The Possible Role of the Microbiota-Gut-Brain-Axis in Autism Spectrum Disorder

Piranavie Srikantha, M Hasan Mohajeri, Piranavie Srikantha, M Hasan Mohajeri

Abstract

New research points to a possible link between autism spectrum disorder (ASD) and the gut microbiota as many autistic children have co-occurring gastrointestinal problems. This review focuses on specific alterations of gut microbiota mostly observed in autistic patients. Particularly, the mechanisms through which such alterations may trigger the production of the bacterial metabolites, or leaky gut in autistic people are described. Various altered metabolite levels were observed in the blood and urine of autistic children, many of which were of bacterial origin such as short chain fatty acids (SCFAs), indoles and lipopolysaccharides (LPS). A less integrative gut-blood-barrier is abundant in autistic individuals. This explains the leakage of bacterial metabolites into the patients, triggering new body responses or an altered metabolism. Some other co-occurring symptoms such as mitochondrial dysfunction, oxidative stress in cells, altered tight junctions in the blood-brain barrier and structural changes in the cortex, hippocampus, amygdala and cerebellum were also detected. Moreover, this paper suggests that ASD is associated with an unbalanced gut microbiota (dysbiosis). Although the cause-effect relationship between ASD and gut microbiota is not yet well established, the consumption of specific probiotics may represent a side-effect free tool to re-establish gut homeostasis and promote gut health. The diagnostic and therapeutic value of bacterial-derived compounds as new possible biomarkers, associated with perturbation in the phenylalanine metabolism, as well as potential therapeutic strategies will be discussed.

Keywords: ASD; Autism; gut-brain-axis; microbiota; microbiota-gut-brain-axis; prebiotics; probiotics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Methodical approach of this systematic review due to PRISMA criteria [39].
Figure 2
Figure 2
Co-occurring pathologies found in Autism Spectrum disorder (ASD). Red shows gut-related comorbidities found in ASD, purple shows brain-related comorbidities and orange other comorbidities. Chapter 3 gives more information to the mentioned comorbidities.
Figure 3
Figure 3
Taxonomic classification of dysbiotic bacteria found in autistic individuals. All bacterial taxa mentioned within this chapter are found in this figure. Green indicates elevated taxa in the gut microbiota of ASD individuals. Red indicates decreased taxa in the gut microbiota ASD individuals. Additionally, black surrounded boxes show significant results in at least one study. Significance levels are taken from the original literature.
Figure 4
Figure 4
Process of Clostridium tetani infection in the gut. Occurrence of the bacterium Clostridium tetani in the GI tract of autistic population could lead to altered behaviour. [43].
Figure 5
Figure 5
Metabolic pathways of tryptophan. The purple pathways show human metabolism of tryptophan and the orange pathways are observed in bacterial degradation. Green surrounded boxes show elevated metabolites and red surrounded boxes show decreased metabolites in the autistic metabolome [101].

References

    1. Santocchi E., Guiducci L., Fulceri F., Billeci L., Buzzigoli E., Apicella F., Calderoni S., Grossi E., Morales M.A., Muratori F. Gut to brain interaction in Autism Spectrum Disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry. 2016;16:183. doi: 10.1186/s12888-016-0887-5.
    1. Redinbo M.R. The microbiota, chemical symbiosis, and human disease. J. Mol. Biol. 2014;426:3877–3891. doi: 10.1016/j.jmb.2014.09.011.
    1. Viggiano D., Ianiro G., Vanella G., Bibbo S., Bruno G., Simeone G., Mele G. Gut barrier in health and disease: focus on childhood. Eur. Rev. Med. Pharmacol. Sci. 2015;19:1077–1085.
    1. Rao M., Gershon M.D. The bowel and beyond: the enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol. 2016;13:517–528. doi: 10.1038/nrgastro.2016.107.
    1. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., Codelli J.A., Chow J., Reisman S.E., Petrosino J.F., et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463. doi: 10.1016/j.cell.2013.11.024.
    1. Dinan T.G., Cryan J.F. The Microbiome-Gut-Brain Axis in Health and Disease. Gastroenterol. Clin. North. Am. 2017;46:77–89. doi: 10.1016/j.gtc.2016.09.007.
    1. Muszer M., Noszczynska M., Kasperkiewicz K., Skurnik M. Human Microbiome: When a Friend Becomes an Enemy. Arch. Immunol Ther. Exp. (Warsz) 2015;63:287–298. doi: 10.1007/s00005-015-0332-3.
    1. Petra A.I., Panagiotidou S., Hatziagelaki E., Stewart J.M., Conti P., Theoharides T.C. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin. Ther. 2015;37:984–995. doi: 10.1016/j.clinthera.2015.04.002.
    1. Quigley E.M. Basic Definitions and Concepts: Organization of the Gut Microbiome. Gastroenterol. Clin. North. Am. 2017;46:1–8. doi: 10.1016/j.gtc.2016.09.002.
    1. Lichtman J.S., Sonnenburg J.L., Elias J.E. Monitoring host responses to the gut microbiota. ISME J. 2015;9:1908–1915. doi: 10.1038/ismej.2015.93.
    1. Latalova K., Hajda M., Prasko J. Can gut microbes play a role in mental disorders and their treatment? Psychiatr. Danub. 2017;29:28–30. doi: 10.24869/psyd.2017.28.
    1. Stilling R.M., Dinan T.G., Cryan J.F. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. Genes Brain Behav. 2014;13:69–86. doi: 10.1111/gbb.12109.
    1. Marler S., Ferguson B.J., Lee E.B., Peters B., Williams K.C., McDonnell E., Macklin E.A., Levitt P., Margolis K.G., Beversdorf D.Q., et al. Association of Rigid-Compulsive Behavior with Functional Constipation in Autism Spectrum Disorder. J. Autism. Dev. Disord. 2017;47:1673–1681. doi: 10.1007/s10803-017-3084-6.
    1. Fulceri F., Morelli M., Santocchi E., Cena H., Del Bianco T., Narzisi A., Calderoni S., Muratori F. Gastrointestinal symptoms and behavioral problems in preschoolers with Autism Spectrum Disorder. Dig. Liver Dis. 2016;48:248–254. doi: 10.1016/j.dld.2015.11.026.
    1. Iovene M.R., Bombace F., Maresca R., Sapone A., Iardino P., Picardi A., Marotta R., Schiraldi C., Siniscalco D., Serra N., et al. Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders. Mycopathologia. 2017;182:349–363. doi: 10.1007/s11046-016-0068-6.
    1. Berding K., Donovan S.M. Microbiome and nutrition in autism spectrum disorder: current knowledge and research needs. Nutr. Rev. 2016;74:723–736. doi: 10.1093/nutrit/nuw048.
    1. Buie T. Potential Etiologic Factors of Microbiome Disruption in Autism. Clin. Ther. 2015;37:976–983. doi: 10.1016/j.clinthera.2015.04.001.
    1. Reddy B.L., Saier M.H. Autism and our intestinal microbiota. J. Mol. Microbiol. Biotechnol. 2015;25:51–55. doi: 10.1159/000375303.
    1. Wakefield A.J. The gut-brain axis in childhood developmental disorders. J. Pediatr Gastroenterol Nutr. 2002;34(Suppl. 1):S14–S17. doi: 10.1097/00005176-200205001-00004.
    1. Kang D.W., Park J.G., Ilhan Z.E., Wallstrom G., Labaer J., Adams J.B., Krajmalnik-Brown R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE. 2013;8:e68322. doi: 10.1371/journal.pone.0068322.
    1. Finegold S.M., Summanen P.H., Downes J., Corbett K., Komoriya T. Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe. 2017;45:133–137. doi: 10.1016/j.anaerobe.2017.02.008.
    1. Zeidán Chuliá F., Moreira J.C. Clostridium Bacteria and its Impact in Autism Research: Thinking “Outside The Box” of Neuroscience. J. Commun. Disord. Deaf Stud. Hearing Aids. 2013;1:101. doi: 10.4172/2375-4427.1000101.
    1. Alam R., Abdolmaleky H.M., Zhou J.R. Microbiome, inflammation, epigenetic alterations, and mental diseases. Am. J. Med. Genet. B Neuropsychiatr Genet. 2017;174:651–660. doi: 10.1002/ajmg.b.32567.
    1. Dinan T.G., Cryan J.F. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J. Physiol. 2017;595:489–503. doi: 10.1113/JP273106.
    1. Fung T.C., Olson C.A., Hsiao E.Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 2017;20:145–155. doi: 10.1038/nn.4476.
    1. Diaz Heijtz R. Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Semin. Fetal. Neonatal. Med. 2016;21:410–417. doi: 10.1016/j.siny.2016.04.012.
    1. Madore C., Leyrolle Q., Lacabanne C., Benmamar-Badel A., Joffre C., Nadjar A., Laye S. Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plast. 2016;2016:3597209. doi: 10.1155/2016/3597209.
    1. Principi N., Esposito S. Gut microbiota and central nervous system development. J. Infect. 2016;73:536–546. doi: 10.1016/j.jinf.2016.09.010.
    1. Martin C.R., Mayer E.A. Gut-Brain Axis and Behavior. Nestle Nutr. Inst. Workshop Ser. 2017;88:45–53. doi: 10.1159/000461732.
    1. Zhang Y.J., Li S., Gan R.Y., Zhou T., Xu D.P., Li H.B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 2015;16:7493–7519. doi: 10.3390/ijms16047493.
    1. Schumann C.M., Amaral D.G. Stereological analysis of amygdala neuron number in autism. J. Neurosci. 2006;26:7674–7679. doi: 10.1523/JNEUROSCI.1285-06.2006.
    1. De Theije C.G., Bavelaar B.M., Lopes da Silva S., Korte S.M., Olivier B., Garssen J., Kraneveld A.D. Food allergy and food-based therapies in neurodevelopmental disorders. Pediatr. Allergy Immunol. 2014;25:218–226. doi: 10.1111/pai.12149.
    1. Mayer E.A., Tillisch K., Gupta A. Gut/brain axis and the microbiota. J. Clin. Invest. 2015;125:926–938. doi: 10.1172/JCI76304.
    1. Vuong H.E., Yano J.M., Fung T.C., Hsiao E.Y. The Microbiome and Host Behavior. Annu. Rev. Neurosci. 2017;40:21–49. doi: 10.1146/annurev-neuro-072116-031347.
    1. Nguyen T.L., Vieira-Silva S., Liston A., Raes J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 2015;8:1–16. doi: 10.1242/dmm.017400.
    1. Yu L., Wu Y., Wu B.L. Genetic architecture, epigenetic influence and environment exposure in the pathogenesis of Autism. Sci. China Life Sci. 2015;58:958–967. doi: 10.1007/s11427-015-4941-1.
    1. Bik E.M. The Hoops, Hopes, and Hypes of Human Microbiome Research. Yale J. Biol. Med. 2016;89:363–373.
    1. Li Q., Zhou J.M. The microbiota-gut-brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience. 2016;324:131–139. doi: 10.1016/j.neuroscience.2016.03.013.
    1. Moher D., Liberati A., Tetzlaff J., Altman D.G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097.
    1. De Angelis M., Piccolo M., Vannini L., Siragusa S., De Giacomo A., Serrazzanetti D.I., Cristofori F., Guerzoni M.E., Gobbetti M., Francavilla R. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS ONE. 2013;8:e76993. doi: 10.1371/journal.pone.0076993.
    1. Mezzelani A., Raggi M.E., Marabotti A., Milanesi L. Ochratoxin A as possible factor trigging autism and its male prevalence via epigenetic mechanism. Nutr. Neurosci. 2016;19:43–46. doi: 10.1179/1476830515Z.000000000186.
    1. Kushak R.I., Winter H.S. Intestinal microbiota, metabolome and gender dimorphism in autism spectrum disorders. Res. Autism Spectr. Disord. 2018;49:65–74. doi: 10.1016/j.rasd.2018.01.009.
    1. Bolte E.R. Autism and Clostridium tetani. Med. Hypotheses. 1998;51:133–144. doi: 10.1016/S0306-9877(98)90107-4.
    1. Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny W., Robinson Rosenberg C., White T., et al. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years - Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR Surveill Summ. 2018;67:1–23. doi: 10.15585/mmwr.ss6706a1.
    1. Association A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) American Psychiatric Publishing; Washington, DC, USA: 2013.
    1. Navarro F., Liu Y., Rhoads J.M. Can probiotics benefit children with autism spectrum disorders? World J. Gastroenterol. 2016;22:10093–10102. doi: 10.3748/wjg.v22.i46.10093.
    1. Manchia M., Fanos V. Targeting aggression in severe mental illness: The predictive role of genetic, epigenetic, and metabolomic markers. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2017;77:32–41. doi: 10.1016/j.pnpbp.2017.03.024.
    1. Mayer E.A., Padua D., Tillisch K. Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioessays. 2014;36:933–939. doi: 10.1002/bies.201400075.
    1. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015;138:179–187. doi: 10.1016/j.physbeh.2014.10.033.
    1. Ding H.T., Taur Y., Walkup J.T. Gut Microbiota and Autism: Key Concepts and Findings. J. Autism Dev. Disord. 2017;47:480–489. doi: 10.1007/s10803-016-2960-9.
    1. Hornig M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr. Opin. Rheumatol. 2013;25:488–795. doi: 10.1097/BOR.0b013e32836208de.
    1. Naviaux R.K. Metabolic features of the cell danger response. Mitochondrion. 2014;16:7–17. doi: 10.1016/j.mito.2013.08.006.
    1. Williams B.L., Hornig M., Buie T., Bauman M.L., Cho Paik M., Wick I., Bennett A., Jabado O., Hirschberg D.L., Lipkin W.I. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE. 2011;6:e24585. doi: 10.1371/journal.pone.0024585.
    1. Van De Sande M.M., van Buul V.J., Brouns F.J. Autism and nutrition: The role of the gut-brain axis. Nutr. Res. Rev. 2014;27:199–214. doi: 10.1017/S0954422414000110.
    1. Fiorentino M., Sapone A., Senger S., Camhi S.S., Kadzielski S.M., Buie T.M., Kelly D.L., Cascella N., Fasano A. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism. 2016;7:49. doi: 10.1186/s13229-016-0110-z.
    1. Fond G., Boukouaci W., Chevalier G., Regnault A., Eberl G., Hamdani N., Dickerson F., Macgregor A., Boyer L., Dargel A., et al. The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: A systematic review. Pathol. Biol. (Paris) 2015;63:35–42. doi: 10.1016/j.patbio.2014.10.003.
    1. Vuong H.E., Hsiao E.Y. Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biol. Psychiatry. 2017;81:411–423. doi: 10.1016/j.biopsych.2016.08.024.
    1. Wakefield A.J., Puleston J.M., Montgomery S.M., Anthony A., O’Leary J.J., Murch S.H. Review article: the concept of entero-colonic encephalopathy, autism and opioid receptor ligands. Aliment. Pharmacol. Ther. 2002;16:663–674. doi: 10.1046/j.1365-2036.2002.01206.x.
    1. Wang Y., Kasper L.H. The role of microbiome in central nervous system disorders. Brain Behav. Immun. 2014;38:1–12. doi: 10.1016/j.bbi.2013.12.015.
    1. Kaelberer M.M., Buchanan K.L., Klein M.E., Barth B.B., Montoya M.M., Shen X., Bohórquez D.V. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361:eaat5236. doi: 10.1126/science.aat5236.
    1. Han W., Tellez L.A., Perkins M.H., Perez I.O., Qu T., Ferreira J., Ferreira T.L., Quinn D., Liu Z.-W., Gao X.-B., et al. A Neural Circuit for Gut-Induced Reward. Cell. 2018;175:665–678. doi: 10.1016/j.cell.2018.08.049.
    1. Rose S., Bennuri S.C., Murray K.F., Buie T., Winter H., Frye R.E. Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded case-control study. PLoS ONE. 2017;12:e0186377. doi: 10.1371/journal.pone.0186377.
    1. Douglas-Escobar M., Elliott E., Neu J. Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr. 2013;167:374–379. doi: 10.1001/jamapediatrics.2013.497.
    1. Mulle J.G., Sharp W.G., Cubells J.F. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 2013;15:337. doi: 10.1007/s11920-012-0337-0.
    1. Rosenfeld C.S. Microbiome Disturbances and Autism Spectrum Disorders. Drug Metab. Dispos. 2015;43:1557–1571. doi: 10.1124/dmd.115.063826.
    1. Rescigno M. Intestinal microbiota and its effects on the immune system. Cell Microbiol. 2014;16:1004–1013. doi: 10.1111/cmi.12301.
    1. Rook G.A., Raison C.L., Lowry C.A. Microbiota, immunoregulatory old friends and psychiatric disorders. Adv. Exp. Med. Biol. 2014;817:319–356. doi: 10.1007/978-1-4939-0897-4_15.
    1. Sharon G., Sampson T.R., Geschwind D.H., Mazmanian S.K. The Central Nervous System and the Gut Microbiome. Cell. 2016;167:915–932. doi: 10.1016/j.cell.2016.10.027.
    1. Groer M.W., Gregory K.E., Louis-Jacques A., Thibeau S., Walker W.A. The very low birth weight infant microbiome and childhood health. Birth Defects Res. C Embryo Today. 2015;105:252–264. doi: 10.1002/bdrc.21115.
    1. SM O.M., Stilling R.M., Dinan T.G., Cryan J.F. The microbiome and childhood diseases: Focus on brain-gut axis. Birth Defects Res. C Embryo Today. 2015;105:296–313. doi: 10.1002/bdrc.21118.
    1. Borre Y.E., O’Keeffe G.W., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 2014;20:509–518. doi: 10.1016/j.molmed.2014.05.002.
    1. Dinan T.G., Stilling R.M., Stanton C., Cryan J.F. Collective unconscious: how gut microbes shape human behavior. J. Psychiatr. Res. 2015;63:1–9. doi: 10.1016/j.jpsychires.2015.02.021.
    1. Borre Y.E., Moloney R.D., Clarke G., Dinan T.G., Cryan J.F. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv. Exp. Med. Biol. 2014;817:373–403. doi: 10.1007/978-1-4939-0897-4_17.
    1. Rook G.A., Lowry C.A., Raison C.L. Hygiene and other early childhood influences on the subsequent function of the immune system. Brain Res. 2015;1617:47–62. doi: 10.1016/j.brainres.2014.04.004.
    1. Arora S.K., Dewan P., Gupta P. Microbiome: Paediatricians’ perspective. Indian J. Med. Res. 2015;142:515–524. doi: 10.4103/0971-5916.171275.
    1. Dinan T.G., Cryan J.F. The impact of gut microbiota on brain and behaviour: implications for psychiatry. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:552–558. doi: 10.1097/MCO.0000000000000221.
    1. Mohajeri M.H., Brummer R.J.M., Rastall R.A., Weersma R.K., Harmsen H.J.M., Faas M., Eggersdorfer M. The role of the microbiome for human health: From basic science to clinical applications. Eur. J. Nutr. 2018;57(Suppl. 1):1–14. doi: 10.1007/s00394-018-1703-4.
    1. Ghaisas S., Maher J., Kanthasamy A. Gut microbiome in health and disease: Linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol. Ther. 2016;158:52–62. doi: 10.1016/j.pharmthera.2015.11.012.
    1. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5:10. doi: 10.1186/s40168-016-0225-7.
    1. Curran E.A., Dalman C., Kearney P.M., Kenny L.C., Cryan J.F., Dinan T.G., Khashan A.S. Association Between Obstetric Mode of Delivery and Autism Spectrum Disorder: A Population-Based Sibling Design Study. JAMA Psychiatry. 2015;72:935–942. doi: 10.1001/jamapsychiatry.2015.0846.
    1. Curran E.A., Cryan J.F., Kenny L.C., Dinan T.G., Kearney P.M., Khashan A.S. Obstetrical Mode of Delivery and Childhood Behavior and Psychological Development in a British Cohort. J. Autism Dev. Disord. 2016;46:603–614. doi: 10.1007/s10803-015-2616-1.
    1. Knight R., Callewaert C., Marotz C., Hyde E.R., Debelius J.W., McDonald D., Sogin M.L. The Microbiome and Human Biology. Annu. Rev. Genomics Hum. Genet. 2017;18:65–86. doi: 10.1146/annurev-genom-083115-022438.
    1. Gonzalez A., Stombaugh J., Lozupone C., Turnbaugh P.J., Gordon J.I., Knight R. The mind-body-microbial continuum. Dialogues Clin. Neurosci. 2011;13:55–62.
    1. Labouesse M.A., Langhans W., Meyer U. Long-term pathological consequences of prenatal infection: beyond brain disorders. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;309:R1–R12. doi: 10.1152/ajpregu.00087.2015.
    1. Ibi D., Yamada K. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation. Int. J. Mol. Sci. 2015;16:28218–28229. doi: 10.3390/ijms161226092.
    1. Lazaro C.P., Ponde M.P., Rodrigues L.E. Opioid peptides and gastrointestinal symptoms in autism spectrum disorders. Rev. Bras. Psiquiatr. 2016;38:243–246. doi: 10.1590/1516-4446-2015-1777.
    1. Strati F., Cavalieri D., Albanese D., De Felice C., Donati C., Hayek J., Jousson O., Leoncini S., Renzi D., Calabro A., et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5:24. doi: 10.1186/s40168-017-0242-1.
    1. Williams B.L., Hornig M., Parekh T., Lipkin W.I. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012;3:e00261-11. doi: 10.1128/mBio.00261-11.
    1. Kushak R.I., Winter H.S., Buie T.M., Cox S.B., Phillips C.D., Ward N.L. Analysis of the Duodenal Microbiome in Autistic Individuals: Association With Carbohydrate Digestion. J. Pediatr. Gastroenterol. Nutr. 2017;64:e110–e116. doi: 10.1097/MPG.0000000000001458.
    1. Mayer E.A., Knight R., Mazmanian S.K., Cryan J.F., Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 2014;34:15490–15496. doi: 10.1523/JNEUROSCI.3299-14.2014.
    1. Gondalia S.V., Palombo E.A., Knowles S.R., Cox S.B., Meyer D., Austin D.W. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 2012;5:419–427. doi: 10.1002/aur.1253.
    1. Son J.S., Zheng L.J., Rowehl L.M., Tian X., Zhang Y., Zhu W., Litcher-Kelly L., Gadow K.D., Gathungu G., Robertson C.E., et al. Comparison of Fecal Microbiota in Children with Autism Spectrum Disorders and Neurotypical Siblings in the Simons Simplex Collection. PLoS ONE. 2015;10:e0137725. doi: 10.1371/journal.pone.0137725.
    1. Louis P. Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig. Dis. Sci. 2012;57:1987–1989. doi: 10.1007/s10620-012-2286-1.
    1. Argou-Cardozo I., Zeidan-Chulia F. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels. Med. Sci. 2018;6:29. doi: 10.3390/medsci6020029.
    1. Kantarcioglu A.S., Kiraz N., Aydin A. Microbiota-Gut-Brain Axis: Yeast Species Isolated from Stool Samples of Children with Suspected or Diagnosed Autism Spectrum Disorders and In Vitro Susceptibility Against Nystatin and Fluconazole. Mycopathologia. 2016;181:1–7. doi: 10.1007/s11046-015-9949-3.
    1. Weston B., Fogal B., Cook D., Dhurjati P. An agent-based modeling framework for evaluating hypotheses on risks for developing autism: effects of the gut microbial environment. Med. Hypotheses. 2015;84:395–401. doi: 10.1016/j.mehy.2015.01.027.
    1. Heberling C., Dhurjati P. Novel systems modeling methodology in comparative microbial metabolomics: identifying key enzymes and metabolites implicated in autism spectrum disorders. Int. J. Mol. Sci. 2015;16:8949–8967. doi: 10.3390/ijms16048949.
    1. Grimaldi R., Cela D., Swann J.R., Vulevic J., Gibson G.R., Tzortzis G., Costabile A. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children. FEMS Microbiol. Ecol. 2017;93 doi: 10.1093/femsec/fiw233.
    1. Xiong X., Liu D., Wang Y., Zeng T., Peng Y. Urinary 3-(3-Hydroxyphenyl)-3-hydroxypropionic Acid, 3-Hydroxyphenylacetic Acid, and 3-Hydroxyhippuric Acid Are Elevated in Children with Autism Spectrum Disorders. Biomed. Res. Int. 2016;2016:9485412. doi: 10.1155/2016/9485412.
    1. Clayton T.A. Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism. FEBS Lett. 2012;586:956–961. doi: 10.1016/j.febslet.2012.01.049.
    1. Gevi F., Zolla L., Gabriele S., Persico A.M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism. 2016;7:47. doi: 10.1186/s13229-016-0109-5.
    1. Yang Y., Tian J., Yang B. Targeting gut microbiome: A novel and potential therapy for autism. Life Sci. 2018;194:111–119. doi: 10.1016/j.lfs.2017.12.027.
    1. Vasquez A. Biological plausibility of the gut-brain axis in autism. Ann. N. Y. Acad. Sci. 2017;1408:5–6. doi: 10.1111/nyas.13516.
    1. Yap I.K., Angley M., Veselkov K.A., Holmes E., Lindon J.C., Nicholson J.K. Urinary metabolic phenotyping differentiates children with autism from their unaffected siblings and age-matched controls. J. Proteome Res. 2010;9:2996–3004. doi: 10.1021/pr901188e.
    1. Lees H.J., Swann J.R., Wilson I.D., Nicholson J.K., Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J. Proteome Res. 2013;12:1527–1546. doi: 10.1021/pr300900b.
    1. De Angelis M., Francavilla R., Piccolo M., De Giacomo A., Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6:207–213. doi: 10.1080/19490976.2015.1035855.
    1. Wynendaele E., Verbeke F., Stalmans S., Gevaert B., Janssens Y., Van De Wiele C., Peremans K., Burvenich C., De Spiegeleer B. Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier. PLoS ONE. 2015;10:e0142071. doi: 10.1371/journal.pone.0142071.
    1. Marler S., Ferguson B.J., Lee E.B., Peters B., Williams K.C., McDonnell E., Macklin E.A., Levitt P., Gillespie C.H., Anderson G.M., et al. Brief Report: Whole Blood Serotonin Levels and Gastrointestinal Symptoms in Autism Spectrum Disorder. J. Autism Dev. Disord. 2016;46:1124–1130. doi: 10.1007/s10803-015-2646-8.
    1. Reardon S. Gut-brain link grabs neuroscientists. Nature. 2014;515:175–177. doi: 10.1038/515175a.
    1. Jory J. Abnormal fatty acids in Canadian children with autism. Nutrition. 2016;32:474–477. doi: 10.1016/j.nut.2015.10.019.
    1. Weiser M.J., Butt C.M., Mohajeri M.H. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients. 2016;8:99. doi: 10.3390/nu8020099.
    1. Anwar A., Marini M., Abruzzo P.M., Bolotta A., Ghezzo A., Visconti P., Thornalley P.J., Rabbani N. Quantitation of plasma thiamine, related metabolites and plasma protein oxidative damage markers in children with autism spectrum disorder and healthy controls. Free Radic. Res. 2016;50:S85–S90. doi: 10.1080/10715762.2016.1239821.
    1. Mangiola F., Ianiro G., Franceschi F., Fagiuoli S., Gasbarrini G., Gasbarrini A. Gut microbiota in autism and mood disorders. World J. Gastroenterol. 2016;22:361–368. doi: 10.3748/wjg.v22.i1.361.
    1. Pifer R., Sperandio V. The Interplay between the Microbiota and Enterohemorrhagic Escherichia coli. Microbiol. Spectr. 2014;2 doi: 10.1128/microbiolspec.EHEC-0015-2013.
    1. Aw W., Fukuda S. Toward the comprehensive understanding of the gut ecosystem via metabolomics-based integrated omics approach. Semin. Immunopathol. 2015;37:5–16. doi: 10.1007/s00281-014-0456-2.
    1. Lei E., Vacy K., Boon W.C. Fatty acids and their therapeutic potential in neurological disorders. Neurochem. Int. 2016;95:75–84. doi: 10.1016/j.neuint.2016.02.014.
    1. Liu X., Cao S., Zhang X. Modulation of Gut Microbiota-Brain Axis by Probiotics, Prebiotics, and Diet. J. Agric. Food Chem. 2015;63:7885–7895. doi: 10.1021/acs.jafc.5b02404.
    1. Borghi E., Borgo F., Severgnini M., Savini M.N., Casiraghi M.C., Vignoli A. Rett Syndrome: A Focus on Gut Microbiota. Int. J. Mol. Sci. 2017;18:344. doi: 10.3390/ijms18020344.
    1. Frye R.E., Rose S., Chacko J., Wynne R., Bennuri S.C., Slattery J.C., Tippett M., Delhey L., Melnyk S., Kahler S.G., et al. Modulation of mitochondrial function by the microbiome metabolite propionic acid in autism and control cell lines. Transl. Psychiatry. 2016;6:e927. doi: 10.1038/tp.2016.189.
    1. Slattery J., MacFabe D.F., Kahler S.G., Frye R.E. Enteric Ecosystem Disruption in Autism Spectrum Disorder: Can the Microbiota and Macrobiota be Restored? Curr. Pharm. Des. 2016;22:6107–6121. doi: 10.2174/1381612822666160905123953.
    1. Mohajeri M.H., La Fata G., Steinert R.E., Weber P. Relationship between the gut microbiome and brain function. Nutr. Rev. 2018;76:481–496. doi: 10.1093/nutrit/nuy009.
    1. Rinaldi A. Piecing together a different picture: A host of new studies on autism have begun decoding the longstanding puzzle of its causes. EMBO Rep. 2016;17:1690–1695. doi: 10.15252/embr.201643502.
    1. Beales D.L. Biome depletion in conjunction with evolutionary mismatches could play a role in the etiology of neurofibromatosis 1. Med. Hypotheses. 2015;84:305–314. doi: 10.1016/j.mehy.2015.01.014.
    1. Inoue R., Sakaue Y., Sawai C., Sawai T., Ozeki M., Romero-Perez G.A., Tsukahara T. A preliminary investigation on the relationship between gut microbiota and gene expressions in peripheral mononuclear cells of infants with autism spectrum disorders. Biosci. Biotechnol. Biochem. 2016;80:2450–2458. doi: 10.1080/09168451.2016.1222267.
    1. Diaz-Gerevini G.T., Repossi G., Dain A., Tarres M.C., Das U.N., Eynard A.R. Beneficial action of resveratrol: How and why? Nutrition. 2016;32:174–178. doi: 10.1016/j.nut.2015.08.017.
    1. La Fata G., Rastall R.A., Lacroix C., Harmsen H.J.M., Mohajeri M.H., Weber P., Steinert R.E. Recent Development of Prebiotic Research-Statement from an Expert Workshop. Nutrients. 2017;9:1376. doi: 10.3390/nu9121376.
    1. Sherwin E., Sandhu K.V., Dinan T.G., Cryan J.F. May the Force Be With You: The Light and Dark Sides of the Microbiota-Gut-Brain Axis in Neuropsychiatry. CNS Drugs. 2016;30:1019–1041. doi: 10.1007/s40263-016-0370-3.
    1. Umbrello G., Esposito S. Microbiota and neurologic diseases: potential effects of probiotics. J. Transl. Med. 2016;14:298. doi: 10.1186/s12967-016-1058-7.
    1. Aroniadis O.C., Brandt L.J. Fecal microbiota transplantation: past, present and future. Curr. Opin. Gastroenterol. 2013;29:79–84. doi: 10.1097/MOG.0b013e32835a4b3e.
    1. Petrof E.O., Claud E.C., Gloor G.B., Allen-Vercoe E. Microbial ecosystems therapeutics: a new paradigm in medicine? Benef. Microbes. 2013;4:53–65. doi: 10.3920/BM2012.0039.
    1. Ianiro G., Bibbo S., Gasbarrini A., Cammarota G. Therapeutic modulation of gut microbiota: Current clinical applications and future perspectives. Curr. Drug Targets. 2014;15:762–770. doi: 10.2174/1389450115666140606111402.
    1. Skosnik P.D., Cortes-Briones J.A. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction. Med. Hypotheses. 2016;93:77–80. doi: 10.1016/j.mehy.2016.05.021.
    1. Whiteley P. Nutritional management of (some) autism: A case for gluten- and casein-free diets? Proc. Nutr. Soc. 2015;74:202–207. doi: 10.1017/S0029665114001475.
    1. Alfawaz H.A., Bhat R.S., Al-Ayadhi L., El-Ansary A.K. Protective and restorative potency of Vitamin D on persistent biochemical autistic features induced in propionic acid-intoxicated rat pups. BMC Complement. Altern. Med. 2014;14:416. doi: 10.1186/1472-6882-14-416.
    1. Schmidt C. Mental health: thinking from the gut. Nature. 2015;518:S12–S15. doi: 10.1038/518S13a.
    1. Higashida H., Furuhara K., Yamauchi A.M., Deguchi K., Harashima A., Munesue S., Lopatina O., Gerasimenko M., Salmina A.B., Zhang J.S., et al. Intestinal transepithelial permeability of oxytocin into the blood is dependent on the receptor for advanced glycation end products in mice. Sci. Rep. 2017;7:7883. doi: 10.1038/s41598-017-07949-4.

Source: PubMed

3
구독하다