A "Seed-and-Soil" Radiomics Model Predicts Brain Metastasis Development in Lung Cancer: Implications for Risk-Stratified Prophylactic Cranial Irradiation

Xiao Chu, Jing Gong, Xi Yang, Jianjiao Ni, Yajia Gu, Zhengfei Zhu, Xiao Chu, Jing Gong, Xi Yang, Jianjiao Ni, Yajia Gu, Zhengfei Zhu

Abstract

Introduction: Brain is a major site of metastasis for lung cancer, and effective therapy for developed brain metastasis (BM) is limited. Prophylactic cranial irradiation (PCI) has been shown to reduce BM rate and improve survival in small cell lung cancer, but this result was not replicated in unselected non-small cell lung cancer (NSCLC) and had the risk of inducing neurocognitive dysfunctions. We aimed to develop a radiomics BM prediction model for BM risk stratification in NSCLC patients. Methods: 256 NSCLC patients with no BM at baseline brain magnetic resonance imaging (MRI) were selected; 128 patients developed BM within three years after diagnosis and 128 remained BM-free. For radiomics analysis, both the BM and non-BM groups were randomly distributed into training and testing datasets at an 70%:30% ratio. Both brain MRI (representing the soil) and chest computed tomography (CT, representing the seed) radiomic features were extracted to develop the BM prediction models. We first developed the radiomic models using the training dataset (89 non-BM and 90 BM cases) and subsequently validated the models in the testing dataset (39 non-BM and 38 BM cases). A radiomics BM score (RadBM score) was generated, and BM-free survival were compared between RadBM score-high and RadBM score-low groups. Results: The radiomics model developed from baseline brain MRI features alone can predict BM development in NSCLC patients. A fusion model integrating brain MRI features with primary tumor CT features (seed-and-soil model) provided synergetic effect and was more efficient in predicting BM (areas under the receiver operating characteristic curve 0.84 (95% confidence interval: 0.80−0.89) and 0.80 (95% confidence interval: 0.71−0.88) in the training and testing datasets, respectively). BM-free survival was significantly shorter in the RadBM score-high group versus the RadBM score-low group (Log-rank, p < 0.001). Hazard ratios for BM were 1.056 (95% confidence interval: 1.044−1.068) per 0.01 increment in RadBM score. Cumulative BM rates at three years were 75.8% and 24.2% for the RadBM score-high and RadBM score-low groups, respectively. Only 1.2% (7/565) of the BM lesions were located within the hippocampal avoidance region. Conclusion: The results demonstrated that intrinsic features of a non-metastatic brain exert a significant impact on BM development, which is first-in-class in metastasis prediction studies. A radiomics BM prediction model utilizing both primary tumor and pre-metastatic brain features might provide a useful tool for individualized PCI administration in NSCLC patients more prone to develop BM.

Keywords: brain metastasis; metastasis prediction; non-small cell lung cancer; prophylactic cranial irradiation; radiomics; seed-and-soil.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Illustration of the radiomics model development procedures.
Figure 2
Figure 2
Radiomic features and brain metastasis prediction efficacy of the radiomic models. (A,B) Boxplots of the selected radiomic features in (A) the brain MRI model, (B) chest CT model. (C,D) Receiver operating characteristic curves of the radiomic prediction model in the training (C) and testing (D) datasets.
Figure 3
Figure 3
Kaplan–Meier curves of brain metastasis-free survival according to RadBM score in the training (A) and testing (B) datasets. Comparison between groups were calculated using Log-rank test.

References

    1. Auperin A., Arriagada R., Pignon J., Le Pechoux C., Gregor A., Stephens R., Kristjansen P., Johnson B., Ueoka H., Wagner H., et al. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N. Engl. J. Med. 1999;341:476–484. doi: 10.1056/NEJM199908123410703.
    1. Slotman B., Faivre-Finn C., Kramer G., Rankin E., Snee M., Hatton M., Postmus P., Collette L., Musat E., Senan S., et al. Prophylactic cranial irradiation in extensive small-cell lung cancer. N. Engl. J. Med. 2007;357:664–672. doi: 10.1056/NEJMoa071780.
    1. Sun A., Bae K., Gore E.M., Movsas B., Wong S.J., Meyers C.A., Bonner J.A., Schild S.E., Gaspar L.E., Bogart J.A., et al. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: Neurocognitive and quality-of-life analysis. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011;29:279–286. doi: 10.1200/JCO.2010.29.6053.
    1. Gore E.M., Bae K., Wong S.J., Sun A., Bonner J.A., Schild S.E., Gaspar L.E., Bogart J.A., Werner-Wasik M., Choy H. Phase III comparison of prophylactic cranial irradiation versus observation in patients with locally advanced non-small-cell lung cancer: Primary analysis of radiation therapy oncology group study RTOG 0214. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011;29:272–278. doi: 10.1200/JCO.2010.29.1609.
    1. Chalubinska-Fendler J., Kepka L. Prophylactic cranial irradiation in non-small cell lung cancer: Evidence and future development. J. Thorac. Dis. 2021;13:3279–3288. doi: 10.21037/jtd.2019.11.36.
    1. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.
    1. Nguyen D.X., Bos P.D., Massague J. Metastasis: From dissemination to organ-specific colonization. Nat. Rev. Cancer. 2009;9:274–284. doi: 10.1038/nrc2622.
    1. Tomaszewski M.R., Gillies R.J. The Biological Meaning of Radiomic Features. Radiology. 2021;299:E256. doi: 10.1148/radiol.2021219005.
    1. Xu X., Huang L., Chen J., Wen J., Liu D., Cao J., Wang J., Fan M. Application of radiomics signature captured from pretreatment thoracic CT to predict brain metastases in stage III/IV ALK-positive non-small cell lung cancer patients. J. Thorac. Dis. 2019;11:4516–4528. doi: 10.21037/jtd.2019.11.01.
    1. Sun F., Chen Y., Chen X., Sun X., Xing L. CT-based radiomics for predicting brain metastases as the first failure in patients with curatively resected locally advanced non-small cell lung cancer. Eur. J. Radiol. 2021;134:109411. doi: 10.1016/j.ejrad.2020.109411.
    1. Farjam R., Tsien C.I., Feng F.Y., Gomez-Hassan D., Hayman J.A., Lawrence T.S., Cao Y. Investigation of the diffusion abnormality index as a new imaging biomarker for early assessment of brain tumor response to radiation therapy. Neuro-oncology. 2014;16:131–139. doi: 10.1093/neuonc/not153.
    1. Bhatia A., Birger M., Veeraraghavan H., Um H., Tixier F., McKenney A.S., Cugliari M., Caviasco A., Bialczak A., Malani R., et al. MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors. Neuro-oncology. 2019;21:1578–1586. doi: 10.1093/neuonc/noz141.
    1. Zhao S., Hou D., Zheng X., Song W., Liu X., Wang S., Zhou L., Tao X., Lv L., Sun Q., et al. MRI radiomic signature predicts intracranial progression-free survival in patients with brain metastases of ALK-positive non-small cell lung cancer. Transl. Lung Cancer Res. 2021;10:368–380. doi: 10.21037/tlcr-20-361.
    1. Mamon H.J., Yeap B.Y., Janne P.A., Reblando J., Shrager S., Jaklitsch M.T., Mentzer S., Lukanich J.M., Sugarbaker D.J., Baldini E.H., et al. High risk of brain metastases in surgically staged IIIA non-small-cell lung cancer patients treated with surgery, chemotherapy, and radiation. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005;23:1530–1537. doi: 10.1200/JCO.2005.04.123.
    1. Hubbs J.L., Boyd J.A., Hollis D., Chino J.P., Saynak M., Kelsey C.R. Factors associated with the development of brain metastases: Analysis of 975 patients with early stage nonsmall cell lung cancer. Cancer. 2010;116:5038–5046. doi: 10.1002/cncr.25254.
    1. Ji Z., Bi N., Wang J., Hui Z., Xiao Z., Feng Q., Zhou Z., Chen D., Lv J., Liang J., et al. Risk factors for brain metastases in locally advanced non-small cell lung cancer with definitive chest radiation. Int. J. Radiat. Oncol. Biol. Phys. 2014;89:330–337. doi: 10.1016/j.ijrobp.2014.02.025.
    1. Zhou Y., Wang B., Qu J., Yu F., Zhao Y., Li S., Zeng Y., Yang X., Chu L., Chu X., et al. Survival outcomes and symptomatic central nervous system (CNS) metastasis in EGFR-mutant advanced non-small cell lung cancer without baseline CNS metastasis: Osimertinib vs. first-generation EGFR tyrosine kinase inhibitors. Lung Cancer. 2020;150:178–185. doi: 10.1016/j.lungcan.2020.10.018.
    1. van Griethuysen J.J.M., Fedorov A., Parmar C., Hosny A., Aucoin N., Narayan V., Beets-Tan R.G.H., Fillion-Robin J.C., Pieper S., Aerts H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017;77:e104–e107. doi: 10.1158/0008-5472.CAN-17-0339.
    1. Kniep H.C., Madesta F., Schneider T., Hanning U., Schonfeld M.H., Schon G., Fiehler J., Gauer T., Werner R., Gellissen S. Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology. 2019;290:479–487. doi: 10.1148/radiol.2018180946.
    1. Gong J., Bao X., Wang T., Liu J., Peng W., Shi J., Wu F., Gu Y. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. Oncoimmunology. 2022;11:2028962. doi: 10.1080/2162402X.2022.2028962.
    1. Gondi V., Tolakanahalli R., Mehta M.P., Tewatia D., Rowley H., Kuo J.S., Khuntia D., Tome W.A. Hippocampal-sparing whole-brain radiotherapy: A "how-to" technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2010;78:1244–1252. doi: 10.1016/j.ijrobp.2010.01.039.
    1. Albain K.S., Rusch V.W., Crowley J.J., Rice T.W., Turrisi A.T., 3rd, Weick J.K., Lonchyna V.A., Presant C.A., McKenna R.J., Gandara D.R., et al. Concurrent cisplatin/etoposide plus chest radiotherapy followed by surgery for stages IIIA (N2) and IIIB non-small-cell lung cancer: Mature results of Southwest Oncology Group phase II study 8805. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1995;13:1880–1892. doi: 10.1200/JCO.1995.13.8.1880.
    1. Andre F., Grunenwald D., Pujol J.L., Girard P., Dujon A., Brouchet L., Brichon P.Y., Westeel V., Le Chevalier T. Patterns of relapse of N2 nonsmall-cell lung carcinoma patients treated with preoperative chemotherapy: Should prophylactic cranial irradiation be reconsidered? Cancer. 2001;91:2394–2400. doi: 10.1002/1097-0142(20010615)91:12<2394::AID-CNCR1273>;2-6.
    1. Carolan H., Sun A.Y., Bezjak A., Yi Q.L., Payne D., Kane G., Waldron J., Leighl N., Feld R., Burkes R., et al. Does the incidence and outcome of brain metastases in locally advanced non-small cell lung cancer justify prophylactic cranial irradiation or early detection? Lung Cancer. 2005;49:109–115. doi: 10.1016/j.lungcan.2004.12.004.
    1. Gaspar L.E., Chansky K., Albain K.S., Vallieres E., Rusch V., Crowley J.J., Livingston R.B., Gandara D.R. Time from treatment to subsequent diagnosis of brain metastases in stage III non-small-cell lung cancer: A retrospective review by the Southwest Oncology Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2005;23:2955–2961. doi: 10.1200/JCO.2005.08.026.
    1. Robnett T.J., Machtay M., Stevenson J.P., Algazy K.M., Hahn S.M. Factors affecting the risk of brain metastases after definitive chemoradiation for locally advanced non-small-cell lung carcinoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001;19:1344–1349. doi: 10.1200/JCO.2001.19.5.1344.
    1. Strauss G.M., Herndon J.E., Sherman D.D., Mathisen D.J., Carey R.W., Choi N.C., Rege V.B., Modeas C., Green M.R. Neoadjuvant chemotherapy and radiotherapy followed by surgery in stage IIIA non-small-cell carcinoma of the lung: Report of a Cancer and Leukemia Group B phase II study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1992;10:1237–1244. doi: 10.1200/JCO.1992.10.8.1237.
    1. Fidler I.J. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer. 2003;3:453–458. doi: 10.1038/nrc1098.
    1. Gao Y., Bado I., Wang H., Zhang W., Rosen J.M., Zhang X.H. Metastasis Organotropism: Redefining the Congenial Soil. Dev. Cell. 2019;49:375–391. doi: 10.1016/j.devcel.2019.04.012.
    1. Gondi V., Hermann B.P., Mehta M.P., Tome W.A. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int. J. Radiat. Oncol. Biol. Phys. 2013;85:348–354. doi: 10.1016/j.ijrobp.2012.11.031.
    1. Gondi V., Paulus R., Bruner D.W., Meyers C.A., Gore E.M., Wolfson A., Werner-Wasik M., Sun A.Y., Choy H., Movsas B. Decline in tested and self-reported cognitive functioning after prophylactic cranial irradiation for lung cancer: Pooled secondary analysis of Radiation Therapy Oncology Group randomized trials 0212 and 0214. Int. J. Radiat. Oncol. Biol. Phys. 2013;86:656–664. doi: 10.1016/j.ijrobp.2013.02.033.
    1. Gondi V., Pugh S.L., Tome W.A., Caine C., Corn B., Kanner A., Rowley H., Kundapur V., DeNittis A., Greenspoon J.N., et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): A phase II multi-institutional trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014;32:3810–3816. doi: 10.1200/JCO.2014.57.2909.
    1. Gondi V., Tome W.A., Mehta M.P. Why avoid the hippocampus? A comprehensive review. Radiother. Oncol. 2010;97:370–376. doi: 10.1016/j.radonc.2010.09.013.

Source: PubMed

3
구독하다