Oxidative Stress and Inflammation Biomarkers in Postoperative Pain Modulation in Surgically Treated Patients with Laryngeal Cancer-Pilot Study

Katarina Savic Vujovic, Andjela Zivkovic, Ivan Dozic, Andja Cirkovic, Branislava Medic, Dragana Srebro, Sonja Vuckovic, Jovica Milovanovic, Ana Jotic, Katarina Savic Vujovic, Andjela Zivkovic, Ivan Dozic, Andja Cirkovic, Branislava Medic, Dragana Srebro, Sonja Vuckovic, Jovica Milovanovic, Ana Jotic

Abstract

(1) Background: Surgical treatment of laryngeal carcinoma includes different types of laryngectomies with neck dissection. Surgical tissue damage triggers an inflammatory response, leading to the release of pro-inflammatory molecules. This increases reactive oxygen species production and decreases antioxidant defense mechanisms, leading to postoperative oxidative stress. The aim of this study was to assess the correlation between oxidative stress (malondialdehyde, MDA; glutathione peroxidase, GPX; superoxide dismutase, SOD) and inflammation (interleukin 1, IL-1; interleukin-6, IL-6; C-reactive protein, CRP) parameters and postoperative pain management in patients surgically treated with laryngeal cancer. (2) Methods: This prospective study included 28 patients with surgically treated laryngeal cancer. Blood samples were taken for the analysis of oxidative stress and inflammation parameters before the operative treatment and after the operative treatment (1st postoperative day and 7th postoperative day). The concentrations of MDA, SOD, GPX, IL-1, IL-6, and CRP in the serum were determined by coated enzyme-linked immunosorbent assay (ELISA). The visual analog scale (VAS) was used for pain assessment. (3) Results and conclusion: There was a correlation between oxidative stress and inflammation biomarkers and postoperative pain modulation in surgically treated patients with laryngeal cancer. Age, more extensive surgery, CRP values, and use of tramadol were predictors for oxidative stress parameters.

Keywords: MDA; NSAID; SOD; oxidative stress; postoperative pain; tramadol.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Visual analog scale (VAS) scores of the patients through the evaluated period of time (preoperative, 1st postoperative, and 7th postoperative day). There was a statistically significant difference between pain intensity preoperative and on the 1st postoperative day, as well as from the 1st to the 7th postoperative day (p < 0.001).
Figure 2
Figure 2
Analgesics prescribed in pain therapy. Ketorolac or metamizole were used as NSAIDs. Tramadol was used as the only opioid analgesic. Multimodal analgesia involved the use of NSAIDs and an opioid or NSAIDs and acetaminophen.
Figure 3
Figure 3
Values of oxidative stress parameters through the evaluated period of time. There was a significant change in values of SOD as a parameter of anti-oxidative stress and MDA as a parameter of oxidative stress from preoperative to the 7th postoperative day (p < 0.001). (MDAmalondialdehyde; SODsuperoxide dismutase).
Figure 4
Figure 4
Significant correlations between oxidative stress and inflammation parameters preoperatively. Negative moderate correlation between IL-1 and GPX and between IL-6 and CRP and positive moderate correlation between IL-1 and SOD were obtained for the level of significance of GPX—glutathione peroxidase, SODsuperoxide dismutase, IL-1interleukin 1, IL-6interleukin-6, CRPC-reactive protein).
Figure 5
Figure 5
Significant correlations between oxidative stress and inflammation parameters on the 1st postoperative day. Positive moderate correlation between MDA and CRP and SOD and CRP were shown for the level of significance of MDA—malondialdehyde, SODsuperoxide dismutase, CRPC-reactive protein).
Figure 6
Figure 6
Significant correlations between oxidative stress and inflammation parameters on the 7th postoperative day. Negative moderate correlation between SOD and CRP and positive moderate correlation between GPX and MDA and GPX and IL-6 were shown for the level of significance of MDA—malondialdehyde, GPXglutathione peroxidase, SODsuperoxide dismutase, CRP—C-reactive protein).

References

    1. Nocini R., Molteni G., Mattiuzzi C., Lippi G. Updates on larynx cancer epidemiology. Chin. J. Cancer Res. 2020;32:18–25. doi: 10.21147/j.issn.1000-9604.2020.01.03.
    1. Jones T.M., De M., Foran B., Harrington K., Mortimore S. Laryngeal cancer: United Kingdom National Multidisciplinary guidelines. J. Laryngol. Otol. 2016;130((Suppl. S2)):75–82. doi: 10.1017/S0022215116000487.
    1. Talmi Y.P., Horowitz Z., Pfeffer M.R., Stolik-Dollberg O.C., Shoshani Y., Peleg M., Kronenberg J. Pain in the neck after neck dissection. Otolaryngol. Head Neck Surg. 2000;123:302–306. doi: 10.1067/mhn.2000.104946.
    1. Hinther A., Nakoneshny S.C., Chandarana S.P., Wayne Matthews T., Dort J.C. Efficacy of postoperative pain management in head and neck cancer patients. J. Otolaryngol. Head Neck Surg. 2018;47:29. doi: 10.1186/s40463-018-0274-y.
    1. Purdy M., Kärkkäinen J., Kokki M., Anttila M., Aspinen S., Juvonen P., Kokki H., Pulkki K., Rantanen T., Eskelinen M. Does rectus sheath block analgesia alter levels of the oxidative stress biomarker glutathione peroxidase: A randomised trial of patients with cancer and benign disease. Anticancer Res. 2017;37:897–902. doi: 10.21873/anticanres.11396.
    1. Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763.
    1. Sies H., Berndt C., Jones D.P. Oxidative Stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037.
    1. Kärkkäinen J., Selander T., Purdy M., Juvonen P., Eskelinen M. Patients with Increased Levels of the Oxidative Stress Biomarker SOD1 Appear to Have Diminished Postoperative Pain After Midline Laparotomy: A Randomised Trial with Special Reference to Postoperative Pain Score (NRS) Anticancer Res. 2018;38:1003–1008.
    1. Liu Q., Xu K. Evaluation of some cellular biomarker proteins, oxidative stress and clinical indices as results of laparoscopic appendectomy for perforated appendicitis in children. Cell. Mol. Biol. 2020;66:197–203. doi: 10.14715/cmb/2020.66.3.32.
    1. Toro-Pérez J., Rodrigo R. Contribution of oxidative stress in the mechanisms of postoperative complications and multiple organ dysfunction syndrome. Redox Rep. 2021;26:35–44. doi: 10.1080/13510002.2021.1891808.
    1. Salzman R., Kanková K., Pácal L., Tomandl J., Horáková Z., Kostrica R. Increased activity of superoxide dismutase in advanced stages of head and neck squamous cell carcinoma with locoregional metastases. Neoplasma. 2007;54:321–325.
    1. Inanir A., Sogut E., Ayat M., Inanir S. Evaluation of Pain Intensity and Oxidative Stress Levels in Patients with Inflammatory and Non-Inflammatory Back Pain. Eur. J. Gen. Med. 2013;10:185–190. doi: 10.29333/ejgm/82205.
    1. Wang Z.Q., Porreca F., Cuzzocrea S., Galen K., Lightfoot R., Masini E., Muscoli C., Mollace V., Ndengele M., Ischiropoulos H., et al. A newly identified role for superoxide in inflammatory pain. J. Pharmacol. Exp. Ther. 2004;309:869–878. doi: 10.1124/jpet.103.064154.
    1. Niklander S.E., Murdoch C., Hunter K.D. IL-1/IL-1R Signaling in Head and Neck Cancer. Front. Oral Health. 2021;2:722676. doi: 10.3389/froh.2021.722676.
    1. Uz U., Eskiizmir G. Association Between Interleukin-6 and Head and Neck Squamous Cell Carcinoma: A Systematic Review. Clin. Exp. Otorhinolaryngol. 2021;14:50–60. doi: 10.21053/ceo.2019.00906.
    1. Rettig T.C., Verwijmeren L., Dijkstra I.M., Boerma D., van de Garde E.M., Noordzij P.G. Postoperative Interleukin-6 Level and Early Detection of Complications After Elective Major Abdominal Surgery. Ann. Surg. 2016;263:1207–1212. doi: 10.1097/SLA.0000000000001342.
    1. Si H.B., Yang T.M., Zeng Y., Zhou Z.K., Pei F.X., Lu Y.R., Cheng J.Q., Shen B. Correlations between inflammatory cytokines, muscle damage markers and acute postoperative pain following primary total knee arthroplasty. BMC Musculoskelet. Disord. 2017;18:265. doi: 10.1186/s12891-017-1597-y.
    1. Vanderwall A.G., Milligan E.D. Cytokines in Pain: Harnessing Endogenous Anti-Inflammatory Signaling for Improved Pain Management. Front. Immunol. 2019;10:3009. doi: 10.3389/fimmu.2019.03009.
    1. Astradsson T., Sellberg F., Berglund D., Ehrsson Y.T., Laurell G.F.E. Systemic Inflammatory Reaction in Patients with Head and Neck Cancer-An Explorative Study. Front. Oncol. 2019;59:1177. doi: 10.3389/fonc.2019.01177.
    1. Ying-Yi L., Yong-Ming Y. The Clinical Significance and Potential Role of C-Reactive Protein in Chronic Inflammatory and Neurodegenerative Diseases. Front. Immunol. 2018;9:1302.
    1. Breivik H., Borchgrevink P.C., Allen S.M., Romundstad L., Breivik Hals E.K., Kvarstein G., Stubhaug A. Assessment of pain. Br. J. Anaesth. 2008;101:17–24. doi: 10.1093/bja/aen103.
    1. Delgado D.A., Lambert B.S., Boutris N., McCulloch P.C., Robbins A.B., Moreno M.R., Harris J.D. Validation of Digital Visual Analog Scale Pain Scoring with a Traditional Paper-based Visual Analog Scale in Adults. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2018;2:e088. doi: 10.5435/JAAOSGlobal-D-17-00088.
    1. Ventafridda V., Saita L., Ripamonti C., De Conno F. WHO guidelines for the use of analgesics in cancer pain. Int. J. Tissue React. 1985;7:93–96.
    1. Chou R., Gordon D.B., de Leon-Casasola O.A., Rosenberg J.M., Bickler S., Brennan T., Carter T., Cassidy C.L., Chittenden E.H., Degenhardt E., et al. Management of Postoperative Pain: A Clinical Practice Guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. J. Pain. 2016;17:131–157.
    1. Small C., Laycock H. Acute postoperative pain management. Br. J. Surg. 2020;107:70–80. doi: 10.1002/bjs.11477.
    1. van den Beuken-van Everdingen M.H., de Rijke J.M., Kessels A.G., Schouten H.C., van Kleef M., Patijn J. Prevalence of pain in patients with cancer: A systematic review of the past 40 years. Ann. Oncol. 2007;18:1437–1449. doi: 10.1093/annonc/mdm056.
    1. Sommer M., Geurts J.W., Stessel B., Kessels A., Peters M.L., Patijn J., van Kleef M., Kremer B., Marcus M. Prevalence and predictors of postoperative pain after ear, nose and throat surgery. Arch. Otolaryngol. Head Neck Surg. 2009;135:124–130. doi: 10.1001/archoto.2009.3.
    1. Ziv G., Darryl B., Nissim M., Khafif A., Fliss D.M. Treatment of pain after head and neck surgeries: Control of acute pain after head and neck oncological surgeries. Otolaryngol. Head Neck Surg. 2006;135:182–188.
    1. Orgill R., Krempl G.A., Medina J.E. Acute pain management following laryngectomy. Arch. Otolaryngol. Head Neck Surg. 2002;128:829–832. doi: 10.1001/archotol.128.7.829.
    1. Kuo P.-Y., Williams J.E. Pain control in head and neck Cancer. In: Agulnik M., editor. Head and Neck Cancer. InTech; Tokyo, Japan: 2012. pp. 351–370.
    1. Bianchini C., Malago M., Crema L., Aimoni C., Matarazzo T., Bortolazzi S., Ciorba A., Pelucchi S., Pastore A. Post-operative pain management in head and neck cancer patients: Predictive factors and efficacy of therapy. Acta Otorhinolaryngol. Ital. 2016;36:91–96. doi: 10.14639/0392-100X-499.
    1. Dort J.C., Farwell D.G., Findlay M., Huber G.F., Kerr P., Shea-Budgell M.A., Simon C., Uppington J., Zygun D., Ljungqvist O., et al. Optimal Perioperative Care in Major Head and Neck Cancer Surgery with Free Flap Reconstruction: A Consensus Review and Recommendations From the Enhanced Recovery After Surgery Society. JAMA Otolaryngol. Head Neck Surg. 2017;143:292–303. doi: 10.1001/jamaoto.2016.2981.
    1. Hinther A., Nakoneshny S.C., Chandarana S.P., Matthews T.W., Hart R., Schrag C., Matthews J., McKenzie C.D., Fick G.H., Dort J.C. Efficacy of Multimodal Analgesia for Postoperative Pain Management in Head and Neck Cancer Patients. Cancers. 2021;13:1266. doi: 10.3390/cancers13061266.
    1. Vu C.N., Lewis C.M., Bailard N.S., Kapoor R., Rubin M.L., Zheng G. Association between Multimodal Analgesia Administration and Perioperative Opioid Requirements in Patients Undergoing Head and Neck Surgery with Free Flap Reconstruction. JAMA Otolaryngol. Head Neck Surg. 2020;146:708. doi: 10.1001/jamaoto.2020.1170.
    1. Wick E.C., Grant M.C., Wu C.L. Postoperative multimodal analgesia pain management with non- opioid analgesics and techniques: A review. JAMA Surg. 2017;152:691–697. doi: 10.1001/jamasurg.2017.0898.
    1. Rindos N.B., Mansuria S.M., Ecker A.M., Stuparich M.A., King C.R. Intravenous acetaminophen vs. saline in perioperative analgesia with laparoscopic hysterectomy. Am. J. Obstet. Gynecol. 2019;220:373–378. doi: 10.1016/j.ajog.2019.01.212.
    1. Codoñer-Franch P., Tavárez-Alonso S., Murria-Estal R., Megías-Vericat J., Tortajada-Girbés M., Alonso-Iglesias E. Nitric oxide production is increased in severely obese children and related to markers of oxidative stress and inflammation. Atherosclerosis. 2011;215:475–480. doi: 10.1016/j.atherosclerosis.2010.12.035.
    1. Orak Y., Baylan F.A., Kocaslan A., Eroglu E., Acipayam M., Kirisci M., Boran O.F., Doganer A. Effect of mechanical ventilation during cardiopulmonary bypass on oxidative stress: A randomized clinical trial. Braz. J. Anesthesiol. 2022;72:69–76. doi: 10.1016/j.bjane.2021.06.024.
    1. Türker F.S., Doğan A., Ozan G., Kıbar K., Erışır M. Change in Free Radical and Antioxidant Enzyme Levels in the Patients Undergoing Open Heart Surgery with Cardiopulmonary Bypass. Oxid. Med. Cell. Longev. 2016;2016:1783728. doi: 10.1155/2016/1783728.
    1. Wu C., Gao B., Gui Y. Malondialdehyde on postoperative day 1 predicts postoperative cognitive dysfunction in elderly patients after hip fracture surgery. Biosci. Rep. 2019;39:BSR20190166. doi: 10.1042/BSR20190166.
    1. Maurya R.P., Prajapat M.K., Singh V.P., Roy M., Todi R., Bosak S., Singh S.K., Chaudhary S., Kumar A., Morekar S.R. Serum Malondialdehyde as a Biomarker of Oxidative Stress in Patients with Primary Ocular Carcinoma: Impact on Response to Chemotherapy. Clin. Ophthalmol. 2021;15:871–879. doi: 10.2147/OPTH.S287747.
    1. Salehi S.S., Mirmiranpour H., Rabizadeh S., Esteghamati A., Tomasello G., Alibakhshi A., Najafi N., Rajab A., Nakhjavani M. Improvement in Redox Homeostasis after Cytoreductive Surgery in Colorectal Adenocarcinoma. Oxid. Med. Cell. Longev. 2021;2021:8864905. doi: 10.1155/2021/8864905.
    1. Honerlaw K.R., Rumble M.E., Rose S.L., Coe C.L., Costanzo E.S. Biopsychosocial predictors of pain among women recovering from surgery for endometrial cancer. Gynecol. Oncol. 2016;140:301–306. doi: 10.1016/j.ygyno.2015.09.005.
    1. Kwon Y., Hwang S.M., Jang J.S., Ryu B.Y., Kang B.Y., Kang S.S., Lee J.J. Effects of a Preoperative Transdermal Fentanyl Patch on Proinflammatory Cytokine and Pain Levels During the Postoperative Period: A Randomized Controlled Trial. Surg. Laparosc. Endosc. Percutan Tech. 2019;29:339–343. doi: 10.1097/SLE.0000000000000630.
    1. Hozumi J., Sumitani M., Nishizawa D., Nagashima M., Ikeda K., Abe H., Kato R., Kusakabe Y., Yamada Y. Japanese Translational Research-Cancer Pain Research Group. Resistin Is a Novel Marker for Postoperative Pain Intensity. Anesth. Analg. 2019;128:563–568. doi: 10.1213/ANE.0000000000003363.
    1. Xi M.Y., Li S.S., Zhang C., Zhang L., Wang T., Yu C. Nalbuphine for Analgesia After Orthognathic Surgery and Its Effect on Postoperative Inflammatory and Oxidative Stress: A Randomized Double-Blind Controlled Trial. J. Oral Maxillofac. Surg. 2020;78:528–537. doi: 10.1016/j.joms.2019.10.017.
    1. Liu D., Liu H., Wu J., Gong B. Effects of Thoracic Paravertebral Blockon Inflammatory Response, Stress Response, Hemodynamics and Anesthesia Resuscitation in Gallbladder Carcinoma. Cell. Mol. Biol. 2022;68:171–177.
    1. Stevens J.L., Feelisch M., Martin D.S. Perioperative oxidative stress. Anesth. Analg. 2019;129:1749–1760. doi: 10.1213/ANE.0000000000004455.
    1. Rosenfeldt F., Wilson M., Lee G., Kure C., Ou R., Braun L., de Haan J. Oxidative stress in surgery in an ageing population: Pathophysiology and therapy. Exp. Gerontol. 2013;48:45–54. doi: 10.1016/j.exger.2012.03.010.
    1. Gillman P.K. Monoamine oxidase inhibitors, opioid analgesics, and serotonin toxicity. Br. J. Anaesth. 2005;95:434–441. doi: 10.1093/bja/aei210.
    1. El-Ashmawy N.E., Lashin A.H.A., Okasha K.M., Abo Kamer A.M., Mostafa T.M., El-Aasr M., Goda A.E., Haggag Y.A., Tawfik H.O., Abo-Saif M.A. The plausible mechanisms of tramadol for treatment of COVID-19. Med. Hypotheses. 2021;146:110468. doi: 10.1016/j.mehy.2020.110468.
    1. Simões J.L.B., Galvan A.C.L., da Silva E.L.M., Ignácio Z.M., Bagatini M.D. Therapeutic Potential of the Purinergic System in Major Depressive Disorder Associated with COVID-19. Cell. Mol. Neurobiol. 2023;43:621–637. doi: 10.1007/s10571-022-01215-6.
    1. Asghari A., Akbari G., Beigi A.M., Mortazavi P. Tramadol reduces testicular damage of ischemia-reperfusion rats. Anim. Reprod. 2016;13:811–819. doi: 10.21451/1984-3143-AR823.

Source: PubMed

3
구독하다