Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa

Hunna J Watson, Zeynep Yilmaz, Laura M Thornton, Christopher Hübel, Jonathan R I Coleman, Héléna A Gaspar, Julien Bryois, Anke Hinney, Virpi M Leppä, Manuel Mattheisen, Sarah E Medland, Stephan Ripke, Shuyang Yao, Paola Giusti-Rodríguez, Anorexia Nervosa Genetics Initiative, Ken B Hanscombe, Kirstin L Purves, Eating Disorders Working Group of the Psychiatric Genomics Consortium, Roger A H Adan, Lars Alfredsson, Tetsuya Ando, Ole A Andreassen, Jessica H Baker, Wade H Berrettini, Ilka Boehm, Claudette Boni, Vesna Boraska Perica, Katharina Buehren, Roland Burghardt, Matteo Cassina, Sven Cichon, Maurizio Clementi, Roger D Cone, Philippe Courtet, Scott Crow, James J Crowley, Unna N Danner, Oliver S P Davis, Martina de Zwaan, George Dedoussis, Daniela Degortes, Janiece E DeSocio, Danielle M Dick, Dimitris Dikeos, Christian Dina, Monika Dmitrzak-Weglarz, Elisa Docampo, Laramie E Duncan, Karin Egberts, Stefan Ehrlich, Geòrgia Escaramís, Tõnu Esko, Xavier Estivill, Anne Farmer, Angela Favaro, Fernando Fernández-Aranda, Manfred M Fichter, Krista Fischer, Manuel Föcker, Lenka Foretova, Andreas J Forstner, Monica Forzan, Christopher S Franklin, Steven Gallinger, Ina Giegling, Johanna Giuranna, Fragiskos Gonidakis, Philip Gorwood, Monica Gratacos Mayora, Sébastien Guillaume, Yiran Guo, Hakon Hakonarson, Konstantinos Hatzikotoulas, Joanna Hauser, Johannes Hebebrand, Sietske G Helder, Stefan Herms, Beate Herpertz-Dahlmann, Wolfgang Herzog, Laura M Huckins, James I Hudson, Hartmut Imgart, Hidetoshi Inoko, Vladimir Janout, Susana Jiménez-Murcia, Antonio Julià, Gursharan Kalsi, Deborah Kaminská, Jaakko Kaprio, Leila Karhunen, Andreas Karwautz, Martien J H Kas, James L Kennedy, Anna Keski-Rahkonen, Kirsty Kiezebrink, Youl-Ri Kim, Lars Klareskog, Kelly L Klump, Gun Peggy S Knudsen, Maria C La Via, Stephanie Le Hellard, Robert D Levitan, Dong Li, Lisa Lilenfeld, Bochao Danae Lin, Jolanta Lissowska, Jurjen Luykx, Pierre J Magistretti, Mario Maj, Katrin Mannik, Sara Marsal, Christian R Marshall, Morten Mattingsdal, Sara McDevitt, Peter McGuffin, Andres Metspalu, Ingrid Meulenbelt, Nadia Micali, Karen Mitchell, Alessio Maria Monteleone, Palmiero Monteleone, Melissa A Munn-Chernoff, Benedetta Nacmias, Marie Navratilova, Ioanna Ntalla, Julie K O'Toole, Roel A Ophoff, Leonid Padyukov, Aarno Palotie, Jacques Pantel, Hana Papezova, Dalila Pinto, Raquel Rabionet, Anu Raevuori, Nicolas Ramoz, Ted Reichborn-Kjennerud, Valdo Ricca, Samuli Ripatti, Franziska Ritschel, Marion Roberts, Alessandro Rotondo, Dan Rujescu, Filip Rybakowski, Paolo Santonastaso, André Scherag, Stephen W Scherer, Ulrike Schmidt, Nicholas J Schork, Alexandra Schosser, Jochen Seitz, Lenka Slachtova, P Eline Slagboom, Margarita C T Slof-Op 't Landt, Agnieszka Slopien, Sandro Sorbi, Beata Świątkowska, Jin P Szatkiewicz, Ioanna Tachmazidou, Elena Tenconi, Alfonso Tortorella, Federica Tozzi, Janet Treasure, Artemis Tsitsika, Marta Tyszkiewicz-Nwafor, Konstantinos Tziouvas, Annemarie A van Elburg, Eric F van Furth, Gudrun Wagner, Esther Walton, Elisabeth Widen, Eleftheria Zeggini, Stephanie Zerwas, Stephan Zipfel, Andrew W Bergen, Joseph M Boden, Harry Brandt, Steven Crawford, Katherine A Halmi, L John Horwood, Craig Johnson, Allan S Kaplan, Walter H Kaye, James E Mitchell, Catherine M Olsen, John F Pearson, Nancy L Pedersen, Michael Strober, Thomas Werge, David C Whiteman, D Blake Woodside, Garret D Stuber, Scott Gordon, Jakob Grove, Anjali K Henders, Anders Juréus, Katherine M Kirk, Janne T Larsen, Richard Parker, Liselotte Petersen, Jennifer Jordan, Martin Kennedy, Grant W Montgomery, Tracey D Wade, Andreas Birgegård, Paul Lichtenstein, Claes Norring, Mikael Landén, Nicholas G Martin, Preben Bo Mortensen, Patrick F Sullivan, Gerome Breen, Cynthia M Bulik, Hunna J Watson, Zeynep Yilmaz, Laura M Thornton, Christopher Hübel, Jonathan R I Coleman, Héléna A Gaspar, Julien Bryois, Anke Hinney, Virpi M Leppä, Manuel Mattheisen, Sarah E Medland, Stephan Ripke, Shuyang Yao, Paola Giusti-Rodríguez, Anorexia Nervosa Genetics Initiative, Ken B Hanscombe, Kirstin L Purves, Eating Disorders Working Group of the Psychiatric Genomics Consortium, Roger A H Adan, Lars Alfredsson, Tetsuya Ando, Ole A Andreassen, Jessica H Baker, Wade H Berrettini, Ilka Boehm, Claudette Boni, Vesna Boraska Perica, Katharina Buehren, Roland Burghardt, Matteo Cassina, Sven Cichon, Maurizio Clementi, Roger D Cone, Philippe Courtet, Scott Crow, James J Crowley, Unna N Danner, Oliver S P Davis, Martina de Zwaan, George Dedoussis, Daniela Degortes, Janiece E DeSocio, Danielle M Dick, Dimitris Dikeos, Christian Dina, Monika Dmitrzak-Weglarz, Elisa Docampo, Laramie E Duncan, Karin Egberts, Stefan Ehrlich, Geòrgia Escaramís, Tõnu Esko, Xavier Estivill, Anne Farmer, Angela Favaro, Fernando Fernández-Aranda, Manfred M Fichter, Krista Fischer, Manuel Föcker, Lenka Foretova, Andreas J Forstner, Monica Forzan, Christopher S Franklin, Steven Gallinger, Ina Giegling, Johanna Giuranna, Fragiskos Gonidakis, Philip Gorwood, Monica Gratacos Mayora, Sébastien Guillaume, Yiran Guo, Hakon Hakonarson, Konstantinos Hatzikotoulas, Joanna Hauser, Johannes Hebebrand, Sietske G Helder, Stefan Herms, Beate Herpertz-Dahlmann, Wolfgang Herzog, Laura M Huckins, James I Hudson, Hartmut Imgart, Hidetoshi Inoko, Vladimir Janout, Susana Jiménez-Murcia, Antonio Julià, Gursharan Kalsi, Deborah Kaminská, Jaakko Kaprio, Leila Karhunen, Andreas Karwautz, Martien J H Kas, James L Kennedy, Anna Keski-Rahkonen, Kirsty Kiezebrink, Youl-Ri Kim, Lars Klareskog, Kelly L Klump, Gun Peggy S Knudsen, Maria C La Via, Stephanie Le Hellard, Robert D Levitan, Dong Li, Lisa Lilenfeld, Bochao Danae Lin, Jolanta Lissowska, Jurjen Luykx, Pierre J Magistretti, Mario Maj, Katrin Mannik, Sara Marsal, Christian R Marshall, Morten Mattingsdal, Sara McDevitt, Peter McGuffin, Andres Metspalu, Ingrid Meulenbelt, Nadia Micali, Karen Mitchell, Alessio Maria Monteleone, Palmiero Monteleone, Melissa A Munn-Chernoff, Benedetta Nacmias, Marie Navratilova, Ioanna Ntalla, Julie K O'Toole, Roel A Ophoff, Leonid Padyukov, Aarno Palotie, Jacques Pantel, Hana Papezova, Dalila Pinto, Raquel Rabionet, Anu Raevuori, Nicolas Ramoz, Ted Reichborn-Kjennerud, Valdo Ricca, Samuli Ripatti, Franziska Ritschel, Marion Roberts, Alessandro Rotondo, Dan Rujescu, Filip Rybakowski, Paolo Santonastaso, André Scherag, Stephen W Scherer, Ulrike Schmidt, Nicholas J Schork, Alexandra Schosser, Jochen Seitz, Lenka Slachtova, P Eline Slagboom, Margarita C T Slof-Op 't Landt, Agnieszka Slopien, Sandro Sorbi, Beata Świątkowska, Jin P Szatkiewicz, Ioanna Tachmazidou, Elena Tenconi, Alfonso Tortorella, Federica Tozzi, Janet Treasure, Artemis Tsitsika, Marta Tyszkiewicz-Nwafor, Konstantinos Tziouvas, Annemarie A van Elburg, Eric F van Furth, Gudrun Wagner, Esther Walton, Elisabeth Widen, Eleftheria Zeggini, Stephanie Zerwas, Stephan Zipfel, Andrew W Bergen, Joseph M Boden, Harry Brandt, Steven Crawford, Katherine A Halmi, L John Horwood, Craig Johnson, Allan S Kaplan, Walter H Kaye, James E Mitchell, Catherine M Olsen, John F Pearson, Nancy L Pedersen, Michael Strober, Thomas Werge, David C Whiteman, D Blake Woodside, Garret D Stuber, Scott Gordon, Jakob Grove, Anjali K Henders, Anders Juréus, Katherine M Kirk, Janne T Larsen, Richard Parker, Liselotte Petersen, Jennifer Jordan, Martin Kennedy, Grant W Montgomery, Tracey D Wade, Andreas Birgegård, Paul Lichtenstein, Claes Norring, Mikael Landén, Nicholas G Martin, Preben Bo Mortensen, Patrick F Sullivan, Gerome Breen, Cynthia M Bulik

Abstract

Characterized primarily by a low body-mass index, anorexia nervosa is a complex and serious illness1, affecting 0.9-4% of women and 0.3% of men2-4, with twin-based heritability estimates of 50-60%5. Mortality rates are higher than those in other psychiatric disorders6, and outcomes are unacceptably poor7. Here we combine data from the Anorexia Nervosa Genetics Initiative (ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) and conduct a genome-wide association study of 16,992 cases of anorexia nervosa and 55,525 controls, identifying eight significant loci. The genetic architecture of anorexia nervosa mirrors its clinical presentation, showing significant genetic correlations with psychiatric disorders, physical activity, and metabolic (including glycemic), lipid and anthropometric traits, independent of the effects of common variants associated with body-mass index. These results further encourage a reconceptualization of anorexia nervosa as a metabo-psychiatric disorder. Elucidating the metabolic component is a critical direction for future research, and paying attention to both psychiatric and metabolic components may be key to improving outcomes.

Conflict of interest statement

Competing interests

The authors report the following potential competing interests. O.A.A. received a speaker’s honorarium from Lundbeck. G.B. received grant funding and consultancy fees in preclinical genetics from Eli Lilly, consultancy fees from Otsuka and has received honoraria from Illumina. C.M.B. is a grant recipient from Shire Pharmaceuticals and served on Shire Scientific Advisory Board; she receives author royalties from Pearson. D.D. served as a speaker and on advisory boards, and has received consultancy fees for participation in research from various pharmaceutical industry companies including: AstraZeneca, Boehringer, Bristol Myers Squibb, Eli Lilly, Genesis Pharma, GlaxoSmithKline, Janssen, Lundbeck, Organon, Sanofi, UniPharma, and Wyeth; he has received unrestricted grants from Lilly and AstraZeneca as director of the Sleep Research Unit of Eginition Hospital (National and Kapodistrian University of Athens, Greece). J.I.H. has received grant support from Shire and Sunovion, and has received consulting fees from DiaMentis, Shire, and Sunovion. A.S.K. is a member of the Shire Canadian BED Advisory Board and is on the steering committee for the Shire B/educated Educational Symposium: June 15-16, 2018. J.L.K. served as an unpaid member of the scientific advisory board of AssurexHealth Inc. M.L. declares that, over the past 36 months, he has received lecture honoraria from Lundbeck and served as scientific consultant for EPID Research Oy. No other equity ownership, profit-sharing agreements, royalties, or patent. P.F.S. is on the Lundbeck advisory committee and is a Lundbeck grant recipient; he has served on the scientific advisory board for Pfizer, has received a consultation fee from Element Genomics, and a speaker reimbursement fee from Roche. J.T. has received an honorarium for participation in an EAP meeting and has received royalties from several books from Routledge, Wiley, and Oxford University press. T.W. has acted as a lecturer and scientific advisor to H. Lundbeck A/S. All other authors have no conflicts of interest to disclose.

Figures

Figure 1.. The Manhattan plot for the…
Figure 1.. The Manhattan plot for the primary genome-wide association meta-analysis of anorexia nervosa with 33 case-control samples (16,992 cases and 55,525 controls of European descent).
The −log10(P) values for the association tests (two-tailed) are shown on the y-axis and the chromosomes are ordered on the x-axis. Eight genetic loci surpassed genome-wide significance (−log10(P) > 7.3). The lead variant is indicated by a diamond and green circles show the variants in linkage-disequilibrium. The blue and red colors differentiate adjacent chromosomes.
Figure. 2.. Bonferroni-significant genetic correlations (SNP- r…
Figure. 2.. Bonferroni-significant genetic correlations (SNP-rgs) and standard errors (error bars) between anorexia nervosa and other phenotypes as estimated by LD score regression.
Only traits with significant P values following Bonferroni correction are shown. Correlations with 447 phenotypes were tested (Bonferroni-corrected significance threshold P > 1.11 × 10−4). Complete results are shown in Table S10. PGC = Psychiatric Genomics Consortium, UKB = UK Biobank, HOMA-IR = Homeostatic model assessment - insulin resistance.

References

    1. Schaumberg K et al. The science behind the Academy for Eating Disorders' nine truths about eating disorders. Eur. Eat. Disord. Rev 25, 432–450 (2017).
    1. Keski-Rahkonen A & Mustelin L Epidemiology of eating disorders in Europe: prevalence, incidence, comorbidity, course, consequences, and risk factors. Curr. Opin. Psychiatry 29, 340–345 (2016).
    1. Hudson JI, Hiripi E, Pope HG & Kessler RC The prevalence and correlates of eating disorders in the National Comorbidity Survey Replication. Biol. Psychiatry 61, 348–358 (2007).
    1. Micali N et al. Lifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factors. BMC Med. 15, 12 (2017).
    1. Yilmaz Z, Hardaway JA & Bulik CM Genetics and epigenetics of eating disorders. Adv. Genomics Genet 5, 131–150 (2015).
    1. Arcelus J, Mitchell AJ, Wales J & Nielsen S Mortality rates in patients with anorexia nervosa and other eating disorders: a meta-analysis of 36 studies. Arch. Gen. Psychiatry 68, 724–731 (2011).
    1. Watson H & Bulik C Update on the treatment of anorexia nervosa: review of clinical trials, practice guidelines and emerging interventions. Psychol. Med 43, 2477–2500 (2013).
    1. Kirk KM et al. The Anorexia Nervosa Genetics Initiative: study description and sample characteristics of the Australian and New Zealand arm. Aust. N. Z. J. Psychiatry 51, 583–594 (2017).
    1. Thornton L, Munn-Chernoff M, Baker J, Juréus A & et al. The Anorexia Nervosa Genetics Initiative (ANGI): Overview and methods. Contemp. Clin. Trials 74, 61–69 (2018).
    1. Duncan L et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 173, 850–858 (2017).
    1. Pickrell JK et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet 48, 709–717 (2016).
    1. Martin J, Taylor MJ & Lichtenstein P Assessing the evidence for shared genetic risks across psychiatric disorders and traits. Psychol. Med 48, 1759–1774 (2018).
    1. Boraska V et al. A genome-wide association study of anorexia nervosa. Mol. Psychiatry 19, 1085–1094 (2014).
    1. Sudlow C et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).
    1. Yang J et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet 44, 369–375 (2012).
    1. Fromer M et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci 19, 1442–1453 (2016).
    1. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
    1. Zhu Z et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun 9, 224 (2018).
    1. Bulik-Sullivan BK et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet 47, 291–295 (2015).
    1. Bulik-Sullivan B et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet 47, 1236–1241 (2015).
    1. Cederlöf M et al. Etiological overlap between obsessive-compulsive disorder and anorexia nervosa: a longitudinal cohort, multigenerational family and twin study. World Psychiatry 14, 333–338 (2015).
    1. Kaye WH, Bulik CM, Thornton L, Barbarich N & Masters K Comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am. J. Psychiatry 161, 2215–2221 (2004).
    1. Dalle Grave R, Calugi S & Marchesini G Compulsive exercise to control shape or weight in eating disorders: prevalence, associated features, and treatment outcome. Compr. Psychiatry 49, 346–352 (2008).
    1. Savage JE et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet 50, 912–919 (2018).
    1. Ho EV, Klenotich SJ, McMurray MS & Dulawa SC Activity-based anorexia alters the expression of BDNF transcripts in the mesocorticolimbic reward circuit. PLoS One 11, e0166756 (2016).
    1. Finucane HK et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet 47, 1228–1235 (2015).
    1. Lindblad-Toh K et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476 (2011).
    1. Bello V et al. The dystroglycan: nestled in an adhesome during embryonic development. Dev. Biol 401, 132–142 (2015).
    1. Azevedo FAC et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol 513, 532–541 (2009).
    1. O'Connor EC et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564 (2015).
    1. Kim J, Zhang X, Muralidhar S, LeBlanc SA & Tonegawa S Basolateral to central amygdala neural circuits for appetitive behaviors. Neuron 93, 1464–1479.e5 (2017).
    1. Levinson DF et al. Genetic studies of major depressive disorder: why are there no genome-wide association study findings and what can we do about it? Biol. Psychiatry 76, 510–512 (2014).
    1. Moskvina V, Holmans P, Schmidt KM & Craddock N Design of case-controls studies with unscreened controls. Ann. Hum. Genet 69, 566–576 (2005).
    1. 1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
    1. Chang D et al. Accounting for eXentricities: analysis of the X chromosome in GWAS reveals X-linked genes implicated in autoimmune diseases. PLoS One 9, e113684 (2014).
    1. Yang J, Lee SH, Goddard ME & Visscher PM GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet 88, 76–82 (2011).
    1. Okbay A et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).
    1. Morris AP et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet 44, 981–990 (2012).
    1. Teslovich TM et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
    1. Schizophrenia Working Group of the Psychiatric Genomics Consortium et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).
    1. Hübel C et al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet in press.
    1. Chang CC et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).
    1. Dekker J Mapping the 3D genome: aiming for consilience. Nat. Rev. Mol. Cell Biol 17, 741–742 (2016).
    1. Dekker J Gene regulation in the third dimension. Science 319, 1793–1794 (2008).
    1. Ethier SD, Miura H & Dostie J Discovering genome regulation with 3C and 3C-related technologies. Biochim. Biophys. Acta 1819, 401–410 (2012).
    1. Pomerantz MM et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat. Genet 41, 882–884 (2009).
    1. Wright JB, Brown SJ & Cole MD Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol. Cell Biol 30, 1411–1420 (2010).
    1. Smemo S et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).
    1. Won H et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).
    1. Lu L, Liu X, Peng J, Li Y & Jin F Easy Hi-C: A simple efficient protocol for 3D genome mapping in small cell populations. bioRxiv, 245688 (2018).
    1. Giusti-Rodriguez PM & Sullivan PF Schizophrenia and a high-resolution map of the three-dimensional chromatin interactome of adult and fetal cortex. bioRxiv, 406330 (2018).
    1. Euesden J, Lewis CM & O'Reilly PF PRSice: Polygenic Risk Score software. Bioinformatics 31, 1466–1468 (2015).
    1. Zheng J et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).
    1. de Leeuw CA, Mooij JM, Heskes T & Posthuma D MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol 11, e1004219 (2015).
    1. Subramanian A et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A 102, 15545–15550 (2005).

Source: PubMed

3
구독하다