill patients with respiratory failure or shock, finding an effect of these antipsychotic drugs on days alive without delirium or coma, or duration of delirium or coma.

    1. Page VJ et al. Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICU): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med 1, 515–523, doi:10.1016/S2213-2600(13)70166-8 (2013).
    1. van den Boogaard M. et al. Effect of Haloperidol on Survival Among Critically Ill Adults With a High Risk of Delirium: The REDUCE Randomized Clinical Trial. JAMA : the journal of the American Medical Association 319, 680–690, doi:10.1001/jama.2018.0160 (2018).

      In the multisite, randomized, double-blinded, placebo-controlled REDUCE trial comparing prophylactic haloperidol with placebo for delirium prevention in critically ill adults, haloperidol did not improve survival at 28 days; thus, prophylactic haloperidol is not recommended for reducing mortality in critically ill adults.

    1. Gainetdinov RR, Jones SR & Caron MG Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 46, 303–311, doi:10.1016/s0006-3223(99)00122-5 (1999).
    1. Scammell TE, Jackson AC, Franks NP, Wisden W. & Dauvilliers Y. Histamine: neural circuits and new medications. Sleep 42, doi:10.1093/sleep/zsy183 (2019).
    1. Chazot PL, Johnston L, McAuley E. & Bonner S. Histamine and Delirium: Current Opinion. Front Pharmacol 10, 299, doi:10.3389/fphar.2019.00299 (2019).
    1. Aston-Jones G. & Cohen JD An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28, 403–450, doi:10.1146/annurev.neuro.28.061604.135709 (2005).
    1. Arnsten AF Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 10, 410–422, doi:nrn2648 [pii] 10.1038/nrn2648 (2009).
    1. Matthews KL et al. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol Psychiatry 51, 407–416, doi:10.1016/s0006-3223(01)01235-5 (2002).
    1. Hahn PY et al. Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4, 269–273, doi:10.1097/00024382-199510000-00007 (1995).
    1. Buhler HU, da Prada M, Haefely W. & Picotti GB Plasma adrenaline, noradrenaline and dopamine in man and different animal species. J Physiol 276, 311–320, doi:10.1113/jphysiol.1978.sp012235 (1978).
    1. Deiner S, Lin HM, Bodansky D, Silverstein J. & Sano M. Do stress markers and anesthetic technique predict delirium in the elderly? Dement Geriatr Cogn Disord 38, 366–374, doi:10.1159/000363762 (2014).
    1. Cursano S. et al. A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Mol Psychiatry, doi:10.1038/s41380-020-0659-y (2020).
    1. Hawley RJ et al. Neurochemical correlates of sympathetic activation during severe alcohol withdrawal. Alcohol Clin Exp Res 18, 1312–1316 (1994).
    1. Smith AJ, Brent PJ, Henry DA & Foy A. Plasma noradrenaline, platelet alpha 2-adrenoceptors, and functional scores during ethanol withdrawal. Alcohol Clin Exp Res 14, 497–502 (1990).
    1. Muzyk AJ, Fowler JA, Norwood DK & Chilipko A. Role of alpha2-agonists in the treatment of acute alcohol withdrawal. The Annals of pharmacotherapy 45, 649–657, doi:10.1345/aph.1P575 (2011).
    1. Maldonado JR Novel Algorithms for the Prophylaxis and Management of Alcohol Withdrawal Syndromes-Beyond Benzodiazepines. Crit Care Clin 33, 559–599, doi:10.1016/j.ccc.2017.03.012 (2017).
    1. Skrobik Y, Duprey MS, Hill NS & Devlin JW Low-Dose Nocturnal Dexmedetomidine Prevents ICU Delirium. A Randomized, Placebo-controlled Trial. Am J Respir Crit Care Med 197, 1147–1156, doi:10.1164/rccm.201710-1995OC (2018).
    1. Su X. et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 388, 1893–1902, doi:10.1016/S0140-6736(16)30580-3 (2016).
    1. Liu X. et al. Dexmedetomidine vs propofol sedation reduces delirium in patients after cardiac surgery: A meta-analysis with trial sequential analysis of randomized controlled trials. J Crit Care 38, 190–196, doi:10.1016/j.jcrc.2016.10.026 (2017).
    1. Ventura R, Alcaro A. & Puglisi-Allegra S. Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb Cortex 15, 1877–1886, doi:10.1093/cercor/bhi066 (2005).
    1. Sanders RD Hypothesis for the pathophysiology of delirium: role of baseline brain network connectivity and changes in inhibitory tone. Medical hypotheses 77, 140–143, doi:10.1016/j.mehy.2011.03.048 (2011).
    1. Pandharipande P. et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology 104, 21–26 (2006).
    1. Zaal IJ et al. Benzodiazepine-associated delirium in critically ill adults. Intensive care medicine 41, 2130–2137, doi:10.1007/s00134-015-4063-z (2015).
    1. Vlisides P. & Avidan M. Recent Advances in Preventing and Managing Postoperative Delirium. F1000Res 8, doi:10.12688/f1000research.16780.1 (2019).
    1. Yoshitaka S, Egi M, Kanazawa T, Toda Y. & Morita K. The association of plasma gamma-aminobutyric acid concentration with postoperative delirium in critically ill patients. Crit Care Resusc 16, 269–273 (2014).
    1. Morandi A. et al. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study. Crit Care Med 40, 2182–2189, doi:10.1097/CCM.0b013e318250acdc (2012).
    1. Cavallari M. et al. Neural substrates of vulnerability to postsurgical delirium as revealed by presurgical diffusion MRI. Brain 139, 1282–1294, doi:10.1093/brain/aww010 (2016).
    1. Murray C. et al. Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol Aging 33, 603–616 e603, doi:10.1016/j.neurobiolaging.2010.04.002 (2012).
    1. van Montfort SJT et al. Brain network disintegration as a final common pathway for delirium: a systematic review and qualitative meta-analysis. Neuroimage Clin 23, 101809, doi:10.1016/j.nicl.2019.101809 (2019).
    1. Stam CJ Modern network science of neurological disorders. Nat Rev Neurosci 15, 683–695, doi:10.1038/nrn3801 (2014).
    1. Choi SH et al. Neural network functional connectivity during and after an episode of delirium. Am J Psychiatry 169, 498–507, doi:10.1176/appi.ajp.2012.11060976 (2012).
    1. Raichle ME The brain’s default mode network. Annu Rev Neurosci 38, 433–447, doi:10.1146/annurev-neuro-071013-014030 (2015).
    1. Fleischmann R. et al. Delirium is associated with frequency band specific dysconnectivity in intrinsic connectivity networks: preliminary evidence from a large retrospective pilot case-control study. Pilot Feasibility Stud 5, 2, doi:10.1186/s40814-018-0388-z (2019).
    1. Numan T. et al. Functional connectivity and network analysis during hypoactive delirium and recovery from anesthesia. Clin Neurophysiol 128, 914–924, doi:10.1016/j.clinph.2017.02.022 (2017).
    1. van Montfort SJT et al. Resting-state fMRI reveals network disintegration during delirium. Neuroimage Clin 20, 35–41, doi:10.1016/j.nicl.2018.06.024 (2018).
    1. Zhang LJ, Wu S, Ren J. & Lu GM Resting-state functional magnetic resonance imaging in hepatic encephalopathy: current status and perspectives. Metab Brain Dis 29, 569–582, doi:10.1007/s11011-014-9504-9 (2014).
    1. Inouye SK, Westendorp RG & Saczynski JS Delirium in elderly people. The Lancet 383, 911–922 (2014).
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition 4th edn (American Psychiatric Association, 1994).
    1. European Delirium Association & American Delirium Society. The DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer. BMC Med 12, 141, doi:10.1186/s12916-014-0141-2 (2014).
    1. Cole MG, Dendukuri N, McCusker J. & Han L. An empirical study of different diagnostic criteria for delirium among elderly medical inpatients. J Neuropsychiatry Clin Neurosci 15, 200–207, doi:10.1176/jnp.15.2.200 (2003).
    1. Laurila JV, Pitkala KH, Strandberg TE & Tilvis RS The impact of different diagnostic criteria on prevalence rates for delirium. Dement Geriatr Cogn Disord 16, 156–162, doi:10.1159/000071004 (2003).
    1. Trzepacz PT A review of delirium assessment instruments. Gen Hosp Psychiatry 16, 397–405, doi:10.1016/0163-8343(94)90115-5 (1994).
    1. Tieges Z, Evans JJ, Neufeld KJ & MacLullich AMJ. The neuropsychology of delirium: advancing the science of delirium assessment. International journal of geriatric psychiatry 33, 1501–1511, doi:10.1002/gps.4711 (2018).
    1. Network for Investigation of Delirium: Unifying Scientists (NIDUS). Deliriium Measurement Info Cards, (2020).
    1. van Velthuijsen EL et al. Psychometric properties and feasibility of instruments for the detection of delirium in older hospitalized patients: a systematic review. International journal of geriatric psychiatry 31, 974–989, doi:10.1002/gps.4441 (2016).
    1. De J. & Wand AP Delirium Screening: A Systematic Review of Delirium Screening Tools in Hospitalized Patients. Gerontologist 55, 1079–1099, doi:10.1093/geront/gnv100 (2015).
    1. Neufeld KJ et al. Delirium diagnosis methodology used in research: a survey-based study. Am J Geriatr Psychiatry 22, 1513–1521, doi:10.1016/j.jagp.2014.03.003 (2014).
    1. Inouye SK et al. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann Intern Med 113, 941–948 (1990).

      This study reports the creation and validation of the CAM; a multitude of CAM-based assessment tools for use in specific patient populations have since been validated and used worldwide.

    1. Shenkin SD et al. Delirium detection in older acute medical inpatients: a multicentre prospective comparative diagnostic test accuracy study of the 4AT and the confusion assessment method. BMC Med 17, 138, doi:10.1186/s12916-019-1367-9 (2019).

      This STARD-compliant randomized controlled diagnostic trial compared performance of two of the most widely-used delirium detection tools employed in general settings, the 4AT and the CAM.

    1. Heinrich TW, Kato H, Emanuel C. & Denson S. Improving the Validity of Nurse-Based Delirium Screening: A Head-to-Head Comparison of Nursing Delirium-Screening Scale and Short Confusion Assessment Method. Psychosomatics 60, 172–178, doi:10.1016/j.psym.2018.09.002 (2019).
    1. Hshieh TT, Inouye SK & Oh ES Delirium in the Elderly. Clin Geriatr Med 36, 183–199, doi:10.1016/j.cger.2019.11.001 (2020).
    1. Inouye SK, Foreman MD, Mion LC, Katz KH & Cooney LM Jr Nurses’ recognition of delirium and its symptoms: comparison of nurse and researcher ratings. Archives of internal medicine 161, 2467–2473 (2001).
    1. Rohatgi N. et al. Initiative for Prevention and Early Identification of Delirium in Medical-Surgical Units: Lessons Learned in the Past Five Years. Am J Med 132, 1421–1430 e1428, doi:10.1016/j.amjmed.2019.05.035 (2019).
    1. Reynish EL et al. Epidemiology and outcomes of people with dementia, delirium, and unspecified cognitive impairment in the general hospital: prospective cohort study of 10,014 admissions. BMC Med 15, 140, doi:10.1186/s12916-017-0899-0 (2017).
    1. Marcantonio ER et al. 3D-CAM: derivation and validation of a 3-minute diagnostic interview for CAM-defined delirium: a cross-sectional diagnostic test study. Annals of internal medicine 161, 554–561 (2014).
    1. Han JH et al. A quick and easy delirium assessment for nonphysician research personnel. Am J Emerg Med 34, 1031–1036, doi:10.1016/j.ajem.2016.02.069 (2016).
    1. Bellelli G. et al. Validation of the 4AT, a new instrument for rapid delirium screening: a study in 234 hospitalised older people. Age Ageing 43, 496–502 doi: 10.1093/ageing/afu021 (2014).
    1. Tieges ZM, et al. Diagnostic Accuracy of the 4AT for delirium detection: systematic review and meta-analysis, 10.1101/2020.06.11.20128280v2 (2020).
    1. Royal College of Physicians. National Hip Fracture Database annual report 2018, (2018).
    1. Maldonado JR et al. A Study of the Psychometric Properties of the “Stanford Proxy Test for Delirium” (S-PTD): A New Screening Tool for the Detection of Delirium. Psychosomatics 61, 116–126, doi:10.1016/j.psym.2019.11.009 (2020).
    1. Ely EW et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA : the journal of the American Medical Association 289, 2983–2991, doi:10.1001/jama.289.22.2983 (2003).
    1. Chester JG, Beth Harrington M, Rudolph JL & Group VADW Serial administration of a modified Richmond Agitation and Sedation Scale for delirium screening. J Hosp Med 7, 450–453, doi:10.1002/jhm.1003 (2012).
    1. Royal College of Physicians. NEWS2: Additional implementation guidance, (2020).
    1. Voyer P. et al. Recognizing acute delirium as part of your routine [RADAR]: a validation study. BMC Nurs 14, 19, doi:10.1186/s12912-015-0070-1 (2015).
    1. Detroyer E. et al. Detection of delirium in palliative care unit patients: a prospective descriptive study of the Delirium Observation Screening Scale administered by bedside nurses. Palliat Med 28, 79–86, doi:10.1177/0269216313492187 (2014).
    1. Gaudreau JD, Gagnon P, Harel F, Tremblay A, Roy MA. Fast, systematic,and continuous delirium assessment in hospitalized patients: the nursing delirium screening scale. J Pain Symptom Manage 2005; 29: 368–75
    1. Gélinas C. et al. Delirium assessment tools for use in critically ill adults: a psychometric analysis and systematic review. Critical care nurse 38, 38–49 (2018).
    1. Ely EW et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med 29, 1370–1379 (2001).
    1. Gusmao-Flores D, Salluh JI, Chalhub RA & Quarantini LC The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. Crit Care 16, R115, doi:10.1186/cc11407 (2012).
    1. Bergeron N, Dubois M-J, Dumont M, Dial S. & Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive care medicine 27, 859–864 (2001).
    1. Fick DM & Marcantonio ER In response to “Preliminary development of an ultrabrief two-item bedside test for delirium”. J Hosp Med 11, 155, doi:10.1002/jhm.2524 (2016).
    1. Lin HS et al. Screening in delirium: A pilot study of two screening tools, the Simple Query for Easy Evaluation of Consciousness and Simple Question in Delirium. Australas J Ageing 34, 259–264, doi:10.1111/ajag.12216 (2015).
    1. Trzepacz PT et al. Validation of the Delirium Rating Scale-revised-98: comparison with the delirium rating scale and the cognitive test for delirium. The Journal of neuropsychiatry and clinical neurosciences 13, 229–242 (2001).
    1. Adamis D. et al. Reliability of delirium rating scale (DRS) and delirium rating scale-revised-98 (DRS-R98) using variance-based multivariate modelling. J Psychiatr Res 47, 966–971, doi:10.1016/j.jpsychires.2013.02.012 (2013).
    1. Hart RP et al. Validation of a cognitive test for delirium in medical ICU patients. Psychosomatics 37, 533–546, doi:10.1016/S0033-3182(96)71517-7 (1996).
    1. Tieges Z. et al. A smartphone-based test for the assessment of attention deficits in delirium: A case-control diagnostic test accuracy study in older hospitalised patients. PLoS One 15, e0227471, doi:10.1371/journal.pone.0227471 (2020).
    1. Tang E. et al. Development and feasibility of a smartphone-based test for the objective detection and monitoring of attention impairments in delirium in the ICU. J Crit Care 48, 104–111, doi:10.1016/j.jcrc.2018.08.019 (2018).
    1. Jones RN et al. Assessment of instruments for measurement of delirium severity: a systematic review. JAMA internal medicine 179, 231–239 (2019).
    1. Inouye SK et al. Clarifying confusion: the confusion assessment method: a new method for detection of delirium. Annals of internal medicine 113, 941–948 (1990).
    1. Breitbart W. et al. The memorial delirium assessment scale. Journal of pain and symptom management 13, 128–137 (1997).
    1. Inouye SK et al. The CAM-S: development and validation of a new scoring system for delirium severity in 2 cohorts. Annals of internal medicine 160, 526–533 (2014).
    1. Jones RN et al. Assessment of Instruments for Measurement of Delirium Severity: A Systematic Review. JAMA Intern Med 179, 231–239, doi:10.1001/jamainternmed.2018.6975 (2019).
    1. Ely EW et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA : the journal of the American Medical Association 291, 1753–1762, doi:10.1001/jama.291.14.1753 (2004).
    1. Scottish Intercollegiate Guidelines Network (SIGN). Risk Reduction and Management of Delirium. Edinburgh: SIGN; 2019. (SIGN publication; no.157). [March 2019]. Available from URL: (2019) Accessed 8 June 2020.
    1. Hijazi Z, Lange P, Watson R. & Maier AB The use of cerebral imaging for investigating delirium aetiology. European journal of internal medicine 52, 35–39 (2018).
    1. Haggstrom L, Welschinger R. & Caplan GA Functional neuroimaging offers insights into delirium pathophysiology: A systematic review. Australasian journal on ageing 36, 186–192 (2017).
    1. Nitchingham A, Kumar V, Shenkin S, Ferguson KJ & Caplan GA A systematic review of neuroimaging in delirium: predictors, correlates and consequences. International journal of geriatric psychiatry 33, 1458–1478 (2018).
    1. Caplan GA, Haggstrom LR, Nelson JA & Wegner EA Novel unique pattern of cerebral glucose hypometabolism seen on 2–18 F-Fluoro-2-deoxyglucose Positron Emission Tomography in delirium. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 13, P1533 (2017).
    1. Thomas C. et al. Serum anticholinergic activity and cerebral cholinergic dysfunction: an EEG study in frail elderly with and without delirium. BMC Neurosci 9, 86, doi:10.1186/1471-2202-9-86 (2008).
    1. Van Der Kooi AW et al. Delirium detection using EEG. Chest 147, 94–101 (2015).
    1. Fleischmann R. et al. Diagnostic performance and utility of quantitative EEG analyses in delirium: confirmatory results from a large retrospective case-control study. Clinical EEG and neuroscience 50, 111–120 (2019).
    1. Geriatric Medicine Research Collaborative. Delirium is prevalent in older hospital inpatients and associated with adverse outcomes: results of a prospective multi-centre study on World Delirium Awareness Day. BMC Med 17, 229, doi:10.1186/s12916-019-1458-7 (2019).
    1. Copeland C. & Barron DT “Delirium: An essential component in undergraduate training?”. Nurse Educ Today 85, 104211, doi:10.1016/j.nedt.2019.104211 (2020).
    1. Teodorczuk A, Mukaetova-Ladinska E, Corbett S. & Welfare M. Reconceptualizing models of delirium education: findings of a Grounded Theory study. Int Psychogeriatr 25, 645–655, doi:10.1017/S1041610212002074 (2013).

      Delirium detection, treatment and preventative strategies remain poorly implemented at scale in clinical practice. This study provides novel and crucial insights into the status of delirium in healthcare settings, including the necessity for attitudinal change and ownership of responsibility for delirium care in addition to standard educational strategies.

    1. Richardson SJ, Fisher JM & Teodorczuk A. The Future Hospital: a blueprint for effective delirium care. Future Hosp J 3, 178–181, doi:10.7861/futurehosp.3-3-178 (2016).
    1. Vardy E. et al. Use of a digital delirium pathway and quality improvement to improve delirium detection in the emergency department and outcomes in an acute hospital. Age and ageing 49, 672–678, doi:10.1093/ageing/afaa069 (2020).
    1. Dormandy L, Mufti S, Higgins E, Bailey C. & Dixon M. Shifting the focus: A QI project to improve the management of delirium in patients with hip fracture. Future Healthc J 6, 215–219, doi:10.7861/fhj.2019-0006 (2019).
    1. Inouye SK et al. A multicomponent intervention to prevent delirium in hospitalized older patients. The New England journal of medicine 340, 669–676, doi:10.1056/NEJM199903043400901 (1999).
    1. Hshieh TT, Yang T, Gartaganis SL, Yue J. & Inouye SK Hospital Elder Life Program: Systematic Review and Meta-analysis of Effectiveness. Am J Geriatr Psychiatry 26, 1015–1033, doi:10.1016/j.jagp.2018.06.007 (2018).
    1. National Institute for Health and Care Excellence (NICE). Delirium: prevention, diagnosis and management, (2019)
    1. Marcantonio ER, Flacker JM, Wright RJ & Resnick NM Reducing delirium after hip fracture: a randomized trial. Journal of the American Geriatrics Society 49, 516–522 (2001).
    1. Ludolph P. et al. Non-Pharmacologic Multicomponent Interventions Preventing Delirium in Hospitalized People. Journal of the American Geriatrics Society, doi:10.1111/jgs.16565 (2020).
    1. Smith J. et al. Investigation of ward fidelity to a multicomponent delirium prevention intervention during a multicentre, pragmatic, cluster randomised, controlled feasibility trial. Age and ageing 49, 648–655, doi:10.1093/ageing/afaa042 (2020).
    1. Woodhouse R. et al. Interventions for preventing delirium in older people in institutional long-term care. Cochrane Database Syst Rev 4, CD009537, doi:10.1002/14651858.CD009537.pub3 (2019).
    1. Ely EW, Siegel MD & Inouye SK Delirium in the intensive care unit: an under-recognized syndrome of organ dysfunction. Semin Respir Crit Care Med 22, 115–126, doi:10.1055/s-2001-13826 (2001).
    1. Devlin J. et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med doi: 10.1097/CCM00000003299 (2018).
    1. Schweickert WD et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. The Lancet 373, 1874–1882 (2009).
    1. Schaller SJ et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. The Lancet 388, 1377–1388 (2016).
    1. Marra A, Ely EW, Pandharipande PP & Patel MB The ABCDEF bundle in critical care. Critical care clinics 33, 225–243 (2017).
    1. Pun BT et al. Caring for Critically Ill Patients with the ABCDEF Bundle: Results of the ICU Liberation Collaborative in Over 15,000 Adults. Crit Care Med 47, 3–14, doi:10.1097/CCM.0000000000003482 (2019).
    1. Trogrlić Z. et al. A systematic review of implementation strategies for assessment, prevention, and management of ICU delirium and their effect on clinical outcomes. Critical Care 19, 157 (2015).
    1. Oh ES et al. Antipsychotics for Preventing Delirium in Hospitalized Adults: A Systematic Review. Ann Intern Med 171, 474–484, doi:10.7326/M19-1859 (2019).
    1. Asleson DR & Chiu AW Melatonin for delirium prevention in acute medically ill, and perioperative geriatric patients. Aging Med (Milton) 3, 132–137, doi:10.1002/agm2.12112 (2020).
    1. Siddiqi N. et al. Interventions for preventing delirium in hospitalised non-ICU patients. Cochrane Database Syst Rev 3, CD005563, doi:10.1002/14651858.CD005563.pub3 (2016).

      This Cochrane reviewed examined the evidence base on delirium prevention and concluded that moderate-to-strong evidence exists that such interventions are effective and should be implemented.

    1. Pitkala KH, Laurila JV, Strandberg TE & Tilvis RS Multicomponent geriatric intervention for elderly inpatients with delirium: a randomized, controlled trial. J Gerontol A Biol Sci Med Sci 61, 176–181, doi:10.1093/gerona/61.2.176 (2006).
    1. Bauernfreund Y, Butler M, Ragavan S. & Sampson EL TIME to think about delirium: improving detection and management on the acute medical unit. BMJ Open Qual 7, e000200, doi:10.1136/bmjoq-2017-000200 (2018).
    1. Lee SY et al. Developing delirium best practice: a systematic review of education interventions for healthcare professionals working in inpatient settings. Eur Geriatr Med 11, 1–32, doi:10.1007/s41999-019-00278-x (2020).
    1. Burry L. et al. Antipsychotics for treatment of delirium in hospitalised non-ICU patients. Cochrane Database Syst Rev 6, CD005594, doi:10.1002/14651858.CD005594.pub3 (2018).
    1. Neufeld KJ, Yue J, Robinson TN, Inouye SK & Needham DM Antipsychotic Medication for Prevention and Treatment of Delirium in Hospitalized Adults: A Systematic Review and Meta-Analysis. Journal of the American Geriatrics Society 64, 705–714, doi:10.1111/jgs.14076 (2016).
    1. Finucane AM et al. Drug therapy for delirium in terminally ill adults. Cochrane Database Syst Rev 1, CD004770, doi:10.1002/14651858.CD004770.pub3 (2020).
    1. Tampi RR, Tampi DJ & Ghori AK Acetylcholinesterase Inhibitors for Delirium in Older Adults. Am J Alzheimers Dis Other Demen 31, 305–310, doi:10.1177/1533317515619034 (2016).
    1. Yu A. et al. Cholinesterase inhibitors for the treatment of delirium in non-ICU settings. Cochrane Database Syst Rev 6, CD012494, doi:10.1002/14651858.CD012494.pub2 (2018).
    1. Hov KR et al. The Oslo Study of Clonidine in Elderly Patients with Delirium; LUCID: a randomised placebo-controlled trial. International journal of geriatric psychiatry 34, 974–981, doi:10.1002/gps.5098 (2019).
    1. Carrasco G. et al. Dexmedetomidine for the Treatment of Hyperactive Delirium Refractory to Haloperidol in Nonintubated ICU Patients: A Nonrandomized Controlled Trial. Crit Care Med 44, 1295–1306, doi:10.1097/CCM.0000000000001622 (2016).
    1. Patel RP et al. Delirium and sedation in the intensive care unit: survey of behaviors and attitudes of 1384 healthcare professionals. Crit Care Med 37, 825–832, doi:10.1097/CCM.0b013e31819b8608 (2009).
    1. Girard TD et al. Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial. Crit Care Med 38, 428–437 (2010).
    1. Devlin JW et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med 46, e825–e873, doi:10.1097/ccm.0000000000003299 (2018).
    1. Nikooie R. et al. Antipsychotics for Treating Delirium in Hospitalized Adults: A Systematic Review. Ann Intern Med 171, 485–495, doi:10.7326/M19-1860 (2019).

      This systematic review concluded that there is insufficient evidence supporting the routine use of antipsychotic agents for the treatment of delirium.

    1. Devlin JW et al. Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit Care Med 38, 419–427, doi:10.1097/CCM.0b013e3181b9e302 (2010).
    1. Pandharipande PP et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients. JAMA : the journal of the American Medical Association 298, 2644–2653 (2007).
    1. Riker RR et al. Dexmedetomidine vs Midazolam for Sedation of Critically Ill Patients: A Randomized Trial. JAMA 301, 489–499 (2009).
    1. Shehabi Y. et al. Early sedation with dexmedetomidine in critically ill ventilated patients. The New England journal of medicine 380, 2506–2517 doi: 10.1056/NEJMoa1904710 (2019).

      The SPICE-III trial comparing dexmedetomidine with usual-care sedation regimens (propofol, midazolam or other sedatives) in critically ill patients on mechanical ventilation; death rate at 90-days was similar for both treatments but many patients treated with dexmedetomidine required supplemental sedation to achieve target sedation and they experienced more adverse effects.

    1. Reade MC et al. Effect of Dexmedetomidine Added to Standard Care on Ventilator-Free Time in Patients With Agitated Delirium: A Randomized Clinical Trial. JAMA 315, 1460–1468, doi:10.1001/jama.2016.2707 (2016).
    1. Balas MC et al. Effectiveness and safety of the awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle. Crit Care Med 42, 1024–1036, doi:10.1097/ccm.0000000000000129 (2014).
    1. Barnes-Daly MA, Phillips G. & Ely EW Improving Hospital Survival and Reducing Brain Dysfunction at Seven California Community Hospitals: Implementing PAD Guidelines Via the ABCDEF Bundle in 6,064 Patients. Crit Care Med 45, 171–178, doi:10.1097/ccm.0000000000002149 (2017).
    1. O’Neal HR Jr., Lin JC, Devlin JW & Ely EW Coronavirus Disease 2019: Harnessing Healthy Fear via Knowledge, Attitudes, and Behavior. Crit Care Explor 2, e0149, doi:10.1097/CCE.0000000000000149 (2020).
    1. Devlin JW et al. Strategies to Optimize ICU Liberation (A to F) Bundle Performance in Critically Ill Adults With Coronavirus Disease 2019. Crit Care Explor 2, e0139, doi:10.1097/CCE.0000000000000139 (2020).
    1. Helms J. et al. Neurologic Features in Severe SARS-CoV-2 Infection. The New England journal of medicine 382, 2268–2270, doi:10.1056/NEJMc2008597 (2020).
    1. Kotfis K. et al. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit Care 24, 176, doi:10.1186/s13054-020-02882-x (2020).
    1. O’Hanlon S. & Inouye SK Delirium: a missing piece in the COVID-19 pandemic puzzle. Age and ageing 49, 497–498, doi:10.1093/ageing/afaa094 (2020).
    1. LaHue SC et al. Collaborative Delirium Prevention in the Age of COVID-19. Journal of the American Geriatrics Society 68, 947–949, doi:10.1111/jgs.16480 (2020).
    1. Sillner AY, Holle CL & Rudolph JL The Overlap Between Falls and Delirium in Hospitalized Older Adults: A Systematic Review. Clin Geriatr Med 35, 221–236, doi:10.1016/j.cger.2019.01.004 (2019).
    1. Dharmarajan K, Swami S, Gou RY, Jones RN & Inouye SK Pathway from Delirium to Death: Potential In-Hospital Mediators of Excess Mortality. Journal of the American Geriatrics Society 65, 1026–1033, doi:10.1111/jgs.14743 (2017).
    1. Israni J, Lesser A, Kent T. & Ko K. Delirium as a predictor of mortality in US Medicare beneficiaries discharged from the emergency department: a national claims-level analysis up to 12 months. BMJ open 8, e021258, doi:10.1136/bmjopen-2017-021258 (2018).
    1. Pisani MA et al. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med 180, 1092–1097, doi:10.1164/rccm.200904-0537OC (2009).
    1. Altman MT et al. Association of intensive care unit delirium with sleep disturbance and functional disability after critical illness: an observational cohort study. Ann Intensive Care 8, 63, doi:10.1186/s13613-018-0408-4 (2018).
    1. Todd A. et al. Reduced level of arousal and increased mortality in adult acute medical admissions: a systematic review and meta-analysis. BMC geriatrics 17, 283, doi:10.1186/s12877-017-0661-7 (2017).
    1. Hayhurst CJ et al. Association of Hypoactive and Hyperactive Delirium With Cognitive Function After Critical Illness. Crit Care Med 48, e480–e488, doi:10.1097/CCM.0000000000004313 (2020).
    1. Herridge MS et al. Functional disability 5 years after acute respiratory distress syndrome. The New England journal of medicine 364, 1293–1304, doi:10.1056/NEJMoa1011802 (2011).
    1. Pitkala KH et al. Multicomponent geriatric intervention for elderly inpatients with delirium: effects on costs and health-related quality of life. J Gerontol.A Biol.Sci.Med.Sci. 63, 56–61 (2008).
    1. Hshieh TT et al. Trajectory of Functional Recovery After Postoperative Delirium in Elective Surgery. Ann Surg 265, 647–653, doi:10.1097/SLA.0000000000001952 (2017).
    1. Van Rompaey B. et al. Long term outcome after delirium in the intensive care unit. Journal of clinical nursing 18, 3349–3357, doi:10.1111/j.1365-2702.2009.02933.x (2009).
    1. Abelha FJ et al. Outcome and quality of life in patients with postoperative delirium during an ICU stay following major surgery. Crit Care 17, R257, doi:10.1186/cc13084 (2013).
    1. Fann JR, Alfano CM, Roth-Roemer S, Katon WJ & Syrjala KL Impact of delirium on cognition, distress, and health-related quality of life after hematopoietic stem-cell transplantation. Journal of clinical oncology 25, 1223–1231, doi:10.1200/JCO.2006.07.9079 (2007).
    1. Naidech AM et al. Intracerebral hemorrhage and delirium symptoms. Length of stay, function, and quality of life in a 114-patient cohort. Am J Respir Crit Care Med 188, 1331–1337, doi:10.1164/rccm.201307-1256OC (2013).
    1. van den Boogaard M. et al. Delirium in critically ill patients: impact on long-term health-related quality of life and cognitive functioning. Crit Care Med 40, 112–118, doi:10.1097/CCM.0b013e31822e9fc9 (2012).
    1. Wolters AE et al. Long-term outcome of delirium during intensive care unit stay in survivors of critical illness: a prospective cohort study. Crit Care 18, R125, doi:10.1186/cc13929 (2014).
    1. Gill TM & Feinstein AR A critical appraisal of the quality of quality-of-life measurements. JAMA 272, 619–626 (1994).
    1. Bergner M. Quality of life, health status, and clinical research. Med Care 27, S148–156 (1989).
    1. Cella DF Quality of life: concepts and definition. J Pain Symptom Manage 9, 186–192 (1994).
    1. Ware JE Jr. & Sherbourne CD The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care 30, 473–483 (1992).
    1. Ware JE SF-36 Physical and Mental Health Summary Scales: a user’s manual. Vol. Fifth (Health Assessment Lab, New England Medical Center, 1994).
    1. Ware J Jr., Kosinski M. & Keller SDA 12-Item Short-Form Health Survey: construction of scales and preliminary tests of reliability and validity. Med Care 34, 220–233 (1996).
    1. Ware JE, Kosinski M. & Keller SD SF-12: How to score the SF-12 physical and mental health summary scales (third edition). Vol. Third (Qualitymetric, 1998).
    1. Yang F, Dawes P, Leroi I. & Gannon B. Measurement tools of resource use and quality of life in clinical trials for dementia or cognitive impairment interventions: A systematically conducted narrative review. International journal of geriatric psychiatry 33, e166–e176, doi:10.1002/gps.4771 (2018).
    1. Jackson JC, Mitchell N. & Hopkins RO Cognitive functioning, mental health, and quality of life in ICU survivors: an overview. The Psychiatric clinics of North America 38, 91–104, doi:10.1016/j.psc.2014.11.002 (2015).
    1. Bickel H, Gradinger R, Kochs E. & Forstl H. High risk of cognitive and functional decline after postoperative delirium. A three-year prospective study. Dement Geriatr Cogn Disord 26, 26–31, doi:10.1159/000140804 (2008).
    1. Fong TG et al. Delirium accelerates cognitive decline in Alzheimer disease. Neurology 72, 1570–1575 (2009).
    1. Fong TG et al. Adverse outcomes after hospitalization and delirium in persons with Alzheimer disease. Ann Intern Med 156, 848–856, W296, doi:10.7326/0003-4819-156-12-201206190-00005 (2012).
    1. Saczynski JS et al. Cognitive trajectories after postoperative delirium. The New England journal of medicine 367, 30–39, doi:10.1056/NEJMoa1112923 (2012).
    1. Hopkins RO et al. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med 160, 50–56, doi:10.1164/ajrccm.160.1.9708059 (1999).
    1. Girard TD et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Critical Care Medicine 38, 1513–1520, doi:Doi 10.1097/Ccm.0b013e3181e47be1 (2010).
    1. Rothenhausler HB, Ehrentraut S, Stoll C, Schelling G. & Kapfhammer HP The relationship between cognitive performance and employment and health status in long-term survivors of the acute respiratory distress syndrome: results of an exploratory study. General Hospital Psychiatry 23, 88–94 (2001).
    1. Mikkelsen ME et al. Cognitive, mood and quality of life impairments in a select population of ARDS survivors. Respirology 14, 76–82, doi:10.1111/j.1440-1843.2008.01419.x (2009).
    1. Hopkins RO et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 171, 340–347, doi:10.1164/rccm.200406-763OC (2005).
    1. Phillips-Bute B. et al. Association of neurocognitive function and quality of life 1 year after coronary artery bypass graft (CABG) surgery. Psychosomatic medicine 68, 369–375, doi:10.1097/01.psy.0000221272.77984.e2 (2006).
    1. Lewis MB & Howdle PD Cognitive dysfunction and health-related quality of life in long-term liver transplant survivors. Liver transplantation 9, 1145–1148, doi:10.1053/jlts.2003.50239 (2003).
    1. Norman BC et al. Employment Outcomes After Critical Illness: An Analysis of the Bringing to Light the Risk Factors and Incidence of Neuropsychological Dysfunction in ICU Survivors Cohort. Crit Care Med 44, 2003–2009, doi:10.1097/ccm.0000000000001849 (2016).
    1. Myhren H, Ekeberg O. & Stokland O. Health-related quality of life and return to work after critical illness in general intensive care unit patients: a 1-year follow-up study. Crit Care Med 38, 1554–1561, doi:10.1097/CCM.0b013e3181e2c8b1 (2010).
    1. Girard TD et al. Risk factors for posttraumatic stress disorder symptoms following critical illness requiring mechanical ventilation: a prospective cohort study. Crit Care 11, R28 (2007).
    1. Jackson JC et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir Med 2, 369–379, doi:10.1016/S2213-2600(14)70051-7 (2014).
    1. Hopkins RO, Weaver LK, Chan KJ & Orme JF Jr. Quality of life, emotional, and cognitive function following acute respiratory distress syndrome. Journal of the International Neuropsychological Society : JINS 10, 1005–1017 (2004).
    1. Weinert CR, Gross CR, Kangas JR, Bury CL & Marinelli WA Health-related quality of life after acute lung injury. Am J Respir Crit Care Med 156, 1120–1128, doi:10.1164/ajrccm.156.4.9611047 (1997).
    1. Kapfhammer HP, Rothenhausler HB, Krauseneck T, Stoll C. & Schelling G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am J Psychiatry 161, 45–52 (2004).
    1. Duggan MC et al. The relationship between executive dysfunction, depression, and mental health-related quality of life in survivors of critical illness: Results from the BRAIN-ICU investigation. J Crit Care 37, 72–79, doi:10.1016/j.jcrc.2016.08.023 (2016).
    1. Wilson IB & Cleary PD Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA 273, 59–65 (1995).
    1. Dinglas VD et al. Perspectives of survivors, families and researchers on key outcomes for research in acute respiratory failure. Thorax 73, 7–12, doi:10.1136/thoraxjnl-2017-210234 (2018).
    1. O’Keeffe S. & Lavan J. The prognostic significance of delirium in older hospital patients. Journal of the American Geriatrics Society 45, 174–178, doi:10.1111/j.1532-5415.1997.tb04503.x (1997).
    1. Brummel NE et al. Delirium in the ICU and subsequent long-term disability among survivors of mechanical ventilation. Crit Care Med 42, 369–377, doi:10.1097/CCM.0b013e3182a645bd (2014).
    1. Oldham MA, Flaherty JH & Maldonado JR Refining Delirium: A Transtheoretical Model of Delirium Disorder with Preliminary Neurophysiologic Subtypes. Am J Geriatr Psychiatry 26, 913–924, doi:10.1016/j.jagp.2018.04.002 (2018).
    1. Meagher DJ et al. A longitudinal study of motor subtypes in delirium: relationship with other phenomenology, etiology, medication exposure and prognosis. J Psychosom Res 71, 395–403, doi:10.1016/j.jpsychores.2011.06.001 (2011).
    1. Gual N. et al. Delirium Subtypes and Associated Characteristics in Older Patients With Exacerbation of Chronic Conditions. Am J Geriatr Psychiatry 26, 1204–1212, doi:10.1016/j.jagp.2018.07.003 (2018).
    1. Kiely DK, Jones RN, Bergmann MA & Marcantonio ER Association between psychomotor activity delirium subtypes and mortality among newly admitted post-acute facility patients. J Gerontol A Biol Sci Med Sci 62, 174–179, doi:10.1093/gerona/62.2.174 (2007).
    1. Robinson TN, Raeburn CD, Tran ZV, Brenner LA & Moss M. Motor subtypes of postoperative delirium in older adults. Arch Surg 146, 295–300, doi:10.1001/archsurg.2011.14 (2011).
    1. Bellelli G, Speciale S, Barisione E. & Trabucchi M. Delirium subtypes and 1-year mortality among elderly patients discharged from a post-acute rehabilitation facility. J Gerontol A Biol Sci Med Sci 62, 1182–1183, doi:10.1093/gerona/62.10.1182 (2007).
    1. Peritogiannis V, Bolosi M, Lixouriotis C. & Rizos DV Recent Insights on Prevalence and Corelations of Hypoactive Delirium. Behav Neurol 2015, 416792, doi:10.1155/2015/416792 (2015).
    1. Yang FM et al. Phenomenological subtypes of delirium in older persons: patterns, prevalence, and prognosis. Psychosomatics 50, 248–254, doi:10.1176/appi.psy.50.3.248 (2009).
    1. Mudge AM et al. CHERISH (collaboration for hospitalised elders reducing the impact of stays in hospital): protocol for a multi-site improvement program to reduce geriatric syndromes in older inpatients. BMC geriatrics 17, 11, doi:10.1186/s12877-016-0399-7 (2017).
    1. Saper CB, Scammell TE & Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437; 1257–1263 (2005).
    1. Fong TG et al. Delirium accelerates cognitive decline in Alzheimer disease. Neurology 72, 1570–1575, doi:10.1212/WNL.0b013e3181a4129a (2009).
    1. Halaas NB et al. Neurofilament Light in Serum and Cerebrospinal Fluid of Hip Fracture Patients with Delirium. Dement Geriatr Cogn Disord 46, 346–357, doi:10.1159/000494754 (2018).
    1. Idland AV et al. CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiol Aging 49, 138–144, doi:10.1016/j.neurobiolaging.2016.09.012 (2017).
    1. Casey CP et al. Postoperative delirium is associated with increased plasma neurofilament light. Brain, doi:10.1093/brain/awz354 (2019).
    1. Semmler A. et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry 84, 62–69, doi:10.1136/jnnp-2012-302883 (2013).
    1. Torvell M. et al. A single systemic inflammatory insult causes acute motor deficits and accelerates disease progression in a mouse model of human tauopathy. Alzheimers Dement (N Y) 5, 579–591, doi:10.1016/j.trci.2019.09.001 (2019).

Source: PubMed

3
구독하다