Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice

Rebeca Martín, Laure Laval, Florian Chain, Sylvie Miquel, Jane Natividad, Claire Cherbuy, Harry Sokol, Elena F Verdu, Johan van Hylckama Vlieg, Luis G Bermudez-Humaran, Tamara Smokvina, Philippe Langella, Rebeca Martín, Laure Laval, Florian Chain, Sylvie Miquel, Jane Natividad, Claire Cherbuy, Harry Sokol, Elena F Verdu, Johan van Hylckama Vlieg, Luis G Bermudez-Humaran, Tamara Smokvina, Philippe Langella

Abstract

Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4(+) lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4(+) Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.

Keywords: apical junction proteins; goblet cells; micro-inflammation.

Figures

FIGURE 1
FIGURE 1
Cytokine concentrations in colon in the dinitrobenzene sulfonic acid (DNBS) micro-inflammation model. Control non-inflamed (EtOH–PBS), control inflamed (DNBS–PBS), and B. lactis CNCM I-2494 strain (DNBS–CNCM-I2494). ∗p < 0.05 (n = 8).
FIGURE 2
FIGURE 2
In vivo permeability measurements and effect on apical junction protein mRNAs. For in vivo measurements of gut permeability, animals were orally gavaged with fluorescein isothiocyanate (FITC)-dextran (A). Apical junction protein expression levels were determined by real-time qPCR (B). Control non-inflamed (EtOH-PBS, black circles) control inflamed (DNBS-PBS, black squares) B. lactis CNCM I-2494 strain (DNBS-CNCM-I2494, black triangles). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 (n = 8).
FIGURE 3
FIGURE 3
Goblet cell detection. Representative photos and % of positive cells stained with AB (Alcian Blue) (A) and PAS (Periodic Acid-Schiff) (B). Control non-inflamed (EtOH–PBS), control inflamed (DNBS–PBS), B. lactis CNCM I-2494 strain (DNBS–CNCM-I2494). ∗p < 0.05 ∗∗p < 0.01 (n = 4).
FIGURE 4
FIGURE 4
Splenocyte population levels. CD3/CD4 positive cells detected by flow cytometry (A) and cytokine production in spleen cell cultures stimulated with CD3+/CD28+ or PAM/IO (B). Control non-inflamed (EtOH-PBS), control inflamed (DNBS-PBS), B. lactis CNCM I-2494 strain (DNBS-CNCM-I2494). ∗p < 0.05 (n = 8).
FIGURE 5
FIGURE 5
MLN population levels. CD3/CD4 positive cells detected by flow cytometry (A) and cytokine production in MLN cultures stimulated with CD3+/CD28+ or PMA/IO (B). Control non-inflamed (EtOH–PBS), control inflamed (DNBS–PBS), B. lactis CNCM I-2494 strain (DNBS–CNCM-I2494). ∗p < 0.05 (n = 8).

References

    1. Agostini S., Goubern M., Tondereau V., Salvador-Cartier C., Bezirard V., Leveque M., et al. (2012). A marketed fermented dairy product containing Bifidobacterium lactis CNCM I-2494 suppresses gut hypersensitivity and colonic barrier disruption induced by acute stress in rats. Neurogastroenterol. Motil. 24:e172 10.1111/j.1365-2982.2011.01865.x
    1. Agrawal A., Houghton L. A., Morris J., Reilly B., Guyonnet D., Goupil Feuillerat N., et al. (2009). Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment. Pharmacol. Ther. 29 104–114. 10.1111/j.1365-2036.2008.03853.x
    1. Barbara G., Zecchi L., Barbaro R., Cremon C., Bellacosa L., Marcellini M., et al. (2012). Mucosal permeability and immune activation as potential therapeutic targets of probiotics in irritable bowel syndrome. J. Clin. Gastroenterol. 46(Suppl.), S52–S55. 10.1097/MCG.0b013e318264e91800004836-201210001-00012
    1. Bruewer M., Utech M., Ivanov A. I., Hopkins A. M., Parkos C. A., Nusrat A. (2005). Interferon-gamma induces internalization of epithelial tight junction proteins via a macropinocytosis-like process. FASEB J 19 923–933. 10.1096/fj.04-3260com
    1. Camilleri M., Lasch K., Zhou W. (2012). Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 303 775–785. 10.1152/ajpgi.00155.2012
    1. Chervaux C., Grimaldi C., Bolotin A., Quinquis B., Legrain-Raspaud S., van Hylckama Vlieg J. E., et al. (2011). Genome sequence of the probiotic strain Bifidobacterium animalis subsp. lactis CNCM I-2494. J. Bacteriol. 193 5560–5561. 10.1128/JB.05716-11
    1. Denker B. M., Nigam S. K. (1998). Molecular structure and assembly of the tight junction. Am. J. Physiol. Renal Physiol. 274 1–9.
    1. Distrutti E., Cipriani S., Mencarelli A., Renga B., Fiorucci S. (2013). Probiotics VSL#3 protect against development of visceral pain in murine model of irritable bowel syndrome. PLoS ONE 8:e63893 10.1371/journal.pone.0063893
    1. Donato K. A., Gareau M., Wang Y. J., Sherman P. M. (2010). Lactobacillus rhamnosus GG attenuates interferon-{gamma} and tumour necrosis factor-alpha-induced barrier dysfunction and pro-inflammatory signalling. Microbiology 156 3288–3297. 10.1099/mic.0.040139-0
    1. Fyderek K., Strus M., Kowalska-Duplaga K., Gosiewski T., Wedrychowicz A., Jedynak-Wasowicz U., et al. (2009). Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol 15 5287–5294. 10.3748/wjg.15.5287
    1. Gaudier E., Jarry A., Blottiere H. M., de Coppet P., Buisine M. P., Aubert J. P., et al. (2004). Butyrate specifically modulates MUC gene expression in intestinal epithelial goblet cells deprived of glucose. Am. J. Physiol. Gastrointest. Liver Physiol. 287 G1168–G1174. 10.1152/ajpgi.00219.2004
    1. Gaudier E., Michel C., Segain J. P., Cherbut C., Hoebler C. (2005). The VSL# 3 probiotic mixture modifies microflora but does not heal chronic dextran-sodium sulfate-induced colitis or reinforce the mucus barrier in mice. J. Nutr. 135 2753–2761.
    1. Guyonnet D., Schlumberger A., Mhamdi L., Jakob S., Chassany O. (2009a). Fermented milk containing Bifidobacterium lactis DN-173 010 improves gastrointestinal well-being and digestive symptoms in women reporting minor digestive symptoms: a randomised, double-blind, parallel, controlled study. Br. J. Nutr. 102 1654–1662. 10.1017/S0007114509990882
    1. Guyonnet D., Woodcock A., Stefani B., Trevisan C., Hall C. (2009b). Fermented milk containing Bifidobacterium lactis DN-173 010 improved self-reported digestive comfort amongst a general population of adults. A randomized, open-label, controlled, pilot study. J. Dig. Dis. 10 61–70. 10.1111/j.1751-2980.2008.00366.x
    1. He F., Ouwehan A. C., Hashimoto H., Isolauri E., Benno Y., Salminen S. (2001). Adhesion of Bifidobacterium spp. to human intestinal mucus. Microbiol. Immunol. 45 259–262. 10.1111/j.1348-0421.2001.tb02615.x
    1. Laval L., Martin R., Natividad J., Chain F., Miquel S., de Maredsous C. D., et al. (2015). Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyper-permeability in mice. Gut Microbes 6 1–9. 10.4161/19490976.2014.990784
    1. Lepercq P., Relano P., Cayuela C., Juste C. (2004). Bifidobacterium animalis strain DN-173 010 hydrolyses bile salts in the gastrointestinal tract of pigs. Scand. J. Gastroenterol. 39 1266–1271. 10.1080/00365520410003515
    1. Lopetuso L. R., Scaldaferri F., Bruno G., Petito V., Franceschi F., Gasbarrini A. (2015). The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. Eur. Rev. Med. Pharmacol. Sci. 19 1068–1076.
    1. Lopez P., Gonzalez-Rodriguez I., Gueimonde M., Margolles A., Suarez A. (2011). Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS ONE 6:e24776 10.1371/journal.pone.0024776
    1. Marteau P., Cuillerier E., Meance S., Gerhardt M. F., Myara A., Bouvier M., et al. (2002). Bifidobacterium animalis strain DN-173 010 shortens the colonic transit time in healthy women: a double-blind, randomized, controlled study. Aliment. Pharmacol. Ther. 16 587–593. 10.1046/j.1365-2036.2002.01188.x
    1. Marteau P., Guyonnet D., Lafaye de Micheaux P., Gelu S. (2013). A randomized, double-blind, controlled study and pooled analysis of two identical trials of fermented milk containing probiotic Bifidobacterium lactis CNCM I-2494 in healthy women reporting minor digestive symptoms. Neurogastroenterol. Motil. 25:e252 10.1111/nmo.12078
    1. Martin R., Chain F., Miquel S., Lu J., Gratadoux J. J., Sokol H., et al. (2014). The Commensal Bacterium Faecalibacterium prausnitzii is protective in DNBS-induced chronic moderate and severe colitis models. Inflamm. Bowel. Dis. 20 417–430. 10.1097/01.MIB.0000440815.76627.64
    1. Martin R., Miquel S., Chain F., Natividad J. M., Jury J., Lu J., et al. (2015). Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model. BMC Microbiol. 15:67 10.1186/s12866-015-0400-1
    1. Mennigen R., Nolte K., Rijcken E., Utech M., Loeffler B., Senninger N., et al. (2009). Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296 1140–1149. 10.1152/ajpgi.90534.2008
    1. Natividad J. M., Hayes C. L., Motta J. P., Jury J., Galipeau H. J., Philip V., et al. (2013). Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl. Environ. Microbiol. 79 7745–7754. 10.1128/AEM.02470-13
    1. Natividad J. M., Verdu E. F. (2013). Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol. Res. 69 42–51. 10.1016/j.phrs.2012.10.007
    1. O’Connell Motherway M., Watson D., Bottacini F., Clark T. A., Roberts R. J., Korlach J., et al. (2014). Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis. PLoS ONE 9:e94875 10.1371/journal.pone.0094875
    1. Ohman L., Simren M. (2007). New insights into the pathogenesis and pathophysiology of irritable bowel syndrome. Dig. Liver Dis. 39 201–215. 10.1016/j.dld.2006.10.014
    1. Perrier C., Corthésy B. (2011). Gut permeability and food allergies. Clin. Exp. Allergy 41 20–28. 10.1111/j.1365-2222.2010.03639.x
    1. Picard C., Fioramonti J., Francois A., Robinson T., Neant F., Matuchansky C. (2005). Review article: bifidobacteria as probiotic agents – physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22 495–512. 10.1111/j.1365-2036.2005.02615.x
    1. Prasad S., Mingrino R., Kaukinen K., Hayes K. L., Powell R. M., MacDonald T. T., et al. (2005). Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Lab. Invest 85 1139–1162. 10.1038/labinvest.3700316
    1. Rochet V., Rigottier-Gois L., Ledaire A., Andrieux C., Sutren M., Rabot S., et al. (2008). Survival of Bifidobacterium animalis DN-173 010 in the faecal microbiota after administration in lyophilised form or in fermented product - a randomised study in healthy adults. J. Mol. Microbiol. Biotechnol. 14 128–136. 10.1159/000106092
    1. Shashidharamurthy R., Machiah D., Aitken J. D., Putty K., Srinivasan G., Chassaing B., et al. (2013). Differential role of lipocalin 2 during immune complex-mediated acute and chronic inflammation in mice. Arthritis Rheum. 65 1064–1073. 10.1002/art.37840
    1. Suzuki T., Yoshinaga N., Tanabe S. (2011). Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J. Biol. Chem. 286 31263–31271. 10.1074/jbc.M111.238147
    1. Tambuwala M. M., Cummins E. P., Lenihan C. R., Kiss J., Stauch M., Scholz C. C., et al. (2010). Loss of prolyl hydroxylase-1 protects against colitis through reduced epithelial cell apoptosis and increased barrier function. Gastroenterology 139 2093–2101. 10.1053/j.gastro.2010.06.068
    1. Tavan E., Cayuela C., Antoine J. M., Trugnan G., Chaugier C., Cassand P. (2002). Effects of dairy products on heterocyclic aromatic amine-induced rat colon carcinogenesis. Carcinogenesis 23 477–483. 10.1093/carcin/23.3.477
    1. Ukena S. N., Anurag S., Dringenberg U., Engelhardt R., Seidler U., Hansen W., et al. (2007). Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS ONE 2:e1308 10.1371/journal.pone.0001308
    1. Vaarala O. (2012). Is the origin of type 1 diabetes in the gut? Immunol. Cell Biol. 90 271–276. 10.1038/icb.2011.115
    1. Veiga P., Gallini C. A., Beal C., Michaud M., Delaney M. L., DuBois A., et al. (2010). Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc. Natl. Acad. Sci. U.S.A. 107 18132–18137. 10.1073/pnas.1011737107
    1. Wisner D. M., Harris L. R., Green C. L., Poritz L. S. (2008). Opposing regulation of the tight junction protein claudin-2 by interferon-gamma and interleukin-4. J. Surg. Res. 144 1–7. 10.1016/j.jss.2007.03.059
    1. Wrzosek L., Miquel S., Noordine M. L., Bouet S., Joncquel Chevalier-Curt M., Robert V., et al. (2013). Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 11:61 10.1186/1741-7007-11-61
    1. Zheng B., van Bergenhenegouwen J., Overbeek S., van de Kant H. J., Garssen J., Folkerts G., et al. (2014). Bifidobacterium breve attenuates murine dextran sodium sulfate-induced colitis and increases regulatory T cell responses. PLoS ONE 9:e95441 10.1371/journal.pone.0095441
    1. Zhu J., Paul W. E. (2008). CD4 T cells: fates, functions, and faults. Blood 112 1557–1569. 10.1182/blood-2008-05-078154
    1. Zuo L., Yuan K. T., Yu L., Meng Q. H., Chung P. C., Yang D. H. (2014). Bifidobacterium infantis attenuates colitis by regulating T cell subset responses. World J. Gastroenterol. 20 18316–18329. 10.3748/wjg.v20.i48.18316

Source: PubMed

3
구독하다