Targeting TSLP in Asthma

Jane R Parnes, Nestor A Molfino, Gene Colice, Ubaldo Martin, Jonathan Corren, Andrew Menzies-Gow, Jane R Parnes, Nestor A Molfino, Gene Colice, Ubaldo Martin, Jonathan Corren, Andrew Menzies-Gow

Abstract

Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine implicated in the initiation and persistence of inflammatory pathways in asthma. Released in response to a range of epithelial insults (eg, allergens, viruses, bacteria, pollutants, and smoke), TSLP initiates multiple downstream innate and adaptive immune responses involved in asthma inflammation. Inhibition of TSLP is postulated to represent a novel approach to treating the diverse phenotypes and endotypes of asthma. Tezepelumab, the TSLP inhibitor farthest along in clinical development, is a human monoclonal antibody (IgG2λ) that binds specifically to TSLP, preventing interactions with its heterodimeric receptor. Results of recently published phase 2 and 3 studies, reviewed in this article, provide evidence of the safety and efficacy of tezepelumab that builds on initial findings. Tezepelumab is safe, well tolerated, and provides clinically meaningful improvements in asthma control, including reduced incidence of exacerbations and hospitalizations in patients with severe asthma. Clinical benefits were associated with reductions in levels of a broad spectrum of cytokines (eg, interleukin [IL]-5, IL-13) and baseline biomarkers (eg, blood eosinophils, immunoglobulin [Ig]E, fractional exhaled nitric oxide [FeNO]) and were observed across a range of severe asthma phenotypes (ie, eosinophilic and non-eosinophilic). These data strengthen the notion that anti-TSLP elicits broad inhibitory effects on pathways that are key to asthma inflammation rather than on narrower inhibition of individual downstream factors. This review presents the rationale for targeting TSLP to treat asthma, as well as the clinical effects of TSLP blockade on asthma outcomes, biomarkers of disease activity, airway inflammation, lung physiology, and patient symptoms.

Keywords: TSLP; anti-TSLP; asthma; exacerbation rates; thymic stromal lymphopoietin.

Conflict of interest statement

Jane R Parnes reports a patent Treatment of asthma with anti-TSLP antibody: US-10828365-B2 issued to Assigned to Amgen and AstraZeneca. Jane R. Parnes and Nestor A. Molfino are employees and stockholders of Amgen Inc. Gene Colice and Ubaldo Martin are employees and stockholders of AstraZeneca. Jonathan Corren has received grant support, consulting fees, fees for a speakers bureau, and advisory board fees from AstraZeneca and Regeneron; grant support, advisory board fees, and fees for a speakers bureau from Genentech; and grant support from Sanofi, Teva Pharmaceutical Industries, and OptiNose. Andrew Menzies-Gow has received grants, advisory board fees, lecture fees, and consulting fees from AstraZeneca; advisory board fees from GlaxoSmithKline; advisory board fees and lecture fees from Novartis; advisory board fees, lecture fees, and travel expenses from Teva; advisory board fees, lecture fees, and consulting fees from Sanofi. The authors report no other conflicts of interest in this work.

© 2022 Parnes et al.

Figures

Figure 1
Figure 1
TSLP Acts Across the Spectrum of Asthma Inflammation. TSLP-driven mechanisms of disease in different asthma endotypes. Epithelial alarmins, including TSLP, are released in response to triggers at the epithelium. The alarmins activate multiple innate and adaptive immune responses that participate in overlapping and distinct pathways. TSLP may also mediate structural cell effects that contribute to airway hyperresponsiveness and remodeling. Figure adapted, with permission, from Gauvreau GM et al. Expert Opin Ther Targets. 2020;24(8):777–792.,
Figure 2
Figure 2
NAVIGATOR: Annualized Rate of Asthma Exacerbations at Week 52, According to Baseline Biomarker Status.
Figure 3
Figure 3
NAVIGATOR: Change from Baseline to Week 52 in Prebronchodilator FEV1.
Figure 4
Figure 4
Summary Figure: Tezepelumab Demonstrated Efficacy in a Range of Outcomes Across a Broad Population of Patients.,, aPATHWAY included three tezepelumab doses; data from the 210-mg dose only are presented; bNominal p value; cScore difference meets criteria for minimal clinically important difference. nsp ≥ 0.05; *p < 0.05; **p < 0.01; ***p < 0.001 compared with placebo group.
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/9172920/bin/JAA-15-749-g0001.jpg

References

    1. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. Lancet. 2018;391(10122):783–800. doi:10.1016/S0140-6736(17)33311-1
    1. Dorey-Stein ZL, Shenoy KV. Tezepelumab as an emerging therapeutic option for the treatment of severe asthma: evidence to date. Drug Des Devel Ther. 2021;15:331–338. doi:10.2147/DDDT.S250825
    1. Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Dis Primers. 2015;1(1):15025. doi:10.1038/nrdp.2015.25
    1. Kaur R, Chupp G. Phenotypes and endotypes of adult asthma: moving toward precision medicine. J Allergy Clin Immunol. 2019;144(1):1–12. doi:10.1016/j.jaci.2019.05.031
    1. Kupczyk M, Dahlén B, Sterk PJ, et al. BIOAIR Investigators. Stability of phenotypes defined by physiological variables and biomarkers in adults with asthma. Allergy. 2014;69(9):1198–1204. doi:10.1111/all.12445
    1. de Llano LP, Rivas DD, Cid NB, Robles IM. Phenotype-guided asthma therapy: an alternative approach to guidelines. J Asthma Allergy. 2021;14:207–217. doi:10.2147/JAA.S266999
    1. Sze E, Bhalla A, Nair P. Mechanisms and therapeutic strategies for non-T2 asthma. Allergy. 2020;75(3):311–325. doi:10.1111/all.13985
    1. Wang E, Wechsler ME, Tran TN, et al. Characterization of severe asthma worldwide: data from the International Severe Asthma Registry. Chest. 2020;157(4):790–804. doi:10.1016/j.chest.2019.10.053
    1. Gauvreau GM, Sehmi R, Ambrose CS, Griffiths JM. Thymic stromal lymphopoietin: its role and potential as a therapeutic target in asthma. Expert Opin Ther Targets. 2020;24(8):777–792. doi:10.1080/14728222.2020.1783242
    1. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention; 2021. Available from. . Accessed October 7, 2021.
    1. Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246. doi:10.3389/fped.2019.00246
    1. Chen S, Golam S, Myers J, Bly C, Smolen H, Xu X. Systematic literature review of the clinical, humanistic, and economic burden associated with asthma uncontrolled by GINA Steps 4 or 5 treatment. Curr Med Res Opin. 2018;34(12):2075–2088. doi:10.1080/03007995.2018.1505352
    1. Menzies-Gow A, Wechsler ME, Brightling CE. Unmet need in severe, uncontrolled asthma: can anti-TSLP therapy with tezepelumab provide a valuable new treatment option? Respir Res. 2020;21(1):268. doi:10.1186/s12931-020-01505-x
    1. Gallelli L, Busceti MT, Vatrella A, Maselli R, Pelaia G. Update on anticytokine treatment for asthma. Biomed Res Int. 2013;2013:104315. doi:10.1155/2013/104315
    1. Rogliani P, Calzetta L, Matera MG, et al. Severe asthma and biological therapy: when, which, and for whom. Pulm Ther. 2020;6(1):47–66. doi:10.1007/s41030-019-00109-1
    1. Caminati M, Senna G. Uncontrolled severe asthma: starting from the unmet needs. Curr Med Res Opin. 2019;35(2):175–177. doi:10.1080/03007995.2018.1528218
    1. Tan L, Reibman J, Ambrose C, et al. Clinical and economic burden of patients with uncontrolled severe asthma with low blood eosinophil levels in the United States. J Allergy Clin Immunol. 2021;147(2 suppl):AB47. doi:10.1016/j.jaci.2020.12.199
    1. Comeau MR, Ziegler SF. The influence of TSLP on the allergic response. Mucosal Immunol. 2010;3(2):138–147. doi:10.1038/mi.2009.134
    1. Kitajima M, Lee H-C, Nakayama T, Ziegler SF. TSLP enhances the function of helper type 2 cells. Eur J Immunol. 2011;41(7):1862–1871. doi:10.1002/eji.201041195
    1. Holgate ST. The airway epithelium is central to the pathogenesis of asthma. Allergol Int. 2008;57(1):1–10. doi:10.2332/allergolint.R-07-154
    1. Bartemes KR, Kita H. Dynamic role of epithelium-derived cytokines in asthma. Clin Immunol. 2012;143(3):222–235. doi:10.1016/j.clim.2012.03.001
    1. Friend SL, Hosier S, Nelson A, Foxworthe D, Williams DE, Farr A. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp Hematol. 1994;22(3):321–328.
    1. Patel NN, Kohanski MA, Maina IW, Workman AD, Herbert DR, Cohen NA. Sentinels at the wall: epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int Forum Allergy Rhinol. 2019;9(1):93–99. doi:10.1002/alr.22206
    1. Ziegler SF, Artis D. Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol. 2010;11(4):289–293. doi:10.1038/ni.1852
    1. Headley MB, Zhou B, Shih WX, Aye T, Comeau MR, Ziegler SF. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses. J Immunol. 2009;182(3):1641–1647. doi:10.4049/jimmunol.182.3.1641
    1. Redhu NS, Gounni AS. Function and mechanisms of TSLP/TSLPR complex in asthma and COPD. Clin Exp Allergy. 2012;42(7):994–1005. doi:10.1111/j.1365-2222.2011.03919.x
    1. Ying S, O’Connor B, Ratoff J, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(12):8183–8190. doi:10.4049/jimmunol.174.12.8183
    1. Ying S, O’Connor B, Ratoff J, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol. 2008;181(4):2790–2798. doi:10.4049/jimmunol.181.4.2790
    1. Li Y, Wang W, Lv Z, et al. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J Immunol. 2018;200(7):2253–2262. doi:10.4049/jimmunol.1701455
    1. Ko H-K, Cheng S-L, Lin C-H, et al. Blood tryptase and thymic stromal lymphopoietin levels predict the risk of exacerbation in severe asthma. Sci Rep. 2021;11(1):8425. doi:10.1038/s41598-021-86179-1
    1. Zhou B, Comeau MR, De Smedt T, et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol. 2005;6(10):1047–1053. doi:10.1038/ni1247
    1. Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). Adv Pharmacol. 2013;66:129–155. doi: 10.1016/B978-0-12-404717-4.00004-4
    1. Kabata H, Flamar A-L, Mahlakõiv T, et al. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol. 2020;13(4):626–636. doi:10.1038/s41385-020-0266-x
    1. He J-Q, Hallstrand TS, Knight D, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J Allergy Clin Immunol. 2009;124(2):222–229. doi:10.1016/j.jaci.2009.04.018
    1. Sun Y, Wei X, Deng J, et al. Association of IL1RL1 rs3771180 and TSLP rs1837253 variants with asthma in the Guangxi Zhuang population in China. J Clin Lab Anal. 2019;33(6):e22905. doi:10.1002/jcla.22905
    1. Gauvreau GM, O’Byrne PM, Boulet LP, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–2110. doi:10.1056/NEJMoa1402895
    1. Gauvreau G, Hohlfeld J, Boulet L-P, et al. Efficacy of CSJ117 on allergen-induced asthmatic responses in mild atopic asthma patients. Eur Respir J. 2020;56:3690. doi:10.1183/13993003.congress-2020.3690
    1. Novartis Pharmaceuticals. Novartis clinical trial results website. Protocol Number CCSJ117X2201. Available from: . Accessed October 8, 2021.
    1. Corren J, Parnes JR, Wang L, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–946. doi:10.1056/NEJMoa1704064
    1. Menzies-Gow A, Colice G, Griffiths JM, et al. NAVIGATOR: a phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21(1):266. doi:10.1186/s12931-020-01526-6
    1. Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384(19):1800–1809. doi:10.1056/NEJMoa2034975
    1. Bonini M, Di Paolo M, Bagnasco D, et al. Minimal clinically important difference for asthma endpoints: an expert consensus report. Eur Respir Rev. 2020;29(156):190137. doi:10.1183/16000617.0137-2019
    1. Corren J, Ambrose CS, Sałapa K, et al. Efficacy of tezepelumab in patients with severe, uncontrolled asthma and perennial allergy. J Allergy Clin Immunol Pract. 2021;9(12):4334–4342.e6. doi:10.1016/j.jaip.2021.07.045
    1. Israel E, Chupp G, Colice G, et al. Tezepelumab efficacy according to US omalizumab eligibility: results from the NAVIGATOR phase 3 study. Abstract presented at: American College of Allergy, Asthma & Immunology (ACAAI) 2021 Annual Scientific Meeting; November 4–8; 2021; New Orleans, Louisiana, USA.
    1. Corren J, Menzies-Gow A, Ambrose CS, et al. The effect of tezepelumab in patients with allergic and non-allergic asthma: results from the NAVIGATOR phase 3 study. Abstract presented at: European Academy of Allergy and Clinical Immunology (EAACI) 2021 Hybrid Conference; July 1–12; 2021; Madrid, Spain (Digital); Krakow, Poland (Hybrid).
    1. Emson C, Corren J, Sałapa K, Hellqvist Å, Parnes JR, Colice G. Efficacy of tezepelumab in patients with severe, uncontrolled asthma with and without nasal polyposis: a post hoc analysis of the phase 2b PATHWAY study. J Asthma Allergy. 2021;14:91–99. doi:10.2147/JAA.S288260
    1. Menzies-Gow A, Brightling C, Ambrose C, et al. Effect of tezepelumab in oral corticosteroid-dependent patients with severe asthma: results from the phase 3 NAVIGATOR study. Am J Respir Crit Care Med. 2021;203:A1442.
    1. Gerhardsson de Verdier M, Gustafson P, McCrae C, Edsbäcker S, Johnston N. Seasonal and geographic variations in the incidence of asthma exacerbations in the United States. J Asthma. 2017;54(8):818–824. doi:10.1080/02770903.2016.1277538
    1. Corren J, Karpefors M, Hellqvist Å, Parnes JR, Colice G. Tezepelumab reduces exacerbations across all seasons in patients with severe, uncontrolled asthma: a post hoc analysis of the PATHWAY phase 2b study. J Asthma Allergy. 2021;14:1–11. doi:10.2147/JAA.S286036
    1. Wechsler ME, Colice G, Griffiths JM, et al. SOURCE: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel group trial to evaluate the efficacy and safety of tezepelumab in reducing oral corticosteroid use in adults with oral corticosteroid dependent asthma. Respir Res. 2020;21(1):264. doi:10.1186/s12931-020-01503-z
    1. Wechsler ME, Menzies-Gow A, Brightling CE, et al. SOURCE study group. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir Med. 2022;S2213–S2600(21):00537-3. doi:10.1016/S2213-2600(21)00537-3
    1. Bourdin A, Menzies-Gow A, Chupp G, et al. Reductions in asthma exacerbation-related hospitalizations and emergency department visits in patients with severe, uncontrolled asthma treated with tezepelumab: results from the phase 3 NAVIGATOR study. Am J Respir Crit Care Med. 2021;203:A1203.
    1. Corren J, Chen S, Callan L, Gil EG. The effect of tezepelumab on hospitalizations and emergency department visits in patients with severe asthma. Ann Allergy Asthma Immunol. 2020;125(2):211–214. doi:10.1016/j.anai.2020.05.020
    1. Tepper RS, Wise RS, Covar R, et al. Asthma outcomes: pulmonary physiology. J Allergy Clin Immunol. 2012;129(3 suppl):S65–S87. doi:10.1016/j.jaci.2011.12.986
    1. Braido F, Baiardini I, Canonica GW. Patient-reported outcomes in asthma clinical trials. Curr Opin Pulm Med. 2018;24(1):70–77. doi:10.1097/MCP.0000000000000440
    1. Diver S, Khalfaoui L, Emson C, et al. CASCADE study investigators. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(11):1299–1312. doi:10.1016/S2213-2600(21)00226-5
    1. Shen Q, von Maltzahn R, Nelsen L, Revicki D. Psychometric properties of the asthma symptom index in patients with severe asthma. J Allergy Clin Immunol Pract. 2021;9(1):400–409.e1. doi:10.1016/j.jaip.2020.08.019
    1. Corren J, Garcia Gil E, Griffiths JM, et al. Tezepelumab improves patient-reported outcomes in patients with severe, uncontrolled asthma in PATHWAY. Ann Allergy Asthma Immunol. 2021;126(2):187–193. doi:10.1016/j.anai.2020.10.008
    1. Bourbeau J, Maltais F, Rouleau M, Guímont C. French-Canadian version of the Chronic Respiratory and St George’s respiratory questionnaires: an assessment of their psychometric properties in patients with chronic obstructive pulmonary disease. Can Respir J. 2004;11(7):480–486. doi:10.1155/2004/702421
    1. Luc F, Prieur E, Whitmore GA, Gibson PG, Vandemheen KL, Aaron SD. Placebo effects in clinical trials evaluating patients with uncontrolled persistent asthma. Ann Am Thorac Soc. 2019;16(9):1124–1130. doi:10.1513/AnnalsATS.201901-071OC
    1. Mokoka MC, McDonnell MJ, MacHale E, et al. Inadequate assessment of adherence to maintenance medication leads to loss of power and increased costs in trials of severe asthma therapy: results from a systematic literature review and modelling study. Eur Respir J. 2019;53(5):1802161. doi:10.1183/13993003.02161-2018
    1. Volmer T, Effenberger T, Trautner C, Buhl R. Consequences of long-term oral corticosteroid therapy and its side-effects in severe asthma in adults: a focused review of the impact data in the literature. Eur Respir J. 2018;52(4):1800703. doi:10.1183/13993003.00703-2018
    1. Sverrild A, Hansen S, Hvidtfeldt M, et al. The effect of tezepelumab on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). Eur Respir J. 2021. doi:10.1183/13993003.01296-2021
    1. Emson C, Diver S, Chachi L, et al. CASCADE: a phase 2, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the effect of tezepelumab on airway inflammation in patients with uncontrolled asthma. Respir Res. 2020;21(1):265. doi:10.1186/s12931-020-01513-x
    1. Moorehead A, Hanna R, Heroux D, et al. A thymic stromal lymphopoietin polymorphism may provide protection from asthma by altering gene expression. Clin Exp Allergy. 2020;50(4):471–478. doi:10.1111/cea.13568
    1. Corren J, Pham T-H, Gil EG, et al. Baseline type 2 biomarker levels and response to tezepelumab in severe asthma. Allergy. 2021. doi:10.1111/all.15197
    1. Pham T-H, Chen C, Colice G, Parnes JR, Griffiths JM, Cook B. Tezepelumab normalizes serum interleukin-5 and −13 levels in patients with severe, uncontrolled asthma. Ann Allergy Asthma Immunol. 2021;127(6):689–691. doi:10.1016/j.anai.2021.08.008
    1. Pham T-H, Cook B, Parnes JR, Colice G, Griffiths JM Tezepelumab reduces biomarkers of airway remodeling, MMP-10 and MMP-3: exploratory results from the phase 3 NAVIGATOR study. Abstract accepted for presentation at American Thoracic Society 2022 International Conference; May 13–18.
    1. Sridhar S, Zhao W, Pham T-H, et al. Tezepelumab decreases matrix remodelling and inflammatory pathways in patients with asthma. Eur Respir J. 2019;54(suppl 63):RCT3785. doi:10.1183/13993003.congress-2019.RCT3785
    1. Menzies-Gow A, Ponnarambil S, Downie J, Bowen K, Hellqvist Å, Colice G. DESTINATION: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the long-term safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21(1):279. doi:10.1186/s12931-020-01541-7
    1. TEZSPIRE™ Prescribing information. Amgen Inc. and AstraZeneca AB; 2021. Available from: . Accessed January 28, 2021.
    1. Alpizar S, Megally A, Chen C, Raj A, Downie J, Colice G. Functionality and performance of an accessorized pre-filled syringe and an autoinjector for at-home administration of tezepelumab in patients with severe, uncontrolled asthma. J Asthma Allergy. 2021;14:381–392. doi:10.2147/JAA.S305114
    1. Khusial RJ, Honkoop PJ, van der Meer V, Snoeck-Stroband JB, Sont JK. Validation of online asthma control questionnaire and asthma quality of life questionnaire. ERJ Open Res. 2020;6(1):00289–2019. doi:10.1183/23120541.00289-2019
    1. Brusselle GG, Maes T, Bracke KR. Eosinophils in the spotlight: eosinophilic airway inflammation in nonallergic asthma. Nat Med. 2013;19(8):977–979. doi:10.1038/nm.3300
    1. Brusselle G, Bracke K. Targeting immune pathways for therapy in asthma and chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11(Suppl 5):S322–S328. doi:10.1513/AnnalsATS.201403-118AW
    1. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56. doi:10.1038/ni.3049

Source: PubMed

3
구독하다