Minimal clinically important difference for impulse oscillometry in adults with asthma

Mustafa Abdo, Anne-Marie Kirsten, Erika von Mutius, Matthias Kopp, Gesine Hansen, Klaus F Rabe, Henrik Watz, Frederik Trinkmann, Thomas Bahmer, ALLIANCE study group, Mustafa Abdo, Anne-Marie Kirsten, Erika von Mutius, Matthias Kopp, Gesine Hansen, Klaus F Rabe, Henrik Watz, Frederik Trinkmann, Thomas Bahmer, ALLIANCE study group

Abstract

Background: Impulse oscillometry (IOS) allows an effort-independent evaluation of small airway function in asthma. Unfortunately, well-determined minimal clinically important differences (MCIDs) for IOS measures are lacking. Here, we provide MCIDs for frequently used IOS measures, namely frequency dependence of resistance (FDR) and area of reactance (AX), in patients with asthma.

Methods: We performed IOS at baseline and 1 year later in adult patients with mild-to-severe asthma (n=235). In a two-step approach, we first applied a distribution-based method to statistically determine the MCID. Next, we validated the proposed MCID according to patient-reported outcome measures (PROMs): Asthma Quality of Life Questionnaire (AQLQ), Asthma Control Questionnaire-7 (ACQ-7) and Asthma Control Test (ACT). We used multivariable analyses to investigate the proposed MCIDs as predictors for improvements in PROMs compared with the established MCID of forced expiratory volume in 1 s (FEV1).

Results: The proposed MCID was a decline of ≥0.06 kPa·L-1·s-1 and ≥0.65 kPa·L-1 for FDR and AX, respectively. Patients who had changes beyond the MCIDs for both FDR and AX showed greater improvements in all PROMs than those who had not. The mean improvements in PROMs were beyond the established MCIDs for ACQ-7 and AQLQ, and approximated the MCID for ACT. Multivariable analyses demonstrated the MCIDs for both FDR and AX as independent predictors for the MCIDs of all PROMs. The MCID for FDR was a stronger predictor of all PROMs than the MCID for FEV1.

Conclusions: This study provides MCIDs for IOS-derived measures in adult patients with asthma and emphasises that small airway function is a distinguished end-point beyond the conventional measure of FEV1.

Conflict of interest statement

Conflicts of interest: M. Abdo received travel support from Chiesi and consulting fees from AstraZeneca, all outside the submitted work. E. von Mutius reports personal fees from Pharmaventures, OM Pharma SA, Springer-Verlag GmbH, Elsevier GmbH, Elsevier Ltd, Peptinnovate Ltd, Turun Yliopisto, Tampereen Yliopisto, Helsingin Yliopisto, European Respiratory Society, Deutsche Pharmazeutische Gesellschaft eV, Massachusetts Medical Society, Chinese University of Hongkong, Boehringer Ingelheim, ProtectImmun GmbH, Faculteit Diergeneeskunde, Universität Salzburg, Georg Thieme Verlag, Japanese Society of Pediatric Allergy and Clinical Immunology, and Universiteit Utrecht, all outside the submitted work. K.F. Rabe reports grants from Boehringer Ingelheim and AstraZeneca, as well as personal fees from Boehringer Ingelheim, AstraZeneca, Novartis, Roche, Chiesi Pharmaceuticals, Regeneron, Sanofi and Berlin-Chemie. F. Trinkmann received travel support from Actelion, Berlin-Chemie, Boehringer Ingelheim, Chiesi, Novartis, Mundipharma, TEVA, AstraZeneca, Berlin-Chemie, Bristol-Myers Squibb, Chiesi, GlaxoSmithKline, Novartis, Roche and Sanofi-Aventis, all outside the submitted work. T. Bahmer reports grants from Bundesministerium für Bildung und Forschung (BMBF) (an unrestricted research grant for the German Center for Lung Research (DZL)), during the conduct of the study, and personal fees from AstraZeneca, GlaxoSmithKline, Novartis and Roche, outside the submitted work. The remaining authors report no relevant conflicts of interest.

Copyright ©The authors 2023.

Figures

FIGURE 1
FIGURE 1
Box plots demonstrating the improvements in patient-reported outcome measures of asthma control and quality of life based on improvements beyond the minimal clinically important differences (MCIDs) for a–c) frequency dependence of resistance (FDR (kPa·L−1·s−1)) and d–e) area of reactance (AX (kPa·L−1)). Patients (n=48) with improvements in FDR beyond the proposed MCID (≥0.06 kPa·L−1·s−1) had mean±sd improvements of −0.71±0.89, 2.70±3.79 and 0.74±0.72 for Asthma Control Questionnaire 7 (ACQ-7), Asthma Control Test (ACT) and Asthma Quality of Life Questionnaire (AQLQ) scores, respectively. Patients (n=43) with improvements in AX beyond the proposed MCID (≥0.65 kPa·L−1) had mean±sd improvements of −0.79±0.93, 2.53±4.0 and 0.72±0.81 for ACQ-7, ACT and AQLQ scores, respectively. Boxes represent median and interquartile range (IQR); whiskers represent minimum and maximum values. If there are outliers, whiskers are then by default 1.5×IQR.

References

    1. Lipworth BJ, Jabbal S. What can we learn about COPD from impulse oscillometry? Respir Med 2018; 139: 106–109. doi:10.1016/j.rmed.2018.05.004
    1. Foy BH, Soares M, Bordas R, et al. . Lung computational models and the role of the small airways in asthma. Am J Respir Crit Care Med 2019; 200: 982–991. doi:10.1164/rccm.201812-2322OC
    1. Bhatawadekar SA, Leary D, de Lange V, et al. . Reactance and elastance as measures of small airways response to bronchodilator in asthma. J Appl Physiol 2019; 127: 1772–1781. doi:10.1152/japplphysiol.01131.2018
    1. Postma DS, Brightling C, Baldi S, et al. . Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respir Med 2019; 7: 402–416. doi:10.1016/S2213-2600(19)30049-9
    1. Kraft M, Richardson M, Hallmark B, et al. . The role of small airway dysfunction in asthma control and exacerbations: a longitudinal, observational analysis using data from the ATLANTIS study. Lancet Respir Med 2022; 10: 661–668. doi:10.1016/S2213-2600(21)00536-1
    1. Abdo M, Trinkmann F, Kirsten A-M, et al. . Small airway dysfunction links asthma severity with physical activity and symptom control. J Allergy Clin Immunol Pract 2021; 9: 3359–3368. doi:10.1016/j.jaip.2021.04.035
    1. Chiu H-Y, Hsiao Y-H, Su K-C, et al. . Small airway dysfunction by impulse oscillometry in symptomatic patients with preserved pulmonary function. J Allergy Clin Immunol Pract 2020; 8: 229–235. doi:10.1016/j.jaip.2019.06.035
    1. Abdo M, Pedersen F, Kirsten A-M, et al. . Longitudinal impact of sputum inflammatory phenotypes on small airway dysfunction and disease outcomes in asthma. J Allergy Clin Immunol Pract 2022; 10: 1545–1553. doi:10.1016/j.jaip.2022.02.020
    1. Abdo M, Watz H, Veith V, et al. . Small airway dysfunction as predictor and marker for clinical response to biological therapy in severe eosinophilic asthma: a longitudinal observational study. Respir Res 2020; 21: 278. doi:10.1186/s12931-020-01543-5
    1. Cook CE. Clinimetrics corner: the minimal clinically important change score (MCID): a necessary pretense. J Man Manip Ther 2008; 16: E82–E83. doi:10.1179/jmt.2008.16.4.82E
    1. Bonini M, Di Paolo M, Bagnasco D, et al. . Minimal clinically important difference for asthma endpoints: an expert consensus report. Eur Respir Rev 2020; 29: 190137. doi:10.1183/16000617.0137-2019
    1. Fuchs O, Bahmer T, Weckmann M, et al. . The all age asthma cohort (ALLIANCE) – from early beginnings to chronic disease: a longitudinal cohort study. BMC Pulm Med 2018; 18: 140. doi:10.1186/s12890-018-0705-6
    1. Oostveen E, MacLeod D, Lorino H, et al. . The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 2003; 22: 1026–1041. doi:10.1183/09031936.03.00089403
    1. King GG, Bates J, Berger KI, et al. . Technical standards for respiratory oscillometry. Eur Respir J 2020; 55: 1900753. doi:10.1183/13993003.00753-2019
    1. Vogel J, Smidt U. Impulse Oscillometry: Analysis of Lung Mechanics in General Practice and the Clinic, Epidemiology and Experimental Research. Frankfurt am Main, pmi-Verlag-Gruppe, 1994.
    1. Bickel S, Popler J, Lesnick B, et al. . Impulse oscillometry: interpretation and practical applications. Chest 2014; 146: 841–847. doi:10.1378/chest.13-1875
    1. Brashier B, Salvi S. Measuring lung function using sound waves: role of the forced oscillation technique and impulse oscillometry system. Breathe 2015; 11: 57–65. doi:10.1183/20734735.020514
    1. Miller MR, Hankinson J, Brusasco V, et al. . Standardisation of spirometry. Eur Respir J 2005; 26: 319–338. doi:10.1183/09031936.05.00034805
    1. Juniper E, Guyatt GH, Willan A. Determining a minimal important change in a disease-specific quality of life questionnaire. J Clin Epidemiol 1994; 47: 81–87. doi:10.1016/0895-4356(94)90036-1
    1. Juniper EF, O'Byrne PM, Guyatt GH, et al. . Development and validation of a questionnaire to measure asthma control. Eur Respir J 1999; 14: 902–907. doi:10.1034/j.1399-3003.1999.14d29.x
    1. Juniper EF, Svensson K, Mörk A-C, et al. . Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. Respir Med 2005; 99: 553–558. doi:10.1016/j.rmed.2004.10.008
    1. Schatz M, Kosinski M, Yarlas AS, et al. . The minimally important difference of the Asthma Control Test. J Allergy Clin Immunol 2009; 124: 719–723. doi:10.1016/j.jaci.2009.06.053
    1. McGlothlin AE, Lewis RJ. Minimal clinically important difference: defining what really matters to patients. JAMA 2014; 312: 1342–1343. doi:10.1001/jama.2014.13128
    1. Turner D, Schünemann HJ, Griffith LE, et al. . The minimal detectable change cannot reliably replace the minimal important difference. J Clin Epidemiol 2010; 63: 28–36. doi:10.1016/j.jclinepi.2009.01.024
    1. Kazis LE, Anderson JJ, Meenan RF. Effect sizes for interpreting changes in health status. Med Care 1989; 27: 3 Suppl., S178–S189. doi:10.1097/00005650-198903001-00015
    1. Stratford PW, Riddle DL. Assessing sensitivity to change: choosing the appropriate change coefficient. Health Qual Life Outcomes 2005; 3: 23. doi:10.1186/1477-7525-3-23
    1. Angst F, Aeschlimann A, Angst J. The minimal clinically important difference raised the significance of outcome effects above the statistical level, with methodological implications for future studies. J Clin Epidemiol 2017; 82: 128–136. doi:10.1016/j.jclinepi.2016.11.016
    1. Copay AG, Subach BR, Glassman SD, et al. . Understanding the minimum clinically important difference: a review of concepts and methods. Spine J 2007; 7: 541–546. doi:10.1016/j.spinee.2007.01.008
    1. Farrar JT, Young JP, LaMoreaux L, et al. . Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001; 94: 149–158. doi:10.1016/S0304-3959(01)00349-9
    1. Chan R, Misirovs R, Lipworth B. Repeatability of impulse oscillometry in patients with severe asthma. Eur Respir J 2022; 59: 2101679. doi:10.1183/13993003.01679-2021
    1. Rutting S, Badal T, Wallis R, et al. . Long-term variability of oscillatory impedance in stable obstructive airways disease. Eur Respir J 2021; 58: 2004318. doi:10.1183/13993003.04318-2020
    1. Williamson PA, Clearie K, Menzies D, et al. . Assessment of small-airways disease using alveolar nitric oxide and impulse oscillometry in asthma and COPD. Lung 2011; 189: 121–129. doi:10.1007/s00408-010-9275-y
    1. Abdo M, Trinkmann F, Kirsten A-M, et al. . The relevance of small airway dysfunction in asthma with nocturnal symptoms. J Asthma Allergy 2021; 14: 897–905. doi:10.2147/JAA.S313572
    1. Trinkmann F, Watz H, Herth FJF. Why do we still cling to spirometry for assessing small airway function? Eur Respir J 2020; 56: 2001071. doi:10.1183/13993003.01071-2020
    1. Chung KF, Wenzel SE, Brozek JL, et al. . International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J 2014; 43: 343–373. doi:10.1183/09031936.00202013

Source: PubMed

3
구독하다