A Revolutionizing Approach to Autism Spectrum Disorder Using the Microbiome

Dinyadarshini Johnson, Vengadesh Letchumanan, Sivakumar Thurairajasingam, Learn-Han Lee, Dinyadarshini Johnson, Vengadesh Letchumanan, Sivakumar Thurairajasingam, Learn-Han Lee

Abstract

The study of human microbiota and health has emerged as one of the ubiquitous research pursuits in recent decades which certainly warrants the attention of both researchers and clinicians. Many health conditions have been linked to the gut microbiota which is the largest reservoir of microbes in the human body. Autism spectrum disorder (ASD) is one of the neurodevelopmental disorders which has been extensively explored in relation to gut microbiome. The utilization of microbial knowledge promises a more integrative perspective in understanding this disorder, albeit being an emerging field in research. More interestingly, oral and vaginal microbiomes, indicating possible maternal influence, have equally drawn the attention of researchers to study their potential roles in the etiopathology of ASD. Therefore, this review attempts to integrate the knowledge of microbiome and its significance in relation to ASD including the hypothetical aetiology of ASD and its commonly associated comorbidities. The microbiota-based interventions including diet, prebiotics, probiotics, antibiotics, and faecal microbial transplant (FMT) have also been explored in relation to ASD. Of these, diet and probiotics are seemingly promising breakthrough interventions in the context of ASD for lesser known side effects, feasibility and easier administration, although more studies are needed to ascertain the actual clinical efficacy of these interventions. The existing knowledge and research gaps call for a more expanded and resolute research efforts in establishing the relationship between autism and microbiomes.

Keywords: aetiology; autism spectrum disorder; clinician; comorbidities; diet; faecal microbial transplant; microbiome; prebiotics; probiotics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Illustration of autism spectrum disorder (ASD) and its association with microbiome.

References

    1. Association A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®) American Psychiatric Pub; Washington, DC, USA: 2013.
    1. Loomes R., Hull L., Mandy W.P.L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry. 2017;56:466–474. doi: 10.1016/j.jaac.2017.03.013.
    1. Catalá-López F., Ridao M., Hurtado I., Núñez-Beltrán A., Gènova-Maleras R., Alonso-Arroyo A., Tobías A., Aleixandre-Benavent R., Catalá M.A., Tabarés-Seisdedos R. Prevalence and comorbidity of autism spectrum disorder in Spain: Study protocol for a systematic review and meta-analysis of observational studies. Syst. Rev. 2019;8:141. doi: 10.1186/s13643-019-1061-1.
    1. Vos T., Abajobir A.A., Abate K.H., Abbafati C., Abbas K.M., Abd-Allah F., Abdulkader R.S., Abdulle A.M., Abebo T.A., Abera S.F. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–1259. doi: 10.1016/S0140-6736(17)32154-2.
    1. Polyak A., Kubina R.M., Girirajan S. Comorbidity of intellectual disability confounds ascertainment of autism: Implications for genetic diagnosis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2015;168:600–608. doi: 10.1002/ajmg.b.32338.
    1. Mayer E.A., Padua D., Tillisch K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? Bioessays. 2014;36:933–939. doi: 10.1002/bies.201400075.
    1. Young V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ. 2017;356:j831. doi: 10.1136/bmj.j831.
    1. Khanna S., Tosh P.K. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin. Proc. 2014;89:107–114. doi: 10.1016/j.mayocp.2013.10.011.
    1. Cani P.D. Human gut microbiome: Hopes, threats and promises. Gut. 2018;67:1716–1725. doi: 10.1136/gutjnl-2018-316723.
    1. Lee L.-H., Ser H.-L., Khan T.M., Gan K.-G., Goh B.-H., Ab Mutalib N.-S. Relationship between autism and gut microbiome: Current status and update. Gut. 2019;68 doi: 10.1136/gutjnl-2019-IDDFAbstracts.76.
    1. Lee L.-H., Letchumanan V., Khan T.M., Long M., Chan K.-G., Goh B.-H., Ab Mutalib N.-S. Role of human microbiota in skin dermatitis and eczema: A systematic review. Gut. 2018;67:A1–A118. doi: 10.1136/gutjnl-2018-IDDFabstracts.38.
    1. Selvaraj S.M., Wong S.H., Ser H.-L., Lee L.-H. Role of low FODMAP diet and probiotics on gut microbiome in irritable bowel syndrome (IBS) Prog. Microbes Mol. Biol. 2020;3 doi: 10.36877/pmmb.a0000069.
    1. Durganaudu H., Kunasegaran T., Ramadas A. dietary glycaemic index and Type 2 diabetes mellitus: Potential modulation of gut microbiota. Prog. Microbes Mol. Biol. 2020;3 doi: 10.36877/pmmb.a0000082.
    1. Lee L.-H., Letchumanan V., Khan T.M., Chan K.-G., Goh B.-H., Ab Mutalib N.-S. IDDF2019-ABS-0322 Dissecting the gut and skin: Budding association between gut microbiome in the development to psoriasis? Gut. 2019;68 doi: 10.1136/gutjnl-2019-IDDFAbstracts.77.
    1. Proctor L.M. The national institutes of health human microbiome project. Semin. Fetal Neonatal. Med. 2016;21:368–372. doi: 10.1016/j.siny.2016.05.002.
    1. Vuong H.E., Yano J.M., Fung T.C., Hsiao E.Y. The microbiome and host behavior. Annu. Rev. Neurosci. 2017;40:21–49. doi: 10.1146/annurev-neuro-072116-031347.
    1. Collins S.M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012;10:735–742. doi: 10.1038/nrmicro2876.
    1. Sivamaruthi B.S., Suganthy N., Kesika P., Chaiyasut C. The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. Int. J. Environ. Res. Public Health. 2020;17:2647. doi: 10.3390/ijerph17082647.
    1. Bonaz B., Bazin T., Pellissier S. The vagus nerve at the interface of the microbiota-gut-brain axis. Front. Neurosci. 2018;12:49. doi: 10.3389/fnins.2018.00049.
    1. Jašarević E., Rodgers A.B., Bale T.L. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol. Stress. 2015;1:81–88. doi: 10.1016/j.ynstr.2014.10.005.
    1. Mason M.R., Chambers S., Dabdoub S.M., Thikkurissy S., Kumar P.S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome. 2018;6:67. doi: 10.1186/s40168-018-0443-2.
    1. Fiorentino M., Sapone A., Senger S., Camhi S.S., Kadzielski S.M., Buie T.M., Kelly D.L., Cascella N., Fasano A. Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism. 2016;7:49. doi: 10.1186/s13229-016-0110-z.
    1. Engelhardt B. Development of the blood-brain barrier. Cell Tissue Res. 2003;314:119–129. doi: 10.1007/s00441-003-0751-z.
    1. Hensch T.K. Critical period regulation. Annu. Rev. Neurosci. 2004;27:549–579. doi: 10.1146/annurev.neuro.27.070203.144327.
    1. Knudsen E.I. Sensitive periods in the development of the brain and behavior. J. Cogn. Neurosci. 2004;16:1412–1425. doi: 10.1162/0898929042304796.
    1. Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Korecka A., Bakocevic N., Ng L.G., Kundu P. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014;6:263ra158. doi: 10.1126/scitranslmed.3009759.
    1. Sandin S., Lichtenstein P., Kuja-Halkola R., Hultman C., Larsson H., Reichenberg A. The heritability of autism spectrum disorder. JAMA. 2017;318:1182–1184. doi: 10.1001/jama.2017.12141.
    1. Siu M.T., Weksberg R. Neuroepigenomics in Aging and Disease. Springer; New York, NY, USA: 2017. Epigenetics of autism spectrum disorder; pp. 63–90.
    1. Hallmayer J., Cleveland S., Torres A., Phillips J., Cohen B., Torigoe T., Miller J., Fedele A., Collins J., Smith K. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry. 2011;68:1095–1102. doi: 10.1001/archgenpsychiatry.2011.76.
    1. Zhu S., Jiang Y., Xu K., Cui M., Ye W., Zhao G., Jin L., Chen X. The progress of gut microbiome research related to brain disorders. J. Neuroinflamm. 2020;17:25. doi: 10.1186/s12974-020-1705-z.
    1. Ahmed S.A., Elhefnawy A.M., Azouz H.G., Roshdy Y.S., Ashry M.H., Ibrahim A.E., Meheissen M.A. Study of the gut Microbiome Profile in Children with Autism Spectrum Disorder: A Single Tertiary Hospital Experience. J. Mol. Neurosci. 2020;70:887–896. doi: 10.1007/s12031-020-01500-3.
    1. Saurman V., Margolis K.G., Luna R.A. Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder. Dig. Dis. Sci. 2020;65:818–828. doi: 10.1007/s10620-020-06133-5.
    1. Mannion A., Leader G. Comorbidity in autism spectrum disorder: A literature review. Res. Autism Spectr. Disord. 2013;7:1595–1616. doi: 10.1016/j.rasd.2013.09.006.
    1. Buckley A.W., Holmes G.L. Epilepsy and autism. Cold Spring Harb. Perspect. Med. 2016;6:a022749. doi: 10.1101/cshperspect.a022749.
    1. Davignon M.N., Qian Y., Massolo M., Croen L.A. Psychiatric and medical conditions in transition-aged individuals with ASD. Pediatrics. 2018;141:S335–S345. doi: 10.1542/peds.2016-4300K.
    1. Volkmar F.R., McPartland J.C. From Kanner to DSM-5: Autism as an evolving diagnostic concept. Annu. Rev. Clin. Psychol. 2014;10:193–212. doi: 10.1146/annurev-clinpsy-032813-153710.
    1. Wiggins L.D., Rice C.E., Barger B., Soke G.N., Lee L.-C., Moody E., Edmondson-Pretzel R., Levy S.E. DSM-5 criteria for autism spectrum disorder maximizes diagnostic sensitivity and specificity in preschool children. Soc. Psychiatry Psychiatr. Epidemiol. 2019;54:693–701. doi: 10.1007/s00127-019-01674-1.
    1. Baio J., Wiggins L., Christensen D.L., Maenner M.J., Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny W., Rosenberg C.R., White T. Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2014. MMWR Surveill. Summ. 2018;67:1. doi: 10.15585/mmwr.ss6706a1.
    1. Brett D., Warnell F., McConachie H., Parr J.R. Factors affecting age at ASD diagnosis in UK: No evidence that diagnosis age has decreased between 2004 and 2014. J. Autism Dev. Disord. 2016;46:1974–1984. doi: 10.1007/s10803-016-2716-6.
    1. Venigalla H., Mekala H.M., Hassan M., Ahmed R., Zain H., Dar S., Veliz S. An update on biomarkers in psychiatric disorders–are we aware, do we use in our clinical practice. Ment. Health Fam. Med. 2017;13:471–479.
    1. Crespi B.J. Revisiting Bleuler: Relationship between autism and schizophrenia. Br. J. Psychiatry. 2010;196:495. doi: 10.1192/bjp.196.6.495.
    1. Cook K.A., Willmerdinger A.N. The History of Autism. [(accessed on 29 May 2020)];2015 Available online: .
    1. Kanner L. Autistic disturbances of affective contact. Nerv. Child. 1943;2:217–250.
    1. Asperger H. Die “Autistischen psychopathen” im kindesalter. Arch. Psychiatr. Nervenkr. 1944;117:76–136. doi: 10.1007/BF01837709.
    1. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821.
    1. Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533. doi: 10.1371/journal.pbio.1002533.
    1. Umbrello G., Esposito S. Microbiota and neurologic diseases: Potential effects of probiotics. J. Transl. Med. 2016;14:298. doi: 10.1186/s12967-016-1058-7.
    1. Krajmalnik-Brown R., Kang D.-W., Park J.G., Labaer J., IIhan Z. Microbiome Markers and Therapies for Autism Spectrum Disorders. No. 16/118,061. U.S. Patent. 2019 May 16;
    1. Anwar H., Irfan S., Hussain G., Faisal M.N., Muzaffar H., Mustafa I., Mukhtar I., Malik S., Ullah M.I. Eukaryotic Microbiology. IntechOpen; London, UK: 2019. Gut Microbiome: A New Organ System in Body.
    1. Principi N., Esposito S. Gut microbiota and central nervous system development. J. Infect. 2016;73:536–546. doi: 10.1016/j.jinf.2016.09.010.
    1. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–453. doi: 10.1016/j.anaerobe.2010.06.008.
    1. Zhang M., Ma W., Zhang J., He Y., Wang J. Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China. Sci. Rep. 2018;8:13981. doi: 10.1038/s41598-018-32219-2.
    1. Williams B.L., Hornig M., Buie T., Bauman M.L., Cho Paik M., Wick I., Bennett A., Jabado O., Hirschberg D.L., Lipkin W.I. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE. 2011;6:e24585. doi: 10.1371/journal.pone.0024585.
    1. Qiao Y., Wu M., Feng Y., Zhou Z., Chen L., Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci. Rep. 2018;8:1597. doi: 10.1038/s41598-018-19982-y.
    1. Van Ameringen M., Turna J., Patterson B., Pipe A., Mao R.Q., Anglin R., Surette M.G. The gut microbiome in psychiatry: A primer for clinicians. Depress. Anxiety. 2019;36:1004–1025. doi: 10.1002/da.22936.
    1. Bronson S.L., Bale T.L. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155:2635–2646. doi: 10.1210/en.2014-1040.
    1. Estes M.L., McAllister A.K. Maternal immune activation: Implications for neuropsychiatric disorders. Science. 2016;353:772–777. doi: 10.1126/science.aag3194.
    1. Connolly N., Anixt J., Manning P., Ping-I Lin D., Marsolo K.A., Bowers K. Maternal metabolic risk factors for autism spectrum disorder—An analysis of electronic medical records and linked birth data. Autism Res. 2016;9:829–837. doi: 10.1002/aur.1586.
    1. Wang Y., Kasper L.H. The role of microbiome in central nervous system disorders. Brain. Behav. Immun. 2014;38:1–12. doi: 10.1016/j.bbi.2013.12.015.
    1. Yassour M., Vatanen T., Siljander H., Hämäläinen A.-M., Härkönen T., Ryhänen S.J., Franzosa E.A., Vlamakis H., Huttenhower C., Gevers D. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 2016;8:343ra381. doi: 10.1126/scitranslmed.aad0917.
    1. Korpela K., Salonen A., Virta L.J., Kekkonen R.A., Forslund K., Bork P., De Vos W.M. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 2016;7:10410. doi: 10.1038/ncomms10410.
    1. Sandler R.H., Finegold S.M., Bolte E.R., Buchanan C.P., Maxwell A.P., Väisänen M.-L., Nelson M.N., Wexler H.M. Short-term benefit from oral vancomycin treatment of regressive-onset autism. J. Child Neurol. 2000;15:429–435. doi: 10.1177/088307380001500701.
    1. Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016;6:23129. doi: 10.1038/srep23129.
    1. Jiménez E., Marín M.L., Martín R., Odriozola J.M., Olivares M., Xaus J., Fernández L., Rodríguez J.M. Is meconium from healthy newborns actually sterile? Res. Microbiol. 2008;159:187–193. doi: 10.1016/j.resmic.2007.12.007.
    1. Fattorusso A., Di Genova L., Dell’Isola G.B., Mencaroni E., Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients. 2019;11:521. doi: 10.3390/nu11030521.
    1. Jašarević E., Howerton C.L., Howard C.D., Bale T.L. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology. 2015;156:3265–3276. doi: 10.1210/en.2015-1177.
    1. Cribby S., Taylor M., Reid G. Vaginal microbiota and the use of probiotics. Interdiscip. Perspect. Infect. Dis. 2008;2008 doi: 10.1155/2008/256490.
    1. Saunders S., Bocking A., Challis J., Reid G. Effect of Lactobacillus challenge on Gardnerella vaginalis biofilms. Colloids Surf. B. Biointerfaces. 2007;55:138–142. doi: 10.1016/j.colsurfb.2006.11.040.
    1. Bokobza C., Van Steenwinckel J., Mani S., Mezger V., Fleiss B., Gressens P. Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr. Res. 2019;85:155–165. doi: 10.1038/s41390-018-0208-4.
    1. Joseph R.M., O’Shea T.M., Allred E.N., Heeren T., Hirtz D., Paneth N., Leviton A., Kuban K.C. Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years. Autism Res. 2017;10:224–232. doi: 10.1002/aur.1644.
    1. Careaga M., Murai T., Bauman M.D. Maternal immune activation and autism spectrum disorder: From rodents to nonhuman and human primates. Biol. Psychiatry. 2017;81:391–401. doi: 10.1016/j.biopsych.2016.10.020.
    1. Brown A.S. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev. Neurobiol. 2012;72:1272–1276. doi: 10.1002/dneu.22024.
    1. Lai B., Milano M., Roberts M.W., Hooper S.R. Unmet dental needs and barriers to dental care among children with autism spectrum disorders. J. Autism Dev. Disord. 2012;42:1294–1303. doi: 10.1007/s10803-011-1362-2.
    1. Hicks S.D., Uhlig R., Afshari P., Williams J., Chroneos M., Tierney-Aves C., Wagner K., Middleton F.A. Oral microbiome activity in children with autism spectrum disorder. Autism Res. 2018;11:1286–1299. doi: 10.1002/aur.1972.
    1. Kong X., Liu J., Cetinbas M., Sadreyev R., Koh M., Huang H., Adeseye A., He P., Zhu J., Russell H. New and Preliminary Evidence on Altered Oral and Gut Microbiota in Individuals with Autism Spectrum Disorder (ASD): Implications for ASD Diagnosis and Subtyping Based on Microbial Biomarkers. Nutrients. 2019;11:2128. doi: 10.3390/nu11092128.
    1. Bercik P., Park A., Sinclair D., Khoshdel A., Lu J., Huang X., Deng Y., Blennerhassett P., Fahnestock M., Moine D. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol. Motil. 2011;23:1132–1139. doi: 10.1111/j.1365-2982.2011.01796.x.
    1. Cermak S.A., Curtin C., Bandini L.G. Food selectivity and sensory sensitivity in children with autism spectrum disorders. J. Am. Diet. Assoc. 2010;110:238–246. doi: 10.1016/j.jada.2009.10.032.
    1. Tierney C., Mayes S., Lohs S.R., Black A., Gisin E., Veglia M. How valid is the checklist for autism spectrum disorder when a child has apraxia of speech? J. Dev. Behav. Pediatr. 2015;36:569–574. doi: 10.1097/DBP.0000000000000189.
    1. Olsen I., Singhrao S.K. Can oral infection be a risk factor for Alzheimer’s disease? J. Oral Microbiol. 2015;7:29143. doi: 10.3402/jom.v7.29143.
    1. Ranjan R., Abhinay A., Mishra M. Can oral microbial infections be a risk factor for neurodegeneration? A review of the literature. Neurol. India. 2018;66:344.
    1. Olsen I., Hicks S.D. Oral microbiota and autism spectrum disorder (ASD) J. Oral Microbiol. 2020;12:1702806. doi: 10.1080/20002297.2019.1702806.
    1. Segata N., Haake S.K., Mannon P., Lemon K.P., Waldron L., Gevers D., Huttenhower C., Izard J. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol. 2012;13:R42. doi: 10.1186/gb-2012-13-6-r42.
    1. Winter S.E., Lopez C.A., Bäumler A.J. The dynamics of gut-associated microbial communities during inflammation. EMBO Rep. 2013;14:319–327. doi: 10.1038/embor.2013.27.
    1. Hajishengallis G., Darveau R.P., Curtis M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol. 2012;10:717–725. doi: 10.1038/nrmicro2873.
    1. Darveau R., Hajishengallis G., Curtis M. Porphyromonas gingivalis as a potential community activist for disease. J. Dent. Res. 2012;91:816–820. doi: 10.1177/0022034512453589.
    1. Jaber M.A. Dental caries experience, oral health status and treatment needs of dental patients with autism. J. Appl. Oral Sci. 2011;19:212–217. doi: 10.1590/S1678-77572011000300006.
    1. Granulicatella C. Changes in the salivary microbiota of oral leukoplakia and oral cancer. Oral Oncol. 2016;56:e6–e8.
    1. Aas J.A., Paster B.J., Stokes L.N., Olsen I., Dewhirst F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005;43:5721–5732. doi: 10.1128/JCM.43.11.5721-5732.2005.
    1. Jeffcoat M.K., Hauth J.C., Geurs N.C., Reddy M.S., Cliver S.P., Hodgkins P.M., Goldenberg R.L. Periodontal disease and preterm birth: Results of a pilot intervention study. J. Periodontol. 2003;74:1214–1218. doi: 10.1902/jop.2003.74.8.1214.
    1. Han Y.W., Ikegami A., Bissada N.F., Herbst M., Redline R.W., Ashmead G.G. Transmission of an uncultivated Bergeyella strain from the oral cavity to amniotic fluid in a case of preterm birth. J. Clin. Microbiol. 2006;44:1475–1483. doi: 10.1128/JCM.44.4.1475-1483.2006.
    1. Aagaard K., Ganu R., Ma J., Racusin D., Arndt M., Riehle K., Petrosino J., Versalovic J. 8: Whole metagenomic shotgun sequencing reveals a vibrant placental microbiome harboring metabolic function. Am. J. Obstet. Gynecol. 2013;208:S5. doi: 10.1016/j.ajog.2012.10.182.
    1. Bearfield C., Davenport E.S., Sivapathasundaram V., Allaker R.P. Possible association between amniotic fluid micro-organism infection and microflora in the mouth. BJOG. 2002;109:527–533. doi: 10.1111/j.1471-0528.2002.01349.x.
    1. Alanen A., Laurikainen E. Second-trimester abortion caused by Capnocytophaga sputigena: Case report. Am. J. Perinatol. 1999;16:181–183. doi: 10.1055/s-2007-993854.
    1. Xiao J., Fiscella K.A., Gill S.R. Oral microbiome: Possible harbinger for children’s health. Int. J. Oral Sci. 2020;12:1–13. doi: 10.1038/s41368-020-0082-x.
    1. Xiong J., Chen S., Pang N., Deng X., Yang L., He F., Wu L., Chen C., Yin F., Peng J. Neurological diseases with autism spectrum disorder: Role of ASD risk genes. Front. Neurosci. 2019;13:349. doi: 10.3389/fnins.2019.00349.
    1. Mazina V., Gerdts J., Trinh S., Ankenman K., Ward T., Dennis M.Y., Girirajan S., Eichler E.E., Bernier R. Epigenetics of autism-related impairment: Copy number variation and maternal infection. J. Dev. Behav. Pediatr. 2015;36:61–67. doi: 10.1097/DBP.0000000000000126.
    1. Landgrave-Gómez J., Mercado-Gómez O., Guevara-Guzmán R. Epigenetic mechanisms in neurological and neurodegenerative diseases. Front. Cell. Neurosci. 2015;9:58. doi: 10.3389/fncel.2015.00058.
    1. Tick B., Bolton P., Happé F., Rutter M., Rijsdijk F. Heritability of autism spectrum disorders: A meta-analysis of twin studies. J. Child Psychol. Psychiatry. 2016;57:585–595. doi: 10.1111/jcpp.12499.
    1. Kember R., Ji X., Zhang J., Brown C., Rader D., Almasy L., Bucan M. Spectrum of common and rare mutations contributing to autism risk in families. Eur. Neuropsychopharmacol. 2019;29:S962–S963. doi: 10.1016/j.euroneuro.2017.08.322.
    1. Leblond C.S., Cliquet F., Carton C., Huguet G., Mathieu A., Kergrohen T., Buratti J., Lemière N., Cuisset L., Bienvenu T. Both rare and common genetic variants contribute to autism in the Faroe Islands. NPJ Genom. Med. 2019;4:1. doi: 10.1038/s41525-018-0075-2.
    1. Banerjee-Basu S., Packer A. SFARI Gene: An Evolving Database for the Autism Research Community. The Company of Biologists Ltd.; Cambridge, UK: 2010.
    1. Kosmicki J., He L., Samocha K., Robinson E., Barrett J., Daly M. Meta-analysis of 9246 neurodevelopmental disorder probands identifies 8 novel genes and finds de novo mutations in prior associated autism spectrum disorder genes are more often observed in probands without ASD. Eur. Neuropsychopharmacol. 2019;29:S785–S786. doi: 10.1016/j.euroneuro.2017.08.011.
    1. Wilfert A.B., Sulovari A., Turner T.N., Coe B.P., Eichler E.E. Recurrent de novo mutations in neurodevelopmental disorders: Properties and clinical implications. Genome Med. 2017;9:101. doi: 10.1186/s13073-017-0498-x.
    1. Liu D., Wang Z. Identification and Validation Novel Risk Genes for Autism Spectrum Disorder—A Meta-Analysis. J. Psychiatry Brain Sci. 2017;2 doi: 10.20900/jpbs.20170002.
    1. Xu C., Zhang F., Amey R., Yao Y. Weak Association between Autism Spectrum Disorder and Two Genes YBX3 and HSPA1A–A Meta-Analysis. J. Psychiatr. Brain Sci. 2017;2:1–9. doi: 10.20900/jpbs.20170013.
    1. De Kluiver H., Buizer-Voskamp J.E., Dolan C.V., Boomsma D.I. Paternal age and psychiatric disorders: A review. Am. J. Med. Genet. 2017;174:202–213. doi: 10.1002/ajmg.b.32508.
    1. Chiang T.-L., Lin S.-J., Lee M.-C., Shu B.-C. Advanced maternal age and maternal education disparity in children with autism spectrum disorder. Matern. Child Health J. 2018;22:941–949. doi: 10.1007/s10995-018-2470-9.
    1. Alibek K., Farmer S., Tskhay A., Moldakozhayev A., Isakov T. Prevalence of Prenatal, Neonatal and Postnatal Complications among Healthy Children and Children Diagnosed with ASD in Central Asia and Eastern Europe. J. Gynaecol. Neonatal. 2019;2:103.
    1. Bölte S., Girdler S., Marschik P.B. The contribution of environmental exposure to the etiology of autism spectrum disorder. Cell. Mol. Life Sci. 2019;76:1275–1297. doi: 10.1007/s00018-018-2988-4.
    1. Sahana K., Bhat S.S., Kakunje A. Study of prenatal, natal, and neonatal risk factors associated with autism. Indian J. Child Health. 2018 doi: 10.32677/IJCH.2018.v05.i01.010.
    1. Davidovitch M., Kuint J., Lerner-Geva L., Zaslavsky-Paltiel I., Rotem R.S., Chodick G., Shalev V., Reichman B. Postnatal steroid therapy is associated with autism spectrum disorder in children and adolescents of very low birth weight infants. Pediatr. Res. 2019;87:1045–1051. doi: 10.1038/s41390-019-0700-5.
    1. Abdallah M.W., Larsen N., Grove J., Nørgaard-Pedersen B., Thorsen P., Mortensen E.L., Hougaard D.M. Amniotic fluid inflammatory cytokines: Potential markers of immunologic dysfunction in autism spectrum disorders. World J. Biol. Psychiatry. 2013;14:528–538. doi: 10.3109/15622975.2011.639803.
    1. Kim D., Volk H., Girirajan S., Pendergrass S., Hall M.A., Verma S.S., Schmidt R.J., Hansen R.L., Ghosh D., Ludena-Rodriguez Y. The joint effect of air pollution exposure and copy number variation on risk for autism. Autism Res. 2017;10:1470–1480. doi: 10.1002/aur.1799.
    1. Reed Z., Larsson H., Haworth C., Thomas R., Boyd A., Smith G.D., Plomin R., Lichtenstein P., Davis O. Geographical gene-environment interaction in ASD and ADHD traits. Behav. Genet. 2019;49:519.
    1. Bhat M.I., Kapila R. Dietary metabolites derived from gut microbiota: Critical modulators of epigenetic changes in mammals. Nutr. Rev. 2017;75:374–389. doi: 10.1093/nutrit/nux001.
    1. Loke Y.J., Hannan A.J., Craig J.M. The role of epigenetic change in autism spectrum disorders. Front. Neurol. 2015;6:107. doi: 10.3389/fneur.2015.00107.
    1. Stilling R.M., Dinan T.G., Cryan J.F. Microbial genes, brain & behaviour–epigenetic regulation of the gut–brain axis. Genes Brain Behav. 2014;13:69–86. doi: 10.1111/gbb.12109.
    1. Forssberg H. Microbiome programming of brain development: Implications for neurodevelopmental disorders. Dev. Med. Child Neurol. 2019;61:744–749. doi: 10.1111/dmcn.14208.
    1. Murgatroyd C., Spengler D. Epigenetics of early child development. Front. Psychiatry. 2011;2:16. doi: 10.3389/fpsyt.2011.00016.
    1. Butler M.I., Cryan J.F., Dinan T.G. Man and the microbiome: A new theory of everything? Annu. Rev. Clin. Psychol. 2019;15:371–398. doi: 10.1146/annurev-clinpsy-050718-095432.
    1. Giacobbo B.L., Doorduin J., Klein H.C., Dierckx R.A., Bromberg E., de Vries E.F. Brain-derived neurotrophic factor in brain disorders: Focus on neuroinflammation. Mol. Neurobiol. 2019;56:3295–3312. doi: 10.1007/s12035-018-1283-6.
    1. Skogstrand K., Hagen C.M., Borbye-Lorenzen N., Christiansen M., Bybjerg-Grauholm J., Bækvad-Hansen M., Werge T., Børglum A., Mors O., Nordentoft M. Reduced neonatal brain-derived neurotrophic factor is associated with autism spectrum disorders. Transl. Psychiatry. 2019;9:1–9. doi: 10.1038/s41398-019-0587-2.
    1. Arentsen T., Raith H., Qian Y., Forssberg H., Heijtz R.D. Host microbiota modulates development of social preference in mice. Microb. Ecol. Health Dis. 2015;26:29719. doi: 10.3402/mehd.v26.29719.
    1. Heijtz R.D., Wang S., Anuar F., Qian Y., Björkholm B., Samuelsson A., Hibberd M.L., Forssberg H., Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA. 2011;108:3047–3052. doi: 10.1073/pnas.1010529108.
    1. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K.D. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.e3. doi: 10.1053/j.gastro.2011.04.052.
    1. Frye R.E., Slattery J., MacFabe D.F., Allen-Vercoe E., Parker W., Rodakis J., Adams J.B., Krajmalnik-Brown R., Bolte E., Kahler S. Approaches to studying and manipulating the enteric microbiome to improve autism symptoms. Microb. Ecol. Health Dis. 2015;26:26878. doi: 10.3402/mehd.v26.26878.
    1. Miro-Blanch J., Yanes O. Epigenetic Regulation at the Interplay Between Gut Microbiota and Host Metabolism. Front. Genet. 2019;10 doi: 10.3389/fgene.2019.00638.
    1. MacFabe D.F. Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microb. Ecol. Health Dis. 2012;23:19260. doi: 10.3402/mehd.v23i0.19260.
    1. Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 2012;57:2096–2102. doi: 10.1007/s10620-012-2167-7.
    1. Bird A., Conlon M., Christophersen C., Topping D. Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef. Microbes. 2010;1:423–431. doi: 10.3920/BM2010.0041.
    1. McElhanon B.O., McCracken C., Karpen S., Sharp W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics. 2014;133:872–883. doi: 10.1542/peds.2013-3995.
    1. Holingue C., Newill C., Lee L.C., Pasricha P.J., Daniele Fallin M. Gastrointestinal symptoms in autism spectrum disorder: A review of the literature on ascertainment and prevalence. Autism Res. 2018;11:24–36. doi: 10.1002/aur.1854.
    1. Fulceri F., Morelli M., Santocchi E., Cena H., Del Bianco T., Narzisi A., Calderoni S., Muratori F. Gastrointestinal symptoms and behavioral problems in preschoolers with Autism Spectrum Disorder. Dig. Liver Dis. 2016;48:248–254. doi: 10.1016/j.dld.2015.11.026.
    1. Neuhaus E., Bernier R.A., Tham S.W., Webb S.J. Gastrointestinal and psychiatric symptoms among children and adolescents with autism spectrum disorder. Front. Psychiatry. 2018;9:515. doi: 10.3389/fpsyt.2018.00515.
    1. Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22. doi: 10.1186/1471-230X-11-22.
    1. Kang D.-W., Park J.G., Ilhan Z.E., Wallstrom G., LaBaer J., Adams J.B., Krajmalnik-Brown R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE. 2013;8:e68322. doi: 10.1371/journal.pone.0068322.
    1. Mazefsky C.A., Schreiber D.R., Olino T.M., Minshew N.J. The association between emotional and behavioral problems and gastrointestinal symptoms among children with high-functioning autism. Autism. 2014;18:493–501. doi: 10.1177/1362361313485164.
    1. Kang D.-W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017;5:10. doi: 10.1186/s40168-016-0225-7.
    1. Spence S.J., Schneider M.T. The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr. Res. 2009;65:599–606. doi: 10.1203/PDR.0b013e31819e7168.
    1. Thomas S., Hovinga M.E., Rai D., Lee B.K. Brief report: Prevalence of co-occurring epilepsy and autism spectrum disorder: The US National Survey of Children’s Health 2011–2012. J. Autism Dev. Disord. 2017;47:224–229. doi: 10.1007/s10803-016-2938-7.
    1. Gerard E.E., Meador K.J. An update on maternal use of antiepileptic medications in pregnancy and neurodevelopment outcomes. J. Pediat. Genet. 2015;4:94–110. doi: 10.1055/s-0035-1556741.
    1. Tartaglione A.M., Schiavi S., Calamandrei G., Trezza V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology. 2019;159:107477. doi: 10.1016/j.neuropharm.2018.12.024.
    1. De Theije C.G., Wopereis H., Ramadan M., van Eijndthoven T., Lambert J., Knol J., Garssen J., Kraneveld A.D., Oozeer R. Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain. Behav. Immun. 2014;37:197–206. doi: 10.1016/j.bbi.2013.12.005.
    1. El-Rashidy O., El-Baz F., El-Gendy Y., Khalaf R., Reda D., Saad K. Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metab. Brain Dis. 2017;32:1935–1941. doi: 10.1007/s11011-017-0088-z.
    1. Olson C.A., Vuong H.E., Yano J.M., Liang Q.Y., Nusbaum D.J., Hsiao E.Y. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;173:1728–1741.e13. doi: 10.1016/j.cell.2018.04.027.
    1. Lach G., Schellekens H., Dinan T.G., Cryan J.F. Anxiety, depression, and the microbiome: A role for gut peptides. Neurotherapeutics. 2018;15:36–59. doi: 10.1007/s13311-017-0585-0.
    1. Park A., Collins J., Blennerhassett P., Ghia J., Verdu E., Bercik P., Collins S. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol. Motil. 2013;25:733-e575. doi: 10.1111/nmo.12153.
    1. O’Malley D., Julio-Pieper M., Gibney S.M., Dinan T.G., Cryan J.F. Distinct alterations in colonic morphology and physiology in two rat models of enhanced stress-induced anxiety and depression-like behaviour. Stress. 2010;13:114–122. doi: 10.3109/10253890903067418.
    1. Jiang H., Ling Z., Zhang Y., Mao H., Ma Z., Yin Y., Wang W., Tang W., Tan Z., Shi J. Altered fecal microbiota composition in patients with major depressive disorder. Brain. Behav. Immun. 2015;48:186–194. doi: 10.1016/j.bbi.2015.03.016.
    1. Yu M., Jia H., Zhou C., Yang Y., Zhao Y., Yang M., Zou Z. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J. Pharm. Biomed. Anal. 2017;138:231–239. doi: 10.1016/j.jpba.2017.02.008.
    1. Alfageh B.H., Man K.K., Besag F.M., Alhawassi T.M., Wong I.C., Brauer R. Psychotropic Medication Prescribing for Neuropsychiatric Comorbidities in Individuals Diagnosed with Autism Spectrum Disorder (ASD) in the UK. J. Autism Dev. Disord. 2019;50:625–633. doi: 10.1007/s10803-019-04291-8.
    1. Houghton R., Ong R.C., Bolognani F. Psychiatric comorbidities and use of psychotropic medications in people with autism spectrum disorder in the United States. Autism Res. 2017;10:2037–2047. doi: 10.1002/aur.1848.
    1. Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009;1:6ra14. doi: 10.1126/scitranslmed.3000322.
    1. Krajmalnik-Brown R., Kang D.-W., Park J.G., Labaer J., Ilhan Z. Microbiome Markers and Therapies for Autism Spectrum Disorders. US9719144B2. U.S. Patent. 2017 Aug 1;
    1. Silva Y.P., Bernardi A., Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne) 2020;11:25. doi: 10.3389/fendo.2020.00025.
    1. Dalile B., Van Oudenhove L., Vervliet B., Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019;16:461–478. doi: 10.1038/s41575-019-0157-3.
    1. Salvucci E. The human-microbiome superorganism and its modulation to restore health. Int. J. Food Sci. Nutr. 2019;70:781–795. doi: 10.1080/09637486.2019.1580682.
    1. Dong T.S., Gupta A. Influence of early life, diet, and the environment on the microbiome. Clin. Gastroenterol. Hepatol. 2019;17:231–242. doi: 10.1016/j.cgh.2018.08.067.
    1. Pascale A., Marchesi N., Marelli C., Coppola A., Luzi L., Govoni S., Giustina A., Gazzaruso C. Microbiota and metabolic diseases. Endocrine. 2018;61:357–371. doi: 10.1007/s12020-018-1605-5.
    1. Adams J.B., Audhya T., Geis E., Gehn E., Fimbres V., Pollard E.L., Mitchell J., Ingram J., Hellmers R., Laake D. Comprehensive nutritional and dietary intervention for autism spectrum disorder—A randomized, controlled 12-month trial. Nutrients. 2018;10:369. doi: 10.3390/nu10030369.
    1. Lange K.W., Hauser J., Reissmann A. Gluten-free and casein-free diets in the therapy of autism. Curr. Opin. Clin. Nutr. Metab. Care. 2015;18:572–575. doi: 10.1097/MCO.0000000000000228.
    1. González-Domenech P.J., Atienza F.D., Pablos C.G., Soto M.L.F., Martínez-Ortega J.M., Gutiérrez-Rojas L. Influence of a Combined Gluten-Free and Casein-Free Diet on Behavior Disorders in Children and Adolescents Diagnosed with Autism Spectrum Disorder: A 12-Month Follow-Up Clinical Trial. J. Autism Dev. Disord. 2019;50:935–948. doi: 10.1007/s10803-019-04333-1.
    1. Buffington S.A., Di Prisco G.V., Auchtung T.A., Ajami N.J., Petrosino J.F., Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. 2016;165:1762–1775. doi: 10.1016/j.cell.2016.06.001.
    1. Gupta V.K., Paul S., Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front. Microbiol. 2017;8:1162. doi: 10.3389/fmicb.2017.01162.
    1. Fernell E., Bejerot S., Westerlund J., Miniscalco C., Simila H., Eyles D., Gillberg C., Humble M.B. Autism spectrum disorder and low vitamin D at birth: A sibling control study. Mol. Autism. 2015;6:3. doi: 10.1186/2040-2392-6-3.
    1. Alzghoul L., AL-Eitan L.N., Aladawi M., Odeh M., Hantash O.A. The Association between Serum Vitamin D3 Levels and Autism among Jordanian Boys. J. Autism Dev. Disord. 2019:1–6. doi: 10.1007/s10803-019-04017-w.
    1. Khamoushi A., Aalipanah E., Sohrabi Z., Akbarzadeh M. Vitamin D and Autism Spectrum Disorder: A Review. Int. J. Nutr. Sci. 2019;4:9–13. doi: 10.30476/IJNS.2019.81436.1004.
    1. Jia F., Wang B., Shan L., Xu Z., Staal W.G., Du L. Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 2015;135:e196–e198. doi: 10.1542/peds.2014-2121.
    1. Pandey K.R., Naik S.R., Vakil B.V. Probiotics, prebiotics and synbiotics-a review. J. Food Sci. Technol. 2015;52:7577–7587. doi: 10.1007/s13197-015-1921-1.
    1. Shaaban S.Y., El Gendy Y.G., Mehanna N.S., El-Senousy W.M., El-Feki H.S., Saad K., El-Asheer O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2018;21:676–681. doi: 10.1080/1028415X.2017.1347746.
    1. Grimaldi R., Gibson G.R., Vulevic J., Giallourou N., Castro-Mejía J.L., Hansen L.H., Gibson E.L., Nielsen D.S., Costabile A. A prebiotic intervention study in children with autism spectrum disorders (ASDs) Microbiome. 2018;6:133. doi: 10.1186/s40168-018-0523-3.
    1. Hsiao E.Y., McBride S.W., Hsien S., Sharon G., Hyde E.R., McCue T., Codelli J.A., Chow J., Reisman S.E., Petrosino J.F. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155:1451–1463. doi: 10.1016/j.cell.2013.11.024.
    1. Urbańska M., Gieruszczak-Białek D., Szajewska H. Systematic review with meta-analysis: Lactobacillus reuteri DSM 17938 for diarrhoeal diseases in children. Aliment. Pharmacol. Ther. 2016;43:1025–1034. doi: 10.1111/apt.13590.
    1. Golnik A.E., Ireland M. Complementary alternative medicine for children with autism: A physician survey. J. Autism Dev. Disord. 2009;39:996–1005. doi: 10.1007/s10803-009-0714-7.
    1. Pärtty A., Kalliomäki M., Wacklin P., Salminen S., Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatr. Res. 2015;77:823–828. doi: 10.1038/pr.2015.51.
    1. Ng Q.X., Loke W., Venkatanarayanan N., Lim D.Y., Soh A.Y.S., Yeo W.S. A systematic review of the role of prebiotics and probiotics in autism spectrum disorders. Medicina. 2019;55:129. doi: 10.3390/medicina55050129.
    1. Mellon A., Deshpande S., Mathers J., Bartlett K. Effect of oral antibiotics on intestinal production of propionic acid. Arch. Dis. Child. 2000;82:169–172. doi: 10.1136/adc.82.2.169.
    1. Rodakis J. An n = 1 case report of a child with autism improving on antibiotics and a father’s quest to understand what it may mean. Microb. Ecol. Health Dis. 2015;26:26382. doi: 10.3402/mehd.v26.26382.
    1. Tochitani S., Ikeno T., Ito T., Sakurai A., Yamauchi T., Matsuzaki H. Administration of non-absorbable antibiotics to pregnant mice to perturb the maternal gut microbiota is associated with alterations in offspring behavior. PLoS ONE. 2016;11:e0138293. doi: 10.1371/journal.pone.0138293.
    1. Degroote S., Hunting D.J., Baccarelli A.A., Takser L. Maternal gut and fetal brain connection: Increased anxiety and reduced social interactions in Wistar rat offspring following peri-conceptional antibiotic exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2016;71:76–82. doi: 10.1016/j.pnpbp.2016.06.010.
    1. Bowman K.A., Broussard E.K., Surawicz C.M. Fecal microbiota transplantation: Current clinical efficacy and future prospects. Clin. Exp. Gastroenterol. 2015;8:285.
    1. Kelly C.R., Kahn S., Kashyap P., Laine L., Rubin D., Atreja A., Moore T., Wu G. Update on fecal microbiota transplantation 2015: Indications, methodologies, mechanisms, and outlook. Gastroenterology. 2015;149:223–237. doi: 10.1053/j.gastro.2015.05.008.
    1. Hugenholtz F., de Vos W.M. Mouse models for human intestinal microbiota research: A critical evaluation. Cell. Mol. Life Sci. 2018;75:149–160. doi: 10.1007/s00018-017-2693-8.
    1. Brugha T.S., McManus S., Bankart J., Scott F., Purdon S., Smith J., Bebbington P., Jenkins R., Meltzer H. Epidemiology of autism spectrum disorders in adults in the community in England. Arch. Gen. Psychiatry. 2011;68:459–465. doi: 10.1001/archgenpsychiatry.2011.38.
    1. Howlin P., Moss P. Adults with autism spectrum disorders. Can. J. Psychiatry. 2012;57:275–283. doi: 10.1177/070674371205700502.

Source: PubMed

3
구독하다