Mechanisms of Cisplatin-Induced Acute Kidney Injury: Pathological Mechanisms, Pharmacological Interventions, and Genetic Mitigations

Kristen Renee McSweeney, Laura Kate Gadanec, Tawar Qaradakhi, Benazir Ashiana Ali, Anthony Zulli, Vasso Apostolopoulos, Kristen Renee McSweeney, Laura Kate Gadanec, Tawar Qaradakhi, Benazir Ashiana Ali, Anthony Zulli, Vasso Apostolopoulos

Abstract

Administration of the chemotherapeutic agent cisplatin leads to acute kidney injury (AKI). Cisplatin-induced AKI (CIAKI) has a complex pathophysiological map, which has been linked to cellular uptake and efflux, apoptosis, vascular injury, oxidative and endoplasmic reticulum stress, and inflammation. Despite research efforts, pharmaceutical interventions, and clinical trials spanning over several decades, a consistent and stable pharmacological treatment option to reduce AKI in patients receiving cisplatin remains unavailable. This has been predominately linked to the incomplete understanding of CIAKI pathophysiology and molecular mechanisms involved. Herein, we detail the extensively known pathophysiology of cisplatin-induced nephrotoxicity that manifests and the variety of pharmacological and genetic alteration studies that target them.

Keywords: AKI; acute kidney injury; cisplatin; cisplatin-induced acute kidney injury; nephrotoxicity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Pathophysiological map of the key molecular pathways demonstrated to play a role in the pathogenesis of cisplatin-induced acute kidney injury (AKI). The mechanisms associated with cisplatin-induced AKI (CIAKI) are complex, and the relationship between the key pathways remains unknown. However, it is believed that the detrimental nephrotoxic effect of cisplatin in renal tissue is due to platinum accumulation. Cisplatin accumulation triggers increased production of tumor necrosis factor alpha (TNF-α) [33,34] and reactive oxygen species (ROS), stimulating inflammation [35], oxidative stress [36], vascular injury [31], and apoptotic pathways [37]. The apoptotic mechanisms then promote renal tissue damage leading to the key clinical manifestation of nephrotoxicity (a reduction in glomerular filtration rate (GFR)) resulting in CIAKI. Abbreviations: GSH, glutathione; CAT, catalase; SOD, superoxide dismutase; TNF-α, tumor necrosis factor alpha; ROS, reactive oxygen species; ER stress, endoplasmic reticulum stress; and GFR, glomerular filtration rate. IL-1, Interleukin 1; MCP-1, monocyte chemoattractant protein 1; CXCL1, C-X-C Motif Chemokine Ligand 1; KIM-1, Kidney Injury Molecule 1; sCr, Serum Creatinine; BUN, Blood Urea Nitrogen; NGAL, Neutrophil gelatinase-associated lipocalin. Figure adapted from “Cisplatin nephrotoxicity: mechanisms and renoprotective strategies” by N. Pabla and Z. Dong, 2008, Kidney International, Volume 73, P994-1007, Copyright [2008] by the Elsevier.
Figure 2
Figure 2
Graphical representation of key molecules and pathways involved in cisplatin transportation initiating nephrotoxic effects. Key transporters responsible for cellular uptake of cisplatin from the blood into PTECs resulting in a much greater platinum concentration compared to the blood. The key interventions trialed to date and their effectiveness in targeting CIAKI are also illustrated. Diagram details the cellular processes involved in the cellular uptake [57,58,59,60,61,62,63,64], efflux [65,66], and metabolism of cisplatin into a highly reactive thiol (nephrotoxin) [67] and the treatment targeted to prevent them.
Figure 3
Figure 3
Cisplatin-induced acute kidney injury effects on the renin angiotensin system. A large focus has been on inhibition or genetic deletion of AT1 and AT2 receptors, both of which show amelioration in CIAKI [64,120,123,124,125]. Additionally, both ACE and Angiotensin II inhibition have also shown ameliorating qualities. Targeting the renin angiotensin system (RAS) system to prevent CIAKI is a promising pathway in potential treatments. Abbreviations: NO, nitric oxide; ONOO−, peroxynitrite; O2−, superoxide; eNOS, endothelial nitric oxide synthase; ACE, angiotensin converting enzyme; GFR, glomerular filtration rate.
Figure 4
Figure 4
Apoptotic pathways involved in CIAKI. Cisplatin stimulation of ROS leads to cytochrome release and effector caspase activation in the Intrinsic/mitochondrial pathway (red) [54,94,154], ER stress is involved in two mechanisms, through stimulation of PERK to promote ER stress induced caspase-3 activation (blue) [155]. Extrinsic apoptosis is caused by TNFR1 signaling caspase-8 (green).
Figure 5
Figure 5
Key cytokines and chemokines upregulated or downregulated following cisplatin treatment. This diagram represents the therapeutic avenues published targeting inflammatory pathways and the targeted cytokines and chemokines involved [32,34,45,46,49,53,175,176,177].
Figure 6
Figure 6
Functional expression of toll-like receptors in healthy human intrarenal cells and tissue. Basal expression of TLR1–10 has been reported in healthy human tissue [179]. However, determination of renal cell specific TLR expression remains limited. To date, TLR expression has been reported in intrarenal cells and structures, including: CDEC (TLR3 [199]), DTECs (TLR4 [200]), glomeruli (TLR2 [201]; TLR3 [199,202]; TLR7–9 [202,203]), mesangial cells (TLR1–4 [199,201]), peritubular arteriole (TLR2 [201] and TLR3 [199]) and capillary (TLR2 [201,204] and TLR4 [204]) endothelial cells, podocytes (TLR1–6 and 10 [205,206]), PTECs (TLR1–5 [204,207,208,209,210] and 9 [211]), tubules * (TLR2–4 [201,202,203,212] and TLR7–9 [203,213]), VSMCs (TLR3 [199]) and renal cortex (TLR2 [201] and TLR4 [212]), medulla (TLR2 [201] and TLR4 [212]), and pelvis (TLR4 [212]). * Tubules refers to literature that does not state the specific tubule on which TLR expression was reported. Abbreviations: collecting duct epithelial cell, CDEC; DTEC, distal tubule epithelial cell; PTEC, proximal tubule epithelial cell; toll-like receptor, TLR; vascular smooth muscle cell, VSMC.

References

    1. Gomez-Ruiz S., Maksimović-Ivanić D., Mijatović S., Kaluđerović G.N. On the discovery, biological effects, and use of cisplatin and metallocenes in anticancer chemotherapy. Bioinorg. Chem. Appl. 2012;2012:140284. doi: 10.1155/2012/140284.
    1. Wang S., Xie J., Li J., Liu F., Wu X., Wang Z. Cisplatin suppresses the growth and proliferation of breast and cervical cancer cell lines by inhibiting integrin β5-mediated glycolysis. Am. J. Cancer Res. 2016;6:1108–1117.
    1. Li Z., Zhang P., Ma Q., Wang D., Zhou T. Cisplatin-based chemoradiotherapy with 5-fluorouracil or pemetrexed in patients with locally advanced, unresectable esophageal squamous cell carcinoma: A retrospective analysis. Mol. Clin. Oncol. 2017;6:743–747. doi: 10.3892/mco.2017.1222.
    1. Hussain S., Palmer D., Lloyd B., Collins S., Barton D., Ansari J., James N. A study of split-dose cisplatin-based neo-adjuvant chemotherapy in muscle-invasive bladder cancer. Oncol. Lett. 2012;3:855–859. doi: 10.3892/ol.2012.563.
    1. Chan B.A., Coward J.I.G. Chemotherapy advances in small-cell lung cancer. J. Thorac. Dis. 2013;5(Suppl. 5):S565–S578. doi: 10.3978/j.issn.2072-1439.2013.07.43.
    1. Einhorn L.H., Donohue J. Cis-Diamminedichloroplatinum, Vinblastine, and Bleomycin Combination Chemotherapy in Disseminated Testicular Cancer. Ann. Intern. Med. 1977;87:293–298. doi: 10.7326/0003-4819-87-3-293.
    1. Wagner M.J., Livingston J.A., Patel S.R., Benjamin R.S. Chemotherapy for Bone Sarcoma in Adults. J. Oncol. Pract. 2016;12:208–216. doi: 10.1200/JOP.2015.009944.
    1. Le X., Hanna E.Y. Optimal regimen of cisplatin in squamous cell carcinoma of head and neck yet to be determined. Ann. Transl. Med. 2018;6:229. doi: 10.21037/atm.2018.05.10.
    1. Dasari S., Tchounwou P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharm. 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025.
    1. Mandic A., Hansson J., Linder S., Shoshan M.C. Cisplatin induces endoplasmic reticulum stress and nucleus-independent apoptotic signaling. J. Biol. Chem. 2003;278:9100–9106. doi: 10.1074/jbc.M210284200.
    1. Price P.M., Yu F., Kaldis P., Aleem E., Nowak G., Safirstein R.L., Megyesi J. Dependence of cisplatin-induced cell death in vitro and in vivo on cyclin-dependent kinase 2. J. Am. Soc. Nephrol. 2006;17:2434–2442. doi: 10.1681/ASN.2006020162.
    1. Pabla N., Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int. 2008;73:994–1007. doi: 10.1038/sj.ki.5002786.
    1. Rybak L.P., Mukherjea D., Jajoo S., Ramkumar V. Cisplatin ototoxicity and protection: Clinical and experimental studies. Tohoku J. Exp. Med. 2009;219:177–186. doi: 10.1620/tjem.219.177.
    1. Rybak L.P., Whitworth C.A., Mukherjea D., Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear. Res. 2007;226:157–167. doi: 10.1016/j.heares.2006.09.015.
    1. Dos Santos N.A.G., Rodrigues M.A.C., Martins N.M., Dos Santos A.C. Cisplatin-induced nephrotoxicity and targets of nephroprotection: An update. Arch. Toxicol. 2012;86:1233–1250. doi: 10.1007/s00204-012-0821-7.
    1. Xing J.J., Hou J.G., Ma Z.N., Wang Z., Ren S., Wang Y.P., Liu W.C., Chen C., Li W. Ginsenoside Rb3 provides protective effects against cisplatin-induced nephrotoxicity via regulation of AMPK-/mTOR-mediated autophagy and inhibition of apoptosis in vitro and in vivo. Cell Prolif. 2019;52:e12627. doi: 10.1111/cpr.12627.
    1. Hoek J., Bloemendal K.M., Van der Velden L.A.A., Van Diessen J.N., Van Werkhoven E., Klop W.M., Tesselaar M.E. Nephrotoxicity as a Dose-Limiting Factor in a High-Dose Cisplatin-Based Chemoradiotherapy Regimen for Head and Neck Carcinomas. Cancers. 2016;8:21. doi: 10.3390/cancers8020021.
    1. Mi X.-J., Hou J.-G., Wang Z., Han Y., Ren S., Hu J.-N., Chen C., Li W. The protective effects of maltol on cisplatin-induced nephrotoxicity through the AMPK-mediated PI3K/Akt and p53 signaling pathways. Sci. Rep. 2018;8:15922. doi: 10.1038/s41598-018-34156-6.
    1. Ashrafi F., Haghshenas S., Nematbakhsh M., Nasri H., Talebi A., Eshraghi-Jazi F., Pezeshki Z., Safari T. The Role of Magnesium Supplementation in Cisplatin-induced Nephrotoxicity in a Rat Model: No Nephroprotectant Effect. Int. J. Prev. Med. 2012;3:637–643.
    1. Sastry J., Kellie S.J. Severe neurotoxicity, ototoxicity and nephrotoxicity following high-dose cisplatin and amifostine. Pediatric Hematol. Oncol. 2005;22:441–445. doi: 10.1080/08880010590964381.
    1. Qin Y., Stokman G., Yan K., Ramaiahgari S., Verbeek F., De Graauw M., Van de Water B., Price L.S. cAMP signalling protects proximal tubular epithelial cells from cisplatin-induced apoptosis via activation of Epac. Br. J. Pharmacol. 2012;165:1137–1150. doi: 10.1111/j.1476-5381.2011.01594.x.
    1. Bellomo R., Kellum J.A., Ronco C. Acute kidney injury. Lancet. 2012;380:756–766. doi: 10.1016/S0140-6736(11)61454-2.
    1. Kellum J.A., Unruh M.L., Murugan R. Acute kidney injury. BMJ Clin. Evid. 2011;394:1949–1964. doi: 10.1097/CCM.0b013e318168c4a4.
    1. Lameire N., Van Biesen W., Vanholder R. Acute kidney injury. Lancet. 2008;372:1863–1865. doi: 10.1016/S0140-6736(08)61794-8.
    1. Hanif M.O., Bali A., Ramphul K. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2020. Acute renal tubular necrosis.
    1. Rahman M., Shad F., Smith M.C. Acute kidney injury: A guide to diagnosis and management. Am. Fam. Physician. 2012;86:631–639.
    1. Dalal R., Bruss Z.S., Sehdev J.S. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2019. Physiology, renal blood flow and filtration.
    1. Oh G.-S., Kim H.-J., Shen A., Lee S.B., Khadka D., Pandit A., So H.-S. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolytes Blood Press. 2014;12:55–65. doi: 10.5049/EBP.2014.12.2.55.
    1. Miller R.P., Tadagavadi R.K., Ramesh G., Reeves W.B. Mechanisms of Cisplatin Nephrotoxicity. Toxins (Basel) 2010;2:2490–2518. doi: 10.3390/toxins2112490.
    1. Bennis Y., Savry A., Rocca M., Gauthier-Villano L., Pisano P., Pourroy B. Cisplatin dose adjustment in patients with renal impairment, which recommendations should we follow? Int. J. Clin. Pharm. 2014;36:420–429. doi: 10.1007/s11096-013-9912-7.
    1. Ozkok A., Edelstein C.L. Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 2014;2014:967826. doi: 10.1155/2014/967826.
    1. Rosner M.H., Perazella M.A. Acute kidney injury in the patient with cancer. Kidney Res. Clin. Pract. 2019;38:295. doi: 10.23876/j.krcp.19.042.
    1. Ramesh G., Reeves W.B. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Investig. 2002;110:835–842. doi: 10.1172/JCI200215606.
    1. Zhang B., Ramesh G., Norbury C., Reeves W. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-α produced by renal parenchymal cells. Kidney Int. 2007;72:37–44. doi: 10.1038/sj.ki.5002242.
    1. Liu P., Li X., Lv W., Xu Z. Inhibition of CXCL1-CXCR2 axis ameliorates cisplatin-induced acute kidney injury by mediating inflammatory response. Biomed. Pharmacother. 2020;122:109693. doi: 10.1016/j.biopha.2019.109693.
    1. Soni H., Kaminski D., Gangaraju R., Adebiyi A. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding. Ren. Fail. 2018;40:314–322. doi: 10.1080/0886022X.2018.1456938.
    1. Ni J., Hou X., Wang X., Shi Y., Xu L., Zheng X., Liu N., Qiu A., Zhuang S. 3-deazaneplanocin A protects against cisplatin-induced renal tubular cell apoptosis and acute kidney injury by restoration of E-cadherin expression. Cell Death Dis. 2019;10:355. doi: 10.1038/s41419-019-1589-y.
    1. Potočnjak I., Marinić J., Batičić L., Šimić L., Broznić D., Domitrović R. Aucubin administered by either oral or parenteral route protects against cisplatin-induced acute kidney injury in mice. Food Chem. Toxicol. 2020;142:111472. doi: 10.1016/j.fct.2020.111472.
    1. Huang S.-J., Huang J., Yan Y.-B., Qiu J., Tan R.-Q., Liu Y., Tian Q., Guan L., Niu S.-S., Zhang Y. The renoprotective effect of curcumin against cisplatin-induced acute kidney injury in mice: Involvement of miR-181a/PTEN axis. Ren. Fail. 2020;42:350–357. doi: 10.1080/0886022X.2020.1751658.
    1. Abd El-Kader M., Taha R.I. Comparative nephroprotective effects of curcumin and etoricoxib against cisplatin-induced acute kidney injury in rats. Acta Histochem. 2020;122:151534. doi: 10.1016/j.acthis.2020.151534.
    1. Chai Y., Zhu K., Li C., Wang X., Shen J., Yong F., Jia H. Dexmedetomidine alleviates cisplatin-induced acute kidney injury by attenuating endoplasmic reticulum stress-induced apoptosis via the α2AR/PI3K/AKT pathway. Mol. Med. Rep. 2020;21:1597–1605. doi: 10.3892/mmr.2020.10962.
    1. Kadir A., Sher S., Siddiqui R.A., Mirza T. Nephroprotective role of eugenol against cisplatin-induced acute kidney injury in mice. Pak. J. Pharm. Sci. 2020;33:1281–1287.
    1. Hu Z., Zhang H., Yi B., Yang S., Liu J., Hu J., Wang J., Cao K., Zhang W. VDR activation attenuate cisplatin induced AKI by inhibiting ferroptosis. Cell Death Dis. 2020;11:1–11. doi: 10.1038/s41419-020-2256-z.
    1. Fan X., Wei W., Huang J., Liu X., Ci X. Isoorientin attenuates cisplatin-induced nephrotoxicity through the inhibition of oxidative stress and apoptosis via activating the SIRT1/SIRT6/Nrf-2 pathway. Front. Pharmacol. 2020;11:264. doi: 10.3389/fphar.2020.00264.
    1. Zhang Y., Chen Y., Li B., Ding P., Jin D., Hou S., Cai X., Sheng X. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomed. Pharmacother. 2020;129:110408. doi: 10.1016/j.biopha.2020.110408.
    1. Tan R.Z., Wang C., Deng C., Zhong X., Yan Y., Luo Y., Lan H.Y., He T., Wang L. Quercetin protects against cisplatin-induced acute kidney injury by inhibiting Mincle/Syk/NF-κB signaling maintained macrophage inflammation. Phytother. Res. 2020;34:139–152. doi: 10.1002/ptr.6507.
    1. Liang H., Zhang Z., He L., Wang Y. CXCL16 regulates cisplatin-induced acute kidney injury. Oncotarget. 2016;7:31652. doi: 10.18632/oncotarget.9386.
    1. Liu H., Baliga R. Cytochrome P450 2E1 null mice provide novel protection against cisplatin-induced nephrotoxicity and apoptosis. Kidney Int. 2003;63:1687–1696. doi: 10.1046/j.1523-1755.2003.00908.x.
    1. Mitazaki S., Honma S., Suto M., Kato N., Hiraiwa K., Yoshida M., Abe S. Interleukin-6 plays a protective role in development of cisplatin-induced acute renal failure through upregulation of anti-oxidative stress factors. Life Sci. 2011;88:1142–1148. doi: 10.1016/j.lfs.2011.04.016.
    1. Ravichandran K., Holditch S., Brown C.N., Wang Q., Ozkok A., Weiser-Evans M.C., Nemenoff R., Miyazaki M., Thiessen-Philbrook H., Parikh C.R. IL-33 deficiency slows cancer growth but does not protect against cisplatin-induced AKI in mice with cancer. Am. J. Physiol. Ren. Physiol. 2018;314:F356–F366. doi: 10.1152/ajprenal.00040.2017.
    1. Kim H.-J., Lee D.W., Ravichandran K., Keys D.O., Akcay A., Nguyen Q., He Z., Jani A., Ljubanovic D., Edelstein C.L. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury. J. Pharmacol. Exp. Ther. 2013;346:465–472. doi: 10.1124/jpet.113.205732.
    1. Mukhopadhyay P., Horváth B., Kechrid M., Tanchian G., Rajesh M., Naura A.S., Boulares A.H., Pacher P. Poly (ADP-ribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic. Biol. Med. 2011;51:1774–1788. doi: 10.1016/j.freeradbiomed.2011.08.006.
    1. Liu M., Chien C.-C., Burne-Taney M., Molls R.R., Racusen L.C., Colvin R.B., Rabb H. A pathophysiologic role for T lymphocytes in murine acute cisplatin nephrotoxicity. J. Am. Soc. Nephrol. 2006;17:765–774. doi: 10.1681/ASN.2005010102.
    1. Zhou J., An C., Jin X., Hu Z., Safirstein R.L., Wang Y. TAK1 deficiency attenuates cisplatin-induced acute kidney injury. Am. J. Physiol. Ren. Physiol. 2020;318:F209–F215. doi: 10.1152/ajprenal.00516.2019.
    1. Andrade-Silva M., Cenedeze M.A., Perandini L.A., Felizardo R.J.F., Watanabe I.K.M., Agudelo J.S.H., Castoldi A., Gonçalves G.M., Origassa C.S.T., Semedo P. TLR2 and TLR4 play opposite role in autophagy associated with cisplatin-induced acute kidney injury. Clin. Sci. 2018;132:1725–1739. doi: 10.1042/CS20170262.
    1. Alikhan M.A., Summers S.A., Gan P.Y., Chan A.J., Khouri M.B., Ooi J.D., Ghali J.R., Odobasic D., Hickey M.J., Kitching A.R. Endogenous toll-like receptor 9 regulates AKI by promoting regulatory T cell recruitment. J. Am. Soc. Nephrol. 2016;27:706–714. doi: 10.1681/ASN.2014090927.
    1. Pabla N., Murphy R.F., Liu K., Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol Ren. Physiol. 2009;296:F505–F511. doi: 10.1152/ajprenal.90545.2008.
    1. Ciarimboli G., Ludwig T., Lang D., Pavenstädt H., Koepsell H., Piechota H.-J., Haier J., Jaehde U., Zisowsky J., Schlatter E. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am. J. Pathol. 2005;167:1477–1484. doi: 10.1016/S0002-9440(10)61234-5.
    1. Ciarimboli G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res. 2014;34:547–550. doi: 10.6064/2012/473829.
    1. Ciarimboli G., Deuster D., Knief A., Sperling M., Holtkamp M., Edemir B., Pavenstadt H., Lanvers-Kaminsky C., Am Zehnhoff-Dinnesen A., Schinkel A.H., et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 2010;176:1169–1180. doi: 10.2353/ajpath.2010.090610.
    1. Tanihara Y., Masuda S., Katsura T., Inui K.-I. Protective effect of concomitant administration of imatinib on cisplatin-induced nephrotoxicity focusing on renal organic cation transporter OCT2. Biochem. Pharmacol. 2009;78:1263–1271. doi: 10.1016/j.bcp.2009.06.014.
    1. Ismail R.S., El-Awady M.S., Hassan M.H. Pantoprazole abrogated cisplatin-induced nephrotoxicity in mice via suppression of inflammation, apoptosis, and oxidative stress. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020;393:1–11. doi: 10.1007/s00210-020-01823-3.
    1. Hu S., Leblanc A., Gibson A., Hong K., Kim J., Janke L., Li L., Vasilyeva A., Finkelstein D., Sprowl J. Identification of OAT1/OAT3 as contributors to cisplatin toxicity. Clin. Transl. Sci. 2017;10:412–420. doi: 10.1111/cts.12480.
    1. Morsy M.A., Heeba G.H. Nebivolol ameliorates cisplatin-induced nephrotoxicity in rats. Basic Clin. Pharmacol. Toxicol. 2016;118:449–455. doi: 10.1111/bcpt.12538.
    1. Nakamura T., Yonezawa A., Hashimoto S., Katsura T., Inui K. Disruption of multidrug and toxin extrusion MATE1 potentiates cisplatin-induced nephrotoxicity. Biochem. Pharm. 2010;80:1762–1767. doi: 10.1016/j.bcp.2010.08.019.
    1. Wen X., Buckley B., McCandlish E., Goedken M.J., Syed S., Pelis R., Manautou J.E., Aleksunes L.M. Transgenic expression of the human MRP2 transporter reduces cisplatin accumulation and nephrotoxicity in Mrp2-null mice. Am. J. Pathol. 2014;184:1299–1308. doi: 10.1016/j.ajpath.2014.01.025.
    1. Townsend D.M., Deng M., Zhang L., Lapus M.G., Hanigan M.H. Metabolism of cisplatin to a nephrotoxin in proximal tubule cells. J. Am. Soc. Nephrol. 2003;14:1–10. doi: 10.1097/01.ASN.0000042803.28024.92.
    1. Nieskens T.T., Peters J.G., Dabaghie D., Korte D., Jansen K., Van Asbeck A.H., Tavraz N.N., Friedrich T., Russel F.G., Masereeuw R. Expression of organic anion transporter 1 or 3 in human kidney proximal tubule cells reduces cisplatin sensitivity. Drug Metab. Dispos. 2018;46:592–599. doi: 10.1124/dmd.117.079384.
    1. Jhaveri K.D., Wanchoo R., Sakhiya V., Ross D.W., Fishbane S. Adverse renal effects of novel molecular oncologic targeted therapies: A narrative review. Kidney Int. Rep. 2017;2:108–123. doi: 10.1016/j.ekir.2016.09.055.
    1. Marcolino M., Boersma E., Clementino N., Macedo A., Marx-Neto A., Silva M., van Gelder T., Akkerhuis K., Ribeiro A. Imatinib treatment duration is related to decreased estimated glomerular filtration rate in chronic myeloid leukemia patients. Ann. Oncol. 2011;22:2073–2079. doi: 10.1093/annonc/mdq715.
    1. Huang D., Wang C., Duan Y., Meng Q., Liu Z., Huo X., Sun H., Ma X., Liu K. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury. Toxicol. Appl. Pharmacol. 2017;326:15–24. doi: 10.1016/j.taap.2017.04.013.
    1. Ishida S., Lee J., Thiele D.J., Herskowitz I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci. USA. 2002;99:14298–14302. doi: 10.1073/pnas.162491399.
    1. Bonventre J.V., Yang L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 2011;121:4210–4221. doi: 10.1172/JCI45161.
    1. Lin X., Okuda T., Holzer A., Howell S. The Copper Transporter CTR1 Regulates Cisplatin Uptake in Saccharomyces cerevisiae. Mol. Pharmacol. 2002;62:1154–1159. doi: 10.1124/mol.62.5.1154.
    1. Fox E., Levin K., Zhu Y., Segers B., Balamuth N., Womer R., Bagatell R., Balis F. Pantoprazole, an Inhibitor of the Organic Cation Transporter 2, Does Not Ameliorate Cisplatin-Related Ototoxicity or Nephrotoxicity in Children and Adolescents with Newly Diagnosed Osteosarcoma Treated with Methotrexate, Doxorubicin, and Cisplatin. Oncologist. 2018;23:762. doi: 10.1634/theoncologist.2018-0037.
    1. Kuo M.T., Chen H.H., Song I.S., Savaraj N., Ishikawa T. The roles of copper transporters in cisplatin resistance. Cancer Metastasis Rev. 2007;26:71–83. doi: 10.1007/s10555-007-9045-3.
    1. Hoffmann E.K., Sørensen B.H., Sauter D.P., Lambert I.H. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance. Channels. 2015;9:380–396. doi: 10.1080/19336950.2015.1089007.
    1. Osei-Owusu J., Yang J., Del Carmen Vitery M., Qiu Z. Current Topics in Membranes. Volume 81. Elsevier; Amsterdam, The Netherlands: 2018. Molecular biology and physiology of volume-regulated anion channel (VRAC) pp. 177–203.
    1. Holditch S.J., Brown C.N., Lombardi A.M., Nguyen K.N., Edelstein C.L. Recent Advances in Models, Mechanisms, Biomarkers, and Interventions in Cisplatin-Induced Acute Kidney Injury. Int. J. Mol. Sci. 2019;20:3011. doi: 10.3390/ijms20123011.
    1. Lalan M., Bagchi T., Misra A. Challenges in Delivery of Therapeutic Genomics and Proteomics. Elsevier; Amsterdam, The Netherlands: 2011. The Cell; pp. 1–43.
    1. Yonny M.E., García E.M., Lopez A., Arroquy J.I., Nazareno M.A. Measurement of malondialdehyde as oxidative stress biomarker in goat plasma by HPLC-DAD. Microchem. J. 2016;129:281–285. doi: 10.1016/j.microc.2016.07.010.
    1. Galgamuwa R., Hardy K., Dahlstrom J.E., Blackburn A.C., Wium E., Rooke M., Cappello J.Y., Tummala P., Patel H.R., Chuah A. Dichloroacetate prevents cisplatin-induced nephrotoxicity without compromising cisplatin anticancer properties. J. Am. Soc. Nephrol. 2016;27:3331–3344. doi: 10.1681/ASN.2015070827.
    1. Mizuno T., Sato W., Ishikawa K., Terao Y., Takahashi K., Noda Y., Yuzawa Y., Nagamatsu T. Significance of downregulation of renal organic cation transporter (SLC47A1) in cisplatin-induced proximal tubular injury. Oncotargets Ther. 2015;8:1701. doi: 10.2147/OTT.S86743.
    1. Komatsu M., Sumizawa T., Mutoh M., Chen Z.-S., Terada K., Furukawa T., Yang X.-L., Gao H., Miura N., Sugiyama T. Copper-transporting P-type adenosine triphosphatase (ATP7B) is associated with cisplatin resistance. Cancer Res. 2000;60:1312–1316.
    1. Samimi G., Varki N.M., Wilczynski S., Safaei R., Alberts D.S., Howell S.B. Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin. Cancer Res. 2003;9:5853–5859.
    1. Kalayda G.V., Wagner C.H., Buß I., Reedijk J., Jaehde U. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer. 2008;8:175. doi: 10.1186/1471-2407-8-175.
    1. Harrach S., Ciarimboli G. Role of transporters in the distribution of platinum-based drugs. Front. Pharmacol. 2015;6:85. doi: 10.3389/fphar.2015.00085.
    1. Matsushima A., Oda K., Mori N., Murakami T. Modulated function of multidrug resistance-associated proteins in cisplatin-induced acute renal failure rats. Die Pharm. Int. J. Pharm. Sci. 2017;72:209–213.
    1. Hanigan M.H., Devarajan P. Cisplatin nephrotoxicity: Molecular mechanisms. Cancer Ther. 2003;1:47.
    1. Yonezawa A., Masuda S., Yokoo S., Katsura T., Inui K.-I. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1–3 and multidrug and toxin extrusion family) J. Pharmacol. Exp. Ther. 2006;319:879–886. doi: 10.1124/jpet.106.110346.
    1. Li Q., Guo D., Dong Z., Zhang W., Zhang L., Huang S.-M., Polli J.E., Shu Y. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs) Toxicol. Appl. Pharmacol. 2013;273:100–109. doi: 10.1016/j.taap.2013.08.024.
    1. Rubera I., Duranton C., Melis N., Cougnon M., Mograbi B., Tauc M. Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity. Cell Death Dis. 2013;4:e817. doi: 10.1038/cddis.2013.355.
    1. Jesse C.R., Bortolatto C.F., Wilhelm E.A., Roman S.S., Prigol M., Nogueira C.W. The peroxisome proliferator-activated receptor-γ agonist pioglitazone protects against cisplatin-induced renal damage in mice. J. Appl. Toxicol. 2014;34:25–32. doi: 10.1002/jat.2818.
    1. Ma Q., Xu Y., Tang L., Yang X., Chen Z., Wei Y., Shao X., Shao X., Xin Z., Cai B. Astragalus polysaccharide attenuates cisplatin-induced acute kidney injury by suppressing oxidative damage and mitochondrial dysfunction. Biomed. Res. Int. 2020;2020:2851349. doi: 10.1155/2020/2851349.
    1. Volarevic V., Djokovic B., Jankovic M.G., Harrell C.R., Fellabaum C., Djonov V., Arsenijevic N. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 2019;26:25. doi: 10.1186/s12929-019-0518-9.
    1. Townsend D.M., Tew K.D., He L., King J.B., Hanigan M.H. Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed. Pharmacother. 2009;63:79–85. doi: 10.1016/j.biopha.2008.08.004.
    1. Chen M.-F., Yang C.-M., Su C.-M., Hu M.-L. Vitamin C protects against cisplatin-induced nephrotoxicity and damage without reducing its effectiveness in C57BL/6 mice xenografted with Lewis lung carcinoma. Nutr. Cancer. 2014;66:1085–1091. doi: 10.1080/01635581.2014.948211.
    1. Darwish M.A., Abo-Youssef A.M., Khalaf M.M., Abo-Saif A.A., Saleh I.G., Abdelghany T.M. Vitamin E mitigates cisplatin-induced nephrotoxicity due to reversal of oxidative/nitrosative stress, suppression of inflammation and reduction of total renal platinum accumulation. J. Biochem. Mol. Toxicol. 2017;31:1–9. doi: 10.1002/jbt.21833.
    1. Ning Y., Shi Y., Chen J., Song N., Cai J., Fang Y., Yu X., Ji J., Ding X. Necrostatin-1 attenuates cisplatin-induced nephrotoxicity through suppression of apoptosis and oxidative stress and retains klotho expression. Front. Pharmacol. 2018;9:384. doi: 10.3389/fphar.2018.00384.
    1. Chen X., Wei W., Li Y., Huang J., Ci X. Hesperetin relieves cisplatin-induced acute kidney injury by mitigating oxidative stress, inflammation and apoptosis. Chem. Biol. Interact. 2019;308:269–278. doi: 10.1016/j.cbi.2019.05.040.
    1. Cha J.J., Min H.S., Kim K.T., Kim J.E., Ghee J.Y., Kim H.W., Lee J.E., Han J.Y., Lee G., Ha H.J., et al. APX-115, a first-in-class pan-NADPH oxidase (Nox) inhibitor, protects db/db mice from renal injury. Lab. Investig. 2017;97:419–431. doi: 10.1038/labinvest.2017.2.
    1. Zhao K., Wen L. DMF attenuates cisplatin-induced kidney injury via activating Nrf2 signaling pathway and inhibiting NF-kB signaling pathway. Eur. Rev. Med. Pharm. Sci. 2018;22:8924–8931.
    1. Ansari M.A. Sinapic acid modulates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Biomed. Pharmacother. 2017;93:646–653. doi: 10.1016/j.biopha.2017.06.085.
    1. Ben-Yehuda Greenwald M., Ben-Sasson S., Bianco-Peled H., Kohen R. Skin redox balance maintenance: The need for an Nrf2-activator delivery system. Cosmetics. 2016;3:1. doi: 10.3390/cosmetics3010001.
    1. Liu Q., Hu S., He Y., Zhang J., Zeng X., Gong F., Liang L.N. The protective effects of Zhen-Wu-Tang against cisplatin-induced acute kidney injury in rats. PloS ONE. 2017;12:e0179137. doi: 10.1371/journal.pone.0179137.
    1. Sasaki A., Koike N., Murakami T., Suzuki K. Dimethyl fumarate ameliorates cisplatin-induced renal tubulointerstitial lesions. J. Toxicol. Pathol. 2019;32:79–89. doi: 10.1293/tox.2018-0049.
    1. Winston J.A., Safirstein R. Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am. J. Physiol. 1985;249:F490–F496. doi: 10.1152/ajprenal.1985.249.4.F490.
    1. Guo Y., Wang M., Mou J., Zhao Z., Yang J., Zhu F., Pei G., Zhu H., Wang Y., Xu G. Pretreatment of Huaiqihuang extractum protects against cisplatin-induced nephrotoxicity. Sci. Rep. 2018;8:1–10.
    1. Dibona G.F., Kopp U.C. Neural control of renal function. Physiol. Rev. 1997;77:75–197. doi: 10.1152/physrev.1997.77.1.75.
    1. Walsh M.P. Regulation of vascular smooth muscle tone. Can. J. Physiol. Pharmacol. 1994;72:919–936. doi: 10.1139/y94-130.
    1. Salomonsson M., Arendshorst W.J. Calcium recruitment in renal vasculature: NE effects on blood flow and cytosolic calcium concentration. Am. J. Physiol. Ren. Physiol. 1999;276:F700–F710. doi: 10.1152/ajprenal.1999.276.5.F700.
    1. Coats A., Jain S. Protective effects of nebivolol from oxidative stress to prevent hypertension-related target organ damage. J. Hum. Hypertens. 2017;31:376–381. doi: 10.1038/jhh.2017.8.
    1. Guzik T.J., West N.E., Pillai R., Taggart D.P., Channon K.M. Nitric oxide modulates superoxide release and peroxynitrite formation in human blood vessels. Hypertension. 2002;39:1088–1094. doi: 10.1161/01.HYP.0000018041.48432.B5.
    1. Abdelrahman A.M., Al Suleimani Y., Shalaby A., Ashique M., Manoj P., Al-Saadi H., Ali B.H. Effect of levosimendan, a calcium sensitizer, on cisplatin-induced nephrotoxicity in rats. Toxicol. Rep. 2019;6:232–238. doi: 10.1016/j.toxrep.2019.02.006.
    1. Parissis J.T., Andreadou I., Bistola V., Paraskevaidis I., Filippatos G., Kremastinos D.T. Novel biologic mechanisms of levosimendan and its effect on the failing heart. Expert Opin. Investig. Drugs. 2008;17:1143–1150. doi: 10.1517/13543784.17.8.1143.
    1. Deegan P.M., Nolan C., Ryan M.P., Basinger M.A., Jones M.M., Hande K.R. The role of the renin-angiotensin system in cisplatin nephrotoxicity. Ren. Fail. 1995;17:665–674. doi: 10.3109/08860229509037634.
    1. Fountain J.H., Lappin S.L. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2017. Physiology, Renin Angiotensin System.
    1. Dhande I., Ma W., Hussain T. Angiotensin AT 2 receptor stimulation is anti-inflammatory in lipopolysaccharide-activated THP-1 macrophages via increased interleukin-10 production. Hypertens. Res. 2015;38:21–29. doi: 10.1038/hr.2014.132.
    1. Kobori H., Mori H., Masaki T., Nishiyama A. Angiotensin II blockade and renal protection. Curr. Pharm. Des. 2013;19:3033–3042. doi: 10.2174/1381612811319170009.
    1. Zhang C., Hein T.W., Wang W., Kuo L. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ. Res. 2003;92:322–329. doi: 10.1161/01.RES.0000056759.53828.2C.
    1. Cao Z., Bonnet F., Candido R., Nesteroff S.P., Burns W.C., Kawachi H., Shimizu F., Carey R.M., De Gasparo M., Cooper M.E. Angiotensin type 2 receptor antagonism confers renal protection in a rat model of progressive renal injury. J. Am. Soc. Nephrol. 2002;13:1773–1787. doi: 10.1097/01.ASN.0000019409.17099.33.
    1. Dhande I., Ali Q., Hussain T. Proximal tubule angiotensin AT2 receptors mediate an anti-inflammatory response via interleukin-10: Role in renoprotection in obese rats. Hypertension. 2013;61:1218–1226. doi: 10.1161/HYPERTENSIONAHA.111.00422.
    1. Hosoda A., Matsumoto Y., Toriyama Y., Tsuji T., Yoshida Y., Masamichi S., Kohno T. Telmisartan Exacerbates Cisplatin-Induced Nephrotoxicity in a Mouse Model. Biol. Pharm. Bull. 2020;43:1331–1337. doi: 10.1248/bpb.b20-00174.
    1. Malik S., Suchal K., Gamad N., Dinda A.K., Arya D.S., Bhatia J. Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur. J. Pharm. 2015;748:54–60. doi: 10.1016/j.ejphar.2014.12.008.
    1. Okui S., Yamamoto H., Li W., Gamachi N., Fujita Y., Kashiwamura S.-I., Miura D., Takai S., Miyazaki M., Urade M. Cisplatin-induced acute renal failure in mice is mediated by chymase-activated angiotensin-aldosterone system and interleukin-18. Eur. J. Pharm. 2012;685:149–155. doi: 10.1016/j.ejphar.2012.04.027.
    1. Zhang J., Rudemiller N.P., Patel M.B., Wei Q., Karlovich N.S., Jeffs A.D., Wu M., Sparks M.A., Privratsky J.R., Herrera M. Competing actions of type 1 angiotensin II receptors expressed on T lymphocytes and kidney epithelium during cisplatin-induced AKI. J. Am. Soc. Nephrol. 2016;27:2257–2264. doi: 10.1681/ASN.2015060683.
    1. Sherif I.O., Al-Mutabagani L.A., Alnakhli A.M., Sobh M.A., Mohammed H.E. Renoprotective effects of angiotensin receptor blocker and stem cells in acute kidney injury: Involvement of inflammatory and apoptotic markers. Exp. Biol. Med. 2015;240:1572–1579. doi: 10.1177/1535370215577582.
    1. Dharmashankar K., Widlansky M.E. Vascular Endothelial Function and Hypertension: Insights and Directions. Curr. Hypertens. Rep. 2010;12:448–455. doi: 10.1007/s11906-010-0150-2.
    1. Qaradakhi T., Apostolopoulos V., Zulli A. Angiotensin (1-7) and Alamandine: Similarities and differences. Pharmacol. Res. 2016;111:820–826. doi: 10.1016/j.phrs.2016.07.025.
    1. Velkoska E., Patel S.K., Burrell L.M. Angiotensin converting enzyme 2 and diminazene: Role in cardiovascular and blood pressure regulation. Curr. Opin. Nephrol. Hypertens. 2016;25:384–395. doi: 10.1097/MNH.0000000000000254.
    1. Rabelo L.A., Todiras M., Nunes-Souza V., Qadri F., Szijarto I.A., Gollasch M., Penninger J.M., Bader M., Santos R.A., Alenina N. Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress. PloS ONE. 2016;11:e0150255. doi: 10.1371/journal.pone.0150255.
    1. Shenoy V., Gjymishka A., Jarajapu Y.P., Qi Y., Afzal A., Rigatto K., Ferreira A.J., Fraga-Silva R.A., Kearns P., Douglas J.Y., et al. Diminazene attenuates pulmonary hypertension and improves angiogenic progenitor cell functions in experimental models. Am. J. Respir. Crit. Care Med. 2013;187:648–657. doi: 10.1164/rccm.201205-0880OC.
    1. Sampaio W.O., Souza dos Santos R.A., Faria-Silva R., Da Mata Machado L.T., Schiffrin E.L., Touyz R.M. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49:185–192. doi: 10.1161/01.HYP.0000251865.35728.2f.
    1. Gupta S., Wright H.M. Nebivolol: A highly selective β1-adrenergic receptor blocker that causes vasodilation by increasing nitric oxide. Cardiovasc. Ther. 2008;26:189–202. doi: 10.1111/j.1755-5922.2008.00054.x.
    1. Varagic J., Ahmad S., Voncannon J.L., Moniwa N., Simington S.W., Jr., Brosnihan B.K., Gallagher P.E., Habibi J., Sowers J.R., Ferrario C.M. Nebivolol reduces cardiac angiotensin II, associated oxidative stress and fibrosis but not arterial pressure in salt-loaded spontaneously hypertensive rats. J. Hypertens. 2012;30:1766. doi: 10.1097/HJH.0b013e328356766f.
    1. Wolf S., Sauter G., Preyer M., Poerner T., Kempf V., Risler T., Brehm B. Influence of nebivolol and metoprolol on inflammatory mediators in human coronary endothelial or smooth muscle cells. Effects on neointima formation after balloon denudation in carotid arteries of rats treated with nebivolol. Cell. Physiol. Biochem. 2007;19:129–136. doi: 10.1159/000099201.
    1. Szturz P., Wouters K., Kiyota N., Tahara M., Prabhash K., Noronha V., Adelstein D., Van Gestel D., Vermorken J.B. Low-dose vs. high-dose cisplatin: Lessons learned from 59 chemoradiotherapy trials in head and neck cancer. Front. Oncol. 2019;9:86. doi: 10.3389/fonc.2019.00086.
    1. Edinger A.L., Thompson C.B. Death by design: Apoptosis, necrosis and autophagy. Curr. Opin Cell Biol. 2004;16:663–669. doi: 10.1016/j.ceb.2004.09.011.
    1. Gillespie S.K., Zhang X.D., Hersey P. Ingenol 3-angelate induces dual modes of cell death and differentially regulates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in melanoma cells. Mol. Cancer. 2004;3:1651–1658.
    1. Saito Y., Nishio K., Ogawa Y., Kimata J., Kinumi T., Yoshida Y., Noguchi N., Niki E. Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radic. Res. 2006;40:619–630. doi: 10.1080/10715760600632552.
    1. Sancho-Martínez S.M., Piedrafita F.J., Cannata-Andía J.B., López-Novoa J.M., López-Hernández F.J. Necrotic concentrations of cisplatin activate the apoptotic machinery but inhibit effector caspases and interfere with the execution of apoptosis. Toxicol. Sci. 2011;122:73–85. doi: 10.1093/toxsci/kfr098.
    1. Xu Y., Ma H., Shao J., Wu J., Zhou L., Zhang Z., Wang Y., Huang Z., Ren J., Liu S., et al. A Role for Tubular Necroptosis in Cisplatin-Induced AKI. J. Am. Soc. Nephrol. JASN. 2015;26:2647–2658. doi: 10.1681/ASN.2014080741.
    1. Green D.R., Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol. 2015;7:a006080. doi: 10.1101/cshperspect.a006080.
    1. Kroemer G., El-Deiry W.S., Golstein P., Peter M.E., Vaux D., Vandenabeele P., Zhivotovsky B., Blagosklonny M.V., Malorni W., Knight R.A., et al. Classification of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ. 2005;12:1463–1467. doi: 10.1038/sj.cdd.4401724.
    1. Zhang D.-W., Shao J., Lin J., Zhang N., Lu B.-J., Lin S.-C., Dong M.-Q., Han J. RIP3, an Energy Metabolism Regulator That Switches TNF-Induced Cell Death from Apoptosis to Necrosis. Science. 2009;325:332. doi: 10.1126/science.1172308.
    1. Vandenabeele P., Galluzzi L., Vanden Berghe T., Kroemer G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 2010;11:700–714. doi: 10.1038/nrm2970.
    1. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H., Blagosklonny M.V., Dawson T.M., Dawson V.L., El-Deiry W.S., Fulda S., et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–120. doi: 10.1038/cdd.2011.96.
    1. Yang Y., Liu S., Gao H., Wang P., Zhang Y., Zhang A., Jia Z., Huang S. Ursodeoxycholic acid protects against cisplatin-induced acute kidney injury and mitochondrial dysfunction through acting on ALDH1L2. Free Radic. Biol. Med. 2020;152:821–837. doi: 10.1016/j.freeradbiomed.2020.01.182.
    1. Cao W., Yuan Y., Liu X., Li Q., An X., Huang Z., Wu L., Zhang B., Zhang A., Xing C. Adenosine kinase inhibition protects against cisplatin-induced nephrotoxicity. Am. J. Physiol. Ren. Physiol. 2019;317:F107–F115. doi: 10.1152/ajprenal.00385.2018.
    1. Shimizu S., Eguchi Y., Kamiike W., Funahashi Y., Mignon A., Lacronique V., Matsuda H., Tsujimoto Y. Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc. Natl. Acad. Sci. USA. 1998;95:1455–1459. doi: 10.1073/pnas.95.4.1455.
    1. Gertz M., Nguyen G.T.T., Fischer F., Suenkel B., Schlicker C., Fränzel B., Tomaschewski J., Aladini F., Becker C., Wolters D. A molecular mechanism for direct sirtuin activation by resveratrol. PloS ONE. 2012;7:e49761. doi: 10.1371/journal.pone.0049761.
    1. Hao Q., Xiao X., Zhen J., Feng J., Song C., Jiang B., Hu Z. Resveratrol attenuates acute kidney injury by inhibiting death receptor-mediated apoptotic pathways in a cisplatin-induced rat model. Mol. Med. Rep. 2016;14:3683–3689. doi: 10.3892/mmr.2016.5714.
    1. Xu L., Xie Q., Qi L., Wang C., Xu N., Liu W., Yu Y., Li S., Xu Y. Bcl-2 overexpression reduces cisplatin cytotoxicity by decreasing ER-mitochondrial Ca2+ signaling in SKOV3 cells. Oncol. Rep. 2018;39:985–992. doi: 10.3892/or.2017.6164.
    1. Jiang M., Wei Q., Wang J., Du Q., Yu J., Zhang L., Dong Z. Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene. 2006;25:4056–4066. doi: 10.1038/sj.onc.1209440.
    1. Yan M., Shu S., Guo C., Tang C., Dong Z. Endoplasmic reticulum stress in ischemic and nephrotoxic acute kidney injury. Ann. Med. 2018;50:381–390. doi: 10.1080/07853890.2018.1489142.
    1. Linkermann A., Chen G., Dong G., Kunzendorf U., Krautwald S., Dong Z. Regulated cell death in AKI. J. Am. Soc. Nephrol. JASN. 2014;25:2689–2701. doi: 10.1681/ASN.2014030262.
    1. Wang X., Parrish A.R. Loss of α(E)-catenin promotes Fas mediated apoptosis in tubular epithelial cells. Apoptosis. 2015;20:921–929. doi: 10.1007/s10495-015-1129-x.
    1. Scaffidi C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K.J., Debatin K.M., Krammer P.H., Peter M.E. Two CD95 (APO-1/Fas) signaling pathways. Embo J. 1998;17:1675–1687. doi: 10.1093/emboj/17.6.1675.
    1. Tsuruya K., Ninomiya T., Tokumoto M., Hirakawa M., Masutani K., Taniguchi M., Fukuda K., Kanai H., Kishihara K., Hirakata H., et al. Direct involvement of the receptor-mediated apoptotic pathways in cisplatin-induced renal tubular cell death. Kidney Int. 2003;63:72–82. doi: 10.1046/j.1523-1755.2003.00709.x.
    1. García-Berrocal J., Nevado J., Ramírez-Camacho R., Sanz R., González-García J., Sánchez-Rodríguez C., Cantos B., España P., Verdaguer J., Trinidad Cabezas A. The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. Br. J. Pharmacol. 2007;152:1012–1020. doi: 10.1038/sj.bjp.0707405.
    1. Chirino Y.I., Pedraza-Chaverri J. Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp. Toxicol. Pathol. 2009;61:223–242. doi: 10.1016/j.etp.2008.09.003.
    1. Ramesh G., Reeves W.B. p38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am. J. Physiol. Ren. Physiol. 2005;289:F166–F174. doi: 10.1152/ajprenal.00401.2004.
    1. Wang C., Dai H., Xiong Z., Song Q., Zou Z., Li M., Nie J., Bai X., Chen Z. Loss of DEPTOR in renal tubules protects against cisplatin-induced acute kidney injury. Cell Death Dis. 2018;9:441. doi: 10.1038/s41419-018-0483-3.
    1. Inagi R. Endoplasmic reticulum stress as a progression factor for kidney injury. Curr. Opin. Pharmacol. 2010;10:156–165. doi: 10.1016/j.coph.2009.11.006.
    1. Peyrou M., Hanna P.E., Cribb A.E. Cisplatin, gentamicin, and p-aminophenol induce markers of endoplasmic reticulum stress in the rat kidneys. Toxicol. Sci. 2007;99:346–353. doi: 10.1093/toxsci/kfm152.
    1. Long Y., Zhen X., Zhu F., Hu Z., Lei W., Li S., Zha Y., Nie J. Hyperhomocysteinemia exacerbates cisplatin-induced acute kidney injury. Int. J. Biol. Sci. 2017;13:219. doi: 10.7150/ijbs.16725.
    1. Wang M., Wey S., Zhang Y., Ye R., Lee A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid Redox Signal. 2009;11:2307–2316. doi: 10.1089/ars.2009.2485.
    1. Nishitoh H. CHOP is a multifunctional transcription factor in the ER stress response. J. Biochem. 2012;151:217–219. doi: 10.1093/jb/mvr143.
    1. Zhang K., Kaufman R.J. Chapter Twenty Identification and Characterization of Endoplasmic Reticulum Stress-Induced Apoptosis In Vivo. Methods Enzymol. 2008;442:395–419.
    1. Liu H., Baliga R. Endoplasmic reticulum stress–associated caspase 12 mediates cisplatin-induced LLC-PK1 cell apoptosis. J. Am. Soc. Nephrol. 2005;16:1985–1992. doi: 10.1681/ASN.2004090768.
    1. Huang Z., Guo F., Xia Z., Liang Y., Lei S., Tan Z., Ma L., Fu P. Activation of GPR120 by TUG891 ameliorated cisplatin-induced acute kidney injury via repressing ER stress and apoptosis. Biomed. Pharmacother. 2020;126:110056. doi: 10.1016/j.biopha.2020.110056.
    1. Chen B., Liu G., Zou P., Li X., Hao Q., Jiang B., Yang X., Hu Z. Epigallocatechin-3-gallate protects against cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Exp. Biol. Med. 2015;240:1513–1519. doi: 10.1177/1535370215573394.
    1. Hao Y., Guo F., Huang Z., Feng Y., Xia Z., Liu J., Li L., Huang R., Lin L., Ma L. 2-Methylquinazoline derivative 23BB as a highly selective histone deacetylase 6 inhibitor alleviated cisplatin-induced acute kidney injury. Biosci. Rep. 2020;40:BSR20191538. doi: 10.1042/BSR20191538.
    1. Kong D., Zhuo L., Gao C., Shi S., Wang N., Huang Z., Li W., Hao L. Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis. J. Nephrol. 2013;26:219–227. doi: 10.5301/jn.5000177.
    1. Gao Z., Liu G., Hu Z., Li X., Yang X., Jiang B., Li X. Grape seed proanthocyanidin extract protects from cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Mol. Med. Rep. 2014;9:801–807. doi: 10.3892/mmr.2014.1883.
    1. Tan Z., Guo F., Huang Z., Xia Z., Liu J., Tao S., Li L., Feng Y., Du X., Ma L. Pharmacological and genetic inhibition of fatty acid-binding protein 4 alleviated cisplatin-induced acute kidney injury. J. Cell. Mol. Med. 2019;23:6260–6270. doi: 10.1111/jcmm.14512.
    1. Furuichi K., Kaneko S., Wada T. Chemokine/chemokine receptor-mediated inflammation regulates pathologic changes from acute kidney injury to chronic kidney disease. Clin. Exp. Nephrol. 2009;13:9–14. doi: 10.1007/s10157-008-0119-5.
    1. Liu X.-Q., Jin J., Li Z., Jiang L., Dong Y.-H., Cai Y.-T., Wu M.-F., Wang J.-N., Ma T.-T., Wen J.-G. Rutaecarpine Derivative Cpd-6c Alleviates Acute Kidney Injury by Targeting PDE4B, a Key Enzyme Mediating inflammation in Cisplatin Nephropathy. Biochem. Pharmacol. 2020;180:114132. doi: 10.1016/j.bcp.2020.114132.
    1. Zarember K.A., Godowski P.J. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J. Immunol. 2002;168:554–561. doi: 10.4049/jimmunol.168.2.554.
    1. Kimbrell D.A., Beutler B. The evolution and genetics of innate immunity. Nat. Rev. Genet. 2001;2:256–267. doi: 10.1038/35066006.
    1. Aderem A., Ulevitch R.J. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406:782–787. doi: 10.1038/35021228.
    1. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. doi: 10.1016/j.cell.2006.02.015.
    1. Godfroy J.I., III, Roostan M., Moroz Y.S., Korendovych I.V., Yin H. Isolated Toll-like receptor transmembrane domains are capable of oligomerization. PloS ONE. 2012;7:e48875. doi: 10.1371/journal.pone.0048875.
    1. Bell J.K., Mullen G.E., Leifer C.A., Mazzoni A., Davies D.R., Segal D.M. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol. 2003;24:528–533. doi: 10.1016/S1471-4906(03)00242-4.
    1. Butcher S.K., O’Carroll C.E., Wells C.A., Carmody R.J. Toll-like receptors drive specific patterns of tolerance and training on restimulation of macrophages. Front. Immunol. 2018;9:933. doi: 10.3389/fimmu.2018.00933.
    1. Zhang D., Zhang G., Hayden M.S., Greenblatt M.B., Bussey C., Flavell R.A., Ghosh S. A toll-like receptor that prevents infection by uropathogenic bacteria. Science. 2004;303:1522–1526. doi: 10.1126/science.1094351.
    1. Sharma S., Zou W., Sun Q., Grandvaux N., Julkunen I., Hemmi H., Yamamoto M., Akira S., Yeh W.-C., Lin R. Activation of TBK1 and IKKε kinases by vesicular stomatitis virus infection and the role of viral ribonucleoprotein in the development of interferon antiviral immunity. J. Virol. 2004;78:10636–10649.
    1. Patel S. Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation. Curr. Allergy Asthma Rep. 2018;18:63. doi: 10.1007/s11882-018-0817-3.
    1. Kurup S.P., Tarleton R.L. Perpetual expression of PAMPs necessary for optimal immune control and clearance of a persistent pathogen. Nat. Commun. 2013;4:2616. doi: 10.1038/ncomms3616.
    1. Piccinini A., Midwood K. DAMPening inflammation by modulating TLR signalling. Mediat. Inflamm. 2010;2010:672395. doi: 10.1155/2010/672395.
    1. Bagchi A., Herrup E.A., Warren H.S., Trigilio J., Shin H.-S., Valentine C., Hellman J. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. J. Immunol. 2007;178:1164–1171. doi: 10.4049/jimmunol.178.2.1164.
    1. Yamamoto M., Sato S., Hemmi H., Hoshino K., Kaisho T., Sanjo H., Takeuchi O., Sugiyama M., Okabe M., Takeda K. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 2003;301:640–643. doi: 10.1126/science.1087262.
    1. Mäkelä S.M., Strengell M., Pietilä T.E., Österlund P., Julkunen I. Multiple signaling pathways contribute to synergistic TLR ligand-dependent cytokine gene expression in human monocyte-derived macrophages and dendritic cells. J. Leukoc. Biol. 2009;85:664–672. doi: 10.1189/jlb.0808503.
    1. Grassin-Delyle S., Abrial C., Salvator H., Brollo M., Naline E., Devillier P. The role of toll-like receptors in the production of cytokines by human lung macrophages. J. Innate Immun. 2020;12:63–73. doi: 10.1159/000494463.
    1. Zhang Y., He X., Yu F., Xiang Z., Li J., Thorpe K.L., Yu Z. Characteristic and functional analysis of toll-like receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity. PloS ONE. 2013;8:e76464.
    1. Mulla M.J., Myrtolli K., Tadesse S., Stanwood N.L., Gariepy A., Guller S., Norwitz E.R., Abrahams V.M. Cutting-Edge Report: TLR 10 Plays a Role in Mediating Bacterial Peptidoglycan-Induced Trophoblast Apoptosis. Am. J. Reprod. Immunol. 2013;69:449–453. doi: 10.1111/aji.12065.
    1. Shamsul H.M., Hasebe A., Iyori M., Ohtani M., Kiura K., Zhang D., Totsuka Y., Shibata K.i. The Toll-like receptor 2 (TLR2) ligand FSL-1 is internalized via the clathrin-dependent endocytic pathway triggered by CD14 and CD36 but not by TLR2. Immunology. 2010;130:262–272. doi: 10.1111/j.1365-2567.2009.03232.x.
    1. Tan Y., Zanoni I., Cullen T.W., Goodman A.L., Kagan J.C. Mechanisms of Toll-like receptor 4 endocytosis reveal a common immune-evasion strategy used by pathogenic and commensal bacteria. Immunity. 2015;43:909–922. doi: 10.1016/j.immuni.2015.10.008.
    1. Wörnle M., Schmid H., Banas B., Merkle M., Henger A., Roeder M., Blattner S., Bock E., Kretzler M., Gröne H.-J. Novel role of toll-like receptor 3 in hepatitis C-associated glomerulonephritis. Am. J. Pathol. 2006;168:370–385. doi: 10.2353/ajpath.2006.050491.
    1. Kropf P., Freudenberg M.A., Modolell M., Price H.P., Herath S., Antoniazi S., Galanos C., Smith D.F., Müller I. Toll-like receptor 4 contributes to efficient control of infection with the protozoan parasite Leishmania major. Infect. Immun. 2004;72:1920–1928. doi: 10.1128/IAI.72.4.1920-1928.2004.
    1. Shigeoka A.A., Holscher T.D., King A.J., Hall F.W., Kiosses W.B., Tobias P.S., Mackman N., McKay D.B. TLR2 is constitutively expressed within the kidney and participates in ischemic renal injury through both MyD88-dependent and-independent pathways. J. Immunol. 2007;178:6252–6258. doi: 10.4049/jimmunol.178.10.6252.
    1. Conti F., Spinelli F.R., Truglia S., Miranda F., Alessandri C., Ceccarelli F., Bombardieri M., Giannakakis K., Valesini G. Kidney expression of toll like receptors in lupus nephritis: Quantification and clinicopathological correlations. Mediat. Inflamm. 2016;2016 doi: 10.1155/2016/7697592.
    1. Ciferska H., Horak P., Konttinen Y.T., Krejci K., Tichy T., Hermanova Z., Zadrazil J. Expression of nucleic acid binding Toll-like receptors in control, lupus and transplanted kidneys–a preliminary pilot study. Lupus. 2008;17:580–585. doi: 10.1177/0961203307088130.
    1. Lin M., Yiu W.H., Wu H.J., Chan L.Y., Leung J.C., Au W.S., Chan K.W., Lai K.N., Tang S.C. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J. Am. Soc. Nephrol. 2012;23:86–102. doi: 10.1681/ASN.2010111210.
    1. Srivastava T., Sharma M., Yew K.-H., Sharma R., Duncan R.S., Saleem M.A., McCarthy E.T., Kats A., Cudmore P.A., Alon U.S. LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: Changes in TLR profile. J. Cell Commun. Signal. 2013;7:49–60. doi: 10.1007/s12079-012-0184-0.
    1. Shimada M., Ishimoto T., Lee P.Y., Lanaspa M.A., Rivard C.J., Roncal-Jimenez C.A., Wymer D.T., Yamabe H., Mathieson P.W., Saleem M.A. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-κ B-dependent pathway. Nephrol. Dial. Transplant. 2012;27:81–89. doi: 10.1093/ndt/gfr271.
    1. Li D., Zou L., Feng Y., Xu G., Gong Y., Zhao G., Ouyang W., Thurman J.M., Chao W. Complement factor B production in renal tubular cells and its role in sodium transporter expression during polymicrobial sepsis. Crit. Care Med. 2016;44:e289. doi: 10.1097/CCM.0000000000001566.
    1. Bäckhed F., Söderhäll M., Ekman P., Normark S., Richter-Dahlfors A. Induction of innate immune responses by Escherichia coli and purified lipopolysaccharide correlate with organ-and cell-specific expression of Toll-like receptors within the human urinary tract. Cell. Microbiol. 2001;3:153–158. doi: 10.1046/j.1462-5822.2001.00101.x.
    1. Jonassen J.A., Kohjimoto Y., Scheid C.R., Schmidt M. Oxalate toxicity in renal cells. Urol. Res. 2005;33:329–339. doi: 10.1007/s00240-005-0485-3.
    1. Yang W.S., Kim J.-S., Han N.J., Lee M.J., Park S.-K. Toll-like receptor 4/spleen tyrosine kinase complex in high glucose signal transduction of proximal tubular epithelial cells. Cell. Physiol. Biochem. 2015;35:2309–2319. doi: 10.1159/000374034.
    1. Han S.J., Li H., Kim M., Shlomchik M.J., Lee H.T. Kidney proximal tubular TLR9 exacerbates ischemic acute kidney injury. J. Immunol. 2018;201:1073–1085. doi: 10.4049/jimmunol.1800211.
    1. Samuelsson P., Hang L., Wullt B., Irjala H., Svanborg C. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect. Immun. 2004;72:3179–3186. doi: 10.1128/IAI.72.6.3179-3186.2004.
    1. Papadimitraki E., Tzardi M., Bertsias G., Sotsiou E., Boumpas D.T. Glomerular expression of toll-like receptor-9 in lupus nephritis but not in normal kidneys: Implications for the amplification of the inflammatory response. Lupus. 2009;18:831–835. doi: 10.1177/0961203309103054.
    1. González-Guerrero C., Cannata-Ortiz P., Guerri C., Egido J., Ortiz A., Ramos A.M. TLR4-mediated inflammation is a key pathogenic event leading to kidney damage and fibrosis in cyclosporine nephrotoxicity. Arch. Toxicol. 2017;91:1925–1939. doi: 10.1007/s00204-016-1830-8.
    1. Lepenies J., Eardley K.S., Kienitz T., Hewison M., Ihl T., Stewart P.M., Cockwell P., Quinkler M. Renal TLR4 mRNA expression correlates with inflammatory marker MCP-1 and profibrotic molecule TGF-β1 in patients with chronic kidney disease. Nephron Clin. Pract. 2011;119:c97–c104. doi: 10.1159/000324765.
    1. Leemans J.C., Stokman G., Claessen N., Rouschop K.M., Teske G.J., Kirschning C.J., Akira S., Van der Poll T., Weening J.J., Florquin S. Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J. Clin. Investig. 2005;115:2894–2903. doi: 10.1172/JCI22832.
    1. Verzola D., Cappuccino L., D’amato E., Villaggio B., Gianiorio F., Mij M., Simonato A., Viazzi F., Salvidio G., Garibotto G. Enhanced glomerular Toll-like receptor 4 expression and signaling in patients with type 2 diabetic nephropathy and microalbuminuria. Kidney Int. 2014;86:1229–1243. doi: 10.1038/ki.2014.116.
    1. Park H.J., Stokes J.A., Corr M., Yaksh T.L. Toll-like receptor signaling regulates cisplatin-induced mechanical allodynia in mice. Cancer Chemother. Pharmacol. 2014;73:25–34. doi: 10.1007/s00280-013-2304-9.
    1. Volarevic V., Markovic B.S., Jankovic M.G., Djokovic B., Jovicic N., Harrell C.R., Fellabaum C., Djonov V., Arsenijevic N., Lukic M.L. Galectin 3 protects from cisplatin-induced acute kidney injury by promoting TLR-2-dependent activation of IDO1/Kynurenine pathway in renal DCs. Theranostics. 2019;9:5976. doi: 10.7150/thno.33959.
    1. Ma X., Yan L., Zhu Q., Shao F. Puerarin attenuates cisplatin-induced rat nephrotoxicity: The involvement of TLR4/NF-κB signaling pathway. PloS ONE. 2017;12:e0171612. doi: 10.1371/journal.pone.0171612.
    1. Cenedeze M., Goncalves G., Feitoza C., Wang P., Damiao M., Bertocchi A., Pacheco-Silva A., Camara N. The role of toll-like receptor 4 in cisplatin-induced renal injury. Transplant. Proc. 2007;39:409–411. doi: 10.1016/j.transproceed.2007.01.032.
    1. Ramesh G., Zhang B., Uematsu S., Akira S., Reeves W.B. Endotoxin and cisplatin synergistically induce renal dysfunction and cytokine production in mice. Am. J. Physiol. Ren. Physiol. 2007;293:F325–F332. doi: 10.1152/ajprenal.00158.2007.
    1. Babolmorad G., Latif A., Pollock N.M., Domingo I.K., Delyea C., Rieger A.M., Allison W.T., Bhavsar A.P. Toll-like receptor 4 is activated by platinum and contributes to cisplatin-induced ototoxicity. bioRxiv. 2020:e51280. doi: 10.15252/embr.202051280.
    1. Dessing M.C., Kers J., Damman J., Leuvenink H.G., Van Goor H., Hillebrands J.-L., Hepkema B.G., Snieder H., Van den Born J., De Borst M.H. Toll-like receptor family polymorphisms are associated with primary renal diseases but not with renal outcomes following kidney transplantation. PloS ONE. 2015;10:e0139769. doi: 10.1371/journal.pone.0139769.
    1. Elloumi N., Fakhfakh R., Abida O., Ayadi L., Marzouk S., Hachicha H., Fourati M., Bahloul Z., Mhiri M., Kammoun K. Relevant genetic polymorphisms and kidney expression of Toll-like receptor (TLR)-5 and TLR-9 in lupus nephritis. Clin. Exp. Immunol. 2017;190:328–339. doi: 10.1111/cei.13022.
    1. Ducloux D., Deschamps M., Yannaraki M., Ferrand C., Bamoulid J., Saas P., Kazory A., Chalopin J.-M., Tiberghien P. Relevance of Toll-like receptor-4 polymorphisms in renal transplantation. Kidney Int. 2005;67:2454–2461. doi: 10.1111/j.1523-1755.2005.00354.x.
    1. Santos-Martins M., Sameiro-Faria M., Ribeiro S., Rocha-Pereira P., Nascimento H., Reis F., Miranda V., Quintanilha A., Belo L., Beirão I. TLR4 and TLR9 polymorphisms effect on inflammatory response in end-stage renal disease patients. Eur. J. Inflamm. 2014;12:521–529. doi: 10.1177/1721727X1401200314.
    1. Farhat K., Riekenberg S., Heine H., Debarry J., Lang R., Mages J., Buwitt-Beckmann U., Röschmann K., Jung G., Wiesmüller K.H. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J. Leukoc. Biol. 2008;83:692–701. doi: 10.1189/jlb.0807586.
    1. Guan Y., Ranoa D.R.E., Jiang S., Mutha S.K., Li X., Baudry J., Tapping R.I. Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. J. Immunol. 2010;184:5094–5103. doi: 10.4049/jimmunol.0901888.
    1. Matsushima N., Tanaka T., Enkhbayar P., Mikami T., Taga M., Yamada K., Kuroki Y. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. Bmc Genom. 2007;8:124. doi: 10.1186/1471-2164-8-124.
    1. De Oliviera Nascimento L., Massari P., Wetzler L.M. The role of TLR2 in infection and immunity. Front. Immunol. 2012;3:79. doi: 10.3389/fimmu.2012.00079.
    1. Raby A.-C., González-Mateo G.T., Williams A., Topley N., Fraser D., López-Cabrera M., Labéta M.O. Targeting Toll-like receptors with soluble Toll-like receptor 2 prevents peritoneal dialysis solution–induced fibrosis. Kidney Int. 2018;94:346–362. doi: 10.1016/j.kint.2018.03.014.
    1. Shen Q., Zhang X., Li Q., Zhang J., Lai H., Gan H., Du X., Li M. TLR2 protects cisplatin-induced acute kidney injury associated with autophagy via PI3K/Akt signaling pathway. J. Cell. Biochem. 2019;120:4366–4374. doi: 10.1002/jcb.27722.
    1. Takahashi A., Kimura T., Takabatake Y., Namba T., Kaimori J., Kitamura H., Matsui I., Niimura F., Matsusaka T., Fujita N. Autophagy guards against cisplatin-induced acute kidney injury. Am. J. Pathol. 2012;180:517–525. doi: 10.1016/j.ajpath.2011.11.001.
    1. Myeku N., Figueiredo-Pereira M.E. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy association With sequestosome 1/p62. J. Biol. Chem. 2011;286:22426–22440. doi: 10.1074/jbc.M110.149252.
    1. Cherra III S.J., Kulich S.M., Uechi G., Balasubramani M., Mountzouris J., Day B.W., Chu C.T. Regulation of the autophagy protein LC3 by phosphorylation. J. Cell Biol. 2010;190:533–539. doi: 10.1083/jcb.201002108.
    1. Barth S., Glick D., Macleod K.F. Autophagy: Assays and artifacts. J. Pathol. 2010;221:117–124. doi: 10.1002/path.2694.
    1. Xu Y., Chen S., Cao Y., Zhou P., Chen Z., Cheng K. Discovery of novel small molecule TLR4 inhibitors as potent anti-inflammatory agents. Eur. J. Med. Chem. 2018;154:253–266. doi: 10.1016/j.ejmech.2018.05.033.
    1. Zhang B., Ramesh G., Uematsu S., Akira S., Reeves W.B. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J. Am. Soc. Nephrol. 2008;19:923–932. doi: 10.1681/ASN.2007090982.
    1. Park B.S., Lee J.-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013;45:e66. doi: 10.1038/emm.2013.97.
    1. Haynes L.M., Moore D.D., Kurt-Jones E.A., Finberg R.W., Anderson L.J., Tripp R.A. Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 2001;75:10730–10737. doi: 10.1128/JVI.75.22.10730-10737.2001.
    1. Kurt-Jones E.A., Popova L., Kwinn L., Haynes L.M., Jones L.P., Tripp R.A., Walsh E.E., Freeman M.W., Golenbock D.T., Anderson L.J. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 2000;1:398–401. doi: 10.1038/80833.
    1. Lai C.-Y., Strange D.P., Wong T.A.S., Lehrer A.T., Verma S. Ebola virus glycoprotein induces an innate immune response in vivo via TLR4. Front. Microbiol. 2017;8:1571. doi: 10.3389/fmicb.2017.01571.
    1. Rashidi N., Mirahmadian M., Jeddi-Tehrani M., Rezania S., Ghasemi J., Kazemnejad S., Mirzadegan E., Vafaei S., Kashanian M., Rasoulzadeh Z. Lipopolysaccharide-and lipoteichoic acid-mediated pro-inflammatory cytokine production and modulation of TLR2, TLR4 and MyD88 expression in human endometrial cells. J. Reprod. Infertil. 2015;16:72.
    1. Thomas P.G., Carter M.R., Atochina O., Da’Dara A.A., Piskorska D., McGuire E., Harn D.A. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-like receptor 4-dependent mechanism. J. Immunol. 2003;171:5837–5841. doi: 10.4049/jimmunol.171.11.5837.
    1. Oh S.-M., Park G., Lee S.H., Seo C.-S., Shin H.-K., Oh D.-S. Assessing the recovery from prerenal and renal acute kidney injury after treatment with single herbal medicine via activity of the biomarkers HMGB1, NGAL and KIM-1 in kidney proximal tubular cells treated by cisplatin with different doses and exposure times. BMC Complementary Altern. Med. 2017;17:544
    1. Ullah M., Liu D.D., Rai S., Concepcion W., Thakor A.S. HSP70-Mediated NLRP3 Inflammasome Suppression Underlies Reversal of Acute Kidney Injury Following Extracellular Vesicle and Focused Ultrasound Combination Therapy. Int. J. Mol. Sci. 2020;21:4085. doi: 10.3390/ijms21114085.
    1. Rachmawati D., Bontkes H.J., Verstege M.I., Muris J., Von Blomberg B.M.E., Scheper R.J., Van Hoogstraten I.M. Transition metal sensing by Toll-like receptor-4: Next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermat. 2013;68:331–338. doi: 10.1111/cod.12042.
    1. Fenhammar J., Rundgren M., Hultenby K., Forestier J., Taavo M., Kenne E., Weitzberg E., Eriksson S., Ozenci V., Wernerson A. Renal effects of treatment with a TLR4 inhibitor in conscious septic sheep. Crit. Care. 2014;18:488.
    1. Fenhammar J., Rundgren M., Forestier J., Kalman S., Eriksson S., Frithiof R. Toll-like receptor 4 inhibitor TAK-242 attenuates acute kidney injury in endotoxemic sheep. Anesthesiol. J. Am. Soc. Anesthesiol. 2011;114:1130–1137. doi: 10.1097/ALN.0b013e31820b8b44.
    1. Yamada M., Ichikawa T., Ii M., Sunamoto M., Itoh K., Tamura N., Kitazaki T. Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: Synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl) cyclohex-1-ene-1-carboxylate. J. Med. Chem. 2005;48:7457–7467. doi: 10.1021/jm050623t.
    1. Takashima K., Matsunaga N., Yoshimatsu M., Hazeki K., Kaisho T., Uekata M., Hazeki O., Akira S., Iizawa Y., Ii M. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model. Br. J. Pharmacol. 2009;157:1250–1262. doi: 10.1111/j.1476-5381.2009.00297.x.
    1. Kashani B., Zandi Z., Karimzadeh M.R., Bashash D., Nasrollahzadeh A., Ghaffari S.H. Blockade of TLR4 using TAK-242 (resatorvid) enhances anti-cancer effects of chemotherapeutic agents: A novel synergistic approach for breast and ovarian cancers. Immunol. Res. 2019;67:505–516. doi: 10.1007/s12026-019-09113-8.
    1. Pedersen G., Andresen L., Matthiessen M., Rask-Madsen J., Brynskov J. Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin. Exp. Immunol. 2005;141:298–306. doi: 10.1111/j.1365-2249.2005.02848.x.
    1. Wang Y., Abel K., Lantz K., Krieg A.M., McChesney M.B., Miller C.J. The Toll-like receptor 7 (TLR7) agonist, imiquimod, and the TLR9 agonist, CpG ODN, induce antiviral cytokines and chemokines but do not prevent vaginal transmission of simian immunodeficiency virus when applied intravaginally to rhesus macaques. J. Virol. 2005;79:14355–14370. doi: 10.1128/JVI.79.22.14355-14370.2005.
    1. Wu X., Peng S.L. Toll-like receptor 9 signaling protects against murine lupus. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2006;54:336–342. doi: 10.1002/art.21553.
    1. Machida H., Ito S., Hirose T., Takeshita F., Oshiro H., Nakamura T., Mori M., Inayama Y., Yan K., Kobayashi N. Expression of Toll-like receptor 9 in renal podocytes in childhood-onset active and inactive lupus nephritis. Nephrol. Dial. Transplant. 2010;25:2430–2537. doi: 10.1093/ndt/gfq058.
    1. Mallavia B., Liu F., Lefrançais E., Cleary S.J., Kwaan N., Tian J.J., Magnen M., Sayah D.M., Soong A., Chen J. Mitochondrial DNA stimulates TLR9-dependent neutrophil extracellular trap formation in primary graft dysfunction. Am. J. Respir. Cell Mol. Biol. 2020;62:364–372. doi: 10.1165/rcmb.2019-0140OC.
    1. Busconi L., Bauer J.W., Tumang J.R., Laws A., Perkins-Mesires K., Tabor A.S., Lau C., Corley R.B., Rothstein T.L., Lund F.E. Functional outcome of B cell activation by chromatin immune complex engagement of the B cell receptor and TLR9. J. Immunol. 2007;179:7397–7405. doi: 10.4049/jimmunol.179.11.7397.
    1. Brooks J., Sun W., Chiosis G., Leifer C.A. Heat shock protein gp96 regulates Toll-like receptor 9 proteolytic processing and confrimational stability. Biochem. Biophy. Res. Commun. 2012;421:780–784. doi: 10.1016/j.bbrc.2012.04.083.
    1. Jiang S., Chen X. Expression of high-mobility group box 1 protein (HMGB1) and toll-like receptor 9 (TLR9) in retinas of diabetic rats. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017;23:3115. doi: 10.12659/MSM.902193.
    1. Saito K., Kukita K., Kutomi G., Okuya K., Asanuma H., Tabeya T., Naishiro Y., Yamamoto M., Takahashi H., Torigoe T. Heat shock protein 90 associates with Toll-like receptors 7/9 and mediates self-nucleic acid recognition in SLE. Eur. J. Immunol. 2015;45:2028–2041. doi: 10.1002/eji.201445293.
    1. Urry Z., Xystrakis E., Richards D.F., McDonald J., Sattar Z., Cousins D.J., Corrigan C.J., Hickman E., Brown Z., Hawrylowicz C.M. Ligation of TLR9 induced on human IL-10–secreting Tregs by 1α, 25-dihydroxyvitamin D3 abrogates regulatory function. J. Clin. Investig. 2009;119:387–398. doi: 10.1172/JCI32354.
    1. Lai L.-W., Yong K.-C., Lien Y.-H.H. Pharmacologic recruitment of regulatory T cells as a therapy for ischemic acute kidney injury. Kidney Int. 2012;81:983–992. doi: 10.1038/ki.2011.412.
    1. Humanes B., Camaño S., Lara J.M., Sabbisetti V., González-Nicolás M.Á., Bonventre J.V., Tejedor A., Lázaro A. Cisplatin-induced renal inflammation is ameliorated by cilastatin nephroprotection. Nephrol. Dial. Transplant. 2017;32:1645–1655. doi: 10.1093/ndt/gfx005.
    1. Szlosarek P.W., Balkwill F.R. Tumour necrosis factor α: A potential target for the therapy of solid tumours. Lancet Oncol. 2003;4:565–573. doi: 10.1016/S1470-2045(03)01196-3.
    1. Wu X., Wu M.-Y., Jiang M., Zhi Q., Bian X., Xu M.-D., Gong F.-R., Hou J., Tao M., Shou L.-M. TNF-α sensitizes chemotherapy and radiotherapy against breast cancer cells. Cancer Cell Int. 2017;17:13. doi: 10.1186/s12935-017-0382-1.
    1. Wang X., Lin Y. Tumor necrosis factor and cancer, buddies or foes? 1. Acta Pharmacol. Sin. 2008;29:1275–1288. doi: 10.1111/j.1745-7254.2008.00889.x.
    1. Ozkok A., Ravichandran K., Wang Q., Ljubanovic D., Edelstein C.L. NF-κB transcriptional inhibition ameliorates cisplatin-induced acute kidney injury (AKI) Toxicol. Lett. 2016;240:105–113. doi: 10.1016/j.toxlet.2015.10.028.
    1. Zhou J., Fan Y., Zhong J., Huang Z., Huang T., Lin S., Chen H. TAK1 mediates excessive autophagy via p38 and ERK in cisplatin-induced acute kidney injury. J. Cell. Mol. Med. 2018;22:2908–2921. doi: 10.1111/jcmm.13585.
    1. Mihaly S., Ninomiya-Tsuji J., Morioka S. TAK1 control of cell death. Cell Death Differ. 2014;21:1667–1676. doi: 10.1038/cdd.2014.123.
    1. Faubel S., Lewis E.C., Reznikov L., Ljubanovic D., Hoke T.S., Somerset H., Oh D.-J., Lu L., Klein C.L., Dinarello C.A. Cisplatin-induced acute renal failure is associated with an increase in the cytokines interleukin (IL)-1β, IL-18, IL-6, and neutrophil infiltration in the kidney. J. Pharmacol. Exp. Ther. 2007;322:8–15. doi: 10.1124/jpet.107.119792.
    1. Deng J., Kohda Y., Chiao H., Wang Y., Hu X., Hewitt S.M., Miyaji T., Mcleroy P., Nibhanupudy B., Li S. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int. 2001;60:2118–2128. doi: 10.1046/j.1523-1755.2001.00043.x.
    1. Lu L.H., Oh D.-J., Dursun B., He Z., Hoke T.S., Faubel S., Edelstein C.L. Increased macrophage infiltration and fractalkine expression in cisplatin-induced acute renal failure in mice. J. Pharmacol. Exp. Ther. 2008;324:111–117. doi: 10.1124/jpet.107.130161.
    1. Tadagavadi R.K., Reeves W.B. Endogenous IL-10 attenuates cisplatin nephrotoxicity: Role of dendritic cells. J. Immunol. 2010;185:4904–4911. doi: 10.4049/jimmunol.1000383.
    1. Jones V.S., Huang R.-Y., Chen L.-P., Chen Z.-S., Fu L., Huang R.-P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta Rev. Cancer. 2016;1865:255–265. doi: 10.1016/j.bbcan.2016.03.005.
    1. Akcay A., Nguyen Q., He Z., Turkmen K., Lee D.W., Hernando A.A., Altmann C., Toker A., Pacic A., Ljubanovic D.G. IL-33 exacerbates acute kidney injury. J. Am. Soc. Nephrol. 2011;22:2057–2067. doi: 10.1681/ASN.2010091011.
    1. Scott H., Jones D., Pui C. The tumor lysis syndrome. N. Engl. J. Med. 2011;364:1844–1854.
    1. Scheller J., Chalaris A., Schmidt-Arras D., Rose-John S. The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta Mol. Cell Res. 2011;1813:878–888. doi: 10.1016/j.bbamcr.2011.01.034.
    1. Dennen P., Altmann C., Kaufman J., Klein C.L., Andres-Hernando A., Ahuja N.H., Edelstein C.L., Cadnapaphornchai M.A., Keniston A., Faubel S. Urine interleukin-6 is an early biomarker of acute kidney injury in children undergoing cardiac surgery. Crit. Care. 2010;14:1–13. doi: 10.1186/cc9289.
    1. Mitazaki S., Kato N., Suto M., Hiraiwa K., Abe S. Interleukin-6 deficiency accelerates cisplatin-induced acute renal failure but not systemic injury. Toxicology. 2009;265:115–121. doi: 10.1016/j.tox.2009.10.005.
    1. Suchi K., Fujiwara H., Okamura S., Okamura H., Umehara S., Todo M., Furutani A., Yoneda M., Shiozaki A., Kubota T. Overexpression of Interleukin-6 suppresses cisplatin-induced cytotoxicity in esophageal squamous cell carcinoma cells. Anticancer Res. 2011;31:67–75.
    1. Reeves W.B. Innate Immunity in Nephrotoxic Acute Kidney Injury. Trans. Am. Clin. Climatol. Assoc. 2019;130:33.
    1. Mollica Poeta V., Massara M., Capucetti A., Bonecchi R. Chemokines and chemokine receptors: New targets for cancer immunotherapy. Front. Immunol. 2019;10:379. doi: 10.3389/fimmu.2019.00379.
    1. Hu Z.B., Chen Y., Gong Y.X., Gao M., Zhang Y., Wang G.H., Tang R.N., Liu H., Liu B.C., Ma K.L. Activation of the CXCL16/CXCR6 pathway by inflammation contributes to atherosclerosis in patients with end-stage renal disease. Int. J. Med. Sci. 2016;13:858. doi: 10.7150/ijms.16724.
    1. Wehr A., Tacke F. The roles of CXCL16 and CXCR6 in liver inflammation and fibrosis. Curr. Pathobiol. Rep. 2015;3:283–290. doi: 10.1007/s40139-015-0090-2.
    1. Lehrke M., Millington S.C., Lefterova M., Cumaranatunge R.G., Szapary P., Wilensky R., Rader D.J., Lazar M.A., Reilly M.P. CXCL16 is a marker of inflammation, atherosclerosis, and acute coronary syndromes in humans. J. Am. Coll. Cardiol. 2007;49:442–449. doi: 10.1016/j.jacc.2006.09.034.
    1. Baeck C., Wehr A., Karlmark K.R., Heymann F., Vucur M., Gassler N., Huss S., Klussmann S., Eulberg D., Luedde T. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 2012;61:416–426. doi: 10.1136/gutjnl-2011-300304.
    1. Garcia G.E., Truong L.D., Li P., Zhang P., Johnson R.J., Wilson C.B., Feng L. Inhibition of CXCL16 attenuates inflammatory and progressive phases of anti-glomerular basement membrane antibody-associated glomerulonephritis. Am. J. Pathol. 2007;170:1485–1496. doi: 10.2353/ajpath.2007.060065.
    1. Liang H., Ma Z., Peng H., He L., Hu Z., Wang Y. CXCL16 deficiency attenuates renal injury and fibrosis in salt-sensitive hypertension. Sci. Rep. 2016;6:28715. doi: 10.1038/srep28715.
    1. Wehr A., Baeck C., Ulmer F., Gassler N., Hittatiya K., Luedde T., Neumann U.P., Trautwein C., Tacke F. Pharmacological inhibition of the chemokine CXCL16 diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. PloS ONE. 2014;9:e112327. doi: 10.1371/journal.pone.0112327.
    1. Sawant K.V., Poluri K.M., Dutta A.K., Sepuru K.M., Troshkina A., Garofalo R.P., Rajarathnam K. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci. Rep. 2016;6:33123. doi: 10.1038/srep33123.
    1. Ravindran A., Sawant K.V., Sarmiento J., Navarro J., Rajarathnam K. Chemokine CXCL1 dimer is a potent agonist for the CXCR2 receptor. J. Biol. Chem. 2013;288:12244–12252. doi: 10.1074/jbc.M112.443762.
    1. Kinsey G.R., Okusa M.D. Role of leukocytes in the pathogenesis of acute kidney injury. Crit. Care. 2012;16:1–5. doi: 10.1186/cc11228.
    1. Vandamme T.F. Use of rodents as models of human diseases. J. Pharm. Bioallied Sci. 2014;6:2. doi: 10.4103/0975-7406.124301.
    1. Leenaars C.H., Kouwenaar C., Stafleu F.R., Bleich A., Ritskes-Hoitinga M., De Vries R.B., Meijboom F.L. Animal to human translation: A systematic scoping review of reported concordance rates. J. Transl. Med. 2019;17:1–22. doi: 10.1186/s12967-019-1976-2.
    1. Skrypnyk N.I., Siskind L.J., Faubel S., De Caestecker M.P. Bridging translation for acute kidney injury with better preclinical modeling of human disease. Am. J. Physiol. Ren. Physiol. 2016;310:F972–F984. doi: 10.1152/ajprenal.00552.2015.
    1. Mirrakhimov A.E., Ali A.M., Khan M., Barbaryan A. Tumor lysis syndrome in solid tumors: An up to date review of the literature. Rare Tumors. 2014;6:68–76. doi: 10.4081/rt.2014.5389.
    1. Manohar S., Leung N. Cisplatin nephrotoxicity: A review of the literature. J. Nephrol. 2018;31:15–25. doi: 10.1007/s40620-017-0392-z.
    1. Bégin A.-M., Monfette M.-L., Boudrias-Dalle É., Lavallée E., Samouelian V., Soulières D., Chagnon M., Fournier M.-A., Letarte N., Adam J.-P. Effect of mannitol on acute kidney injury induced by cisplatin. Supportive Care Cancer. 2021;29:2083–2091. doi: 10.1007/s00520-020-05703-7.
    1. Makimoto G., Hotta K., Oze I., Ninomiya K., Ninomiya T., Kubo T., Ohashi K., Ichihara E., Rai K., Tabata M. Randomized phase II study comparing mannitol with furosemide for the prevention of cisplatin-induced renal toxicity in advanced non-small cell lung cancer. OLCSG1406 Trial. 2019;72:319–323. doi: 10.1200/JCO.2019.37.15_suppl.e23105.
    1. Cvitkovic E., Spaulding J., Bethune V., Martin J., Whitmore W.F. Improvement of Cis-dichlorodiammineplatinum (NSC 119875): Therapeutic index in an animal model. Cancer. 1977;39:1357–1361. doi: 10.1002/1097-0142(197704)39:4<1357::AID-CNCR2820390402>;2-C.
    1. McKibbin T., Cheng L.L., Kim S., Steuer C.E., Owonikoko T.K., Khuri F.R., Shin D.M., Saba N.F. Mannitol to prevent cisplatin-induced nephrotoxicity in patients with squamous cell cancer of the head and neck (SCCHN) receiving concurrent therapy. Supportive Care Cancer. 2016;24:1789–1793. doi: 10.1007/s00520-015-2978-0.
    1. Phitakwatchara W., Reungweteattana T., Kananuraks S., Pathumarak A., Assanatham M., Nongnuch A. Preloading Magnesium Attenuate Cisplatin-Induced Nephrotoxicity: SP241. Nephrol. Dial. Transplant. 2017:32.
    1. Ghadrdan E., Sadighi S., Ebrahimpour S., Abdollahi A., Hadjibabaei M., Gholami K., Jahangard-Rafsanjani Z. The effect of melatonin on cisplatin-induced nephrotoxicity: A pilot, randomized, double-blinded, placebo-controlled clinical trial. Eur. J. Integr. Med. 2020;34:101065. doi: 10.1016/j.eujim.2020.101065.
    1. Baek S.H., Kim S.H., Kim J.W., Kim Y.J., Lee K.-W., Na K.Y. Effects of a DPP4 inhibitor on cisplatin-induced acute kidney injury: Study protocol for a randomized controlled trial. Trials. 2015;16:1–7. doi: 10.1186/s13063-015-0772-4.
    1. El Hamamsy M., Kamal N., Bazan N.S., El Haddad M. Evaluation of the effect of acetazolamide versus mannitol on cisplatin-induced nephrotoxicity, a pilot study. Int. J. Clin. Pharm. 2018;40:1539–1547. doi: 10.1007/s11096-018-0677-x.
    1. Shahbazi F., Sadighi S., Dashti-Khavidaki S., Shahi F., Mirzania M., Abdollahi A., Ghahremani M.H. Effect of silymarin administration on cisplatin nephrotoxicity: Report from a pilot, randomized, double-blinded, placebo-controlled clinical trial. Phytother. Res. 2015;29:1046–1053. doi: 10.1002/ptr.5345.
    1. Kemp G., Rose P., Lurain J., Berman M., Manetta A., Roullet B., Homesley H., Belpomme D., Glick J. Amifostine pretreatment for protection against cyclophosphamide-induced and cisplatin-induced toxicities: Results of a randomized control trial in patients with advanced ovarian cancer. J. Clin. Oncol. 1996;14:2101–2112. doi: 10.1200/JCO.1996.14.7.2101.
    1. Nematbakhsh M., Pezeshki Z., Jazi F.E., Mazaheri B., Moeini M., Safari T., Azarkish F., Moslemi F., Maleki M., Rezaei A. Cisplatin-induced nephrotoxicity; protective supplements and gender differences. Asian Pac. J. Cancer Prev. APJCP. 2017;18:295.
    1. Beeler B., Delacruz W.P., Flynt F.L., Terrazzino S., Hullinger N., Aden J., Byrd T., King M.M., Nelson D.A. Saline alone vs saline plus mannitol hydration for the prevention of acute cisplatin nephrotoxicity: A randomized trial. J. Clin. Oncol. 2018;36:242. doi: 10.1200/JCO.2018.36.30_suppl.242.
    1. Ruggiero A., Rizzo D., Trombatore G., Maurizi P., Riccardi R. The ability of mannitol to decrease cisplatin-induced nephrotoxicity in children: Real or not? Cancer Chemother. Pharmacol. 2016;77:19–26. doi: 10.1007/s00280-015-2913-6.
    1. Komaki K., Kusaba T., Tanaka M., Kado H., Shiotsu Y., Matsui M., Shiozaki A., Nakano H., Ishikawa T., Fujiwara H. Lower blood pressure and risk of cisplatin nephrotoxicity: A retrospective cohort study. BMC Cancer. 2017;17:1–8. doi: 10.1186/s12885-017-3135-6.
    1. McSweeney K.R., Gadanec L.K., Qaradakhi T., Gammune T.M., Kubatka P., Caprnda M., Fedotova J., Radonak J., Kruzliak P., Zulli A. Imipridone enhances vascular relaxation via FOXO1 pathway. Clin. Exp. Pharmacol. Physiol. 2020;47:1816–1823. doi: 10.1111/1440-1681.13377.
    1. Mercantepe F., Mercantepe T., Topcu A., Yılmaz A., Tumkaya L. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2018;391:915–931. doi: 10.1007/s00210-018-1514-4.

Source: PubMed

3
구독하다