Mitochondrial Dysfunction, Altered Mitochondrial Oxygen, and Energy Metabolism Associated with the Pathogenesis of Schizophrenia

Iveta Fizíková, Jozef Dragašek, Peter Račay, Iveta Fizíková, Jozef Dragašek, Peter Račay

Abstract

The significant complexity of the brain can lead to the development of serious neuropsychiatric disorders, including schizophrenia. A number of mechanisms are involved in the etiopathogenesis of schizophrenia, pointing to its complexity and opening a new perspective on studying this disorder. In this review of currently published studies, we focused on the contribution of mitochondria to the process, with an emphasis on oxidative damage, ROS, and energy metabolism. In addition, we point out the influence of redox imbalance, which can lead to the occurrence of oxidative stress with increased lipid peroxidation, linked to the formation of toxic aldehydes such as 4-hydroxynonenal (4-HNE) and HNE protein adducts. We also analysed the role of lactate in the process of energy metabolism and cognitive functions in schizophrenia.

Keywords: energy metabolism; mitochondria; oxidative stress; schizophrenia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Representative Western blot detection of HNE conjugates of plasma proteins of control volunteers (C) and schizophrenia patients (P). Positions of molecular mass standards are indicated. Adapted from [21].
Figure 2
Figure 2
Overview of mechanisms of mitochondrial dysfunction leading to neuroprogressive changes in schizophrenia. LDH—lactate dehydrogenase, OXPHOS—oxidative phosphorylation, ROS—reactive oxygen species, I–IV—enzyme complexes of OXPHOS.

References

    1. Nestler E., Hyman E.S., Malenka R.C., Piško . Molekulárna Neuropsychofarmakológia, Základy Klinických Neurovied. Vydavateľstvo F; Trenčín, Slovakia: 2012. 1. Vyd.
    1. Vita A., Minelli A., Barlati S., Deste G., Giacopuzzi E., Valsecchi P., Turrina C., Gennarelli M. Treatment-Resistant Schizophrenia: Genetic and Neuroimaging Correlates. Front. Pharmacol. 2019;10:402. doi: 10.3389/fphar.2019.00402.
    1. Fusar-Poli P., Papanastasiou E., Stahl D., Rocchetti M., Carpenter W., Shergill S., McGuire P. Treatments of Negative Symptoms in Schizophrenia: Meta-Analysis of 168 Randomized Placebo-Controlled Trials. Schizophr. Bull. 2015;41:892–899. doi: 10.1093/schbul/sbu170.
    1. Do K.Q. Bridging the gaps towards precision psychiatry: Mechanistic biomarkers for early detection and intervention. Psychiatry Res. 2023;321:115064. doi: 10.1016/j.psychres.2023.115064.
    1. Peiyan N. Mitochondrial dysfunction in psychiatric disorders. Schizophr. Res. :2022. doi: 10.1016/j.schres.2022.08.027. in press.
    1. Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2023;120:110626. doi: 10.1016/j.pnpbp.2022.110626.
    1. Zilocchi M., Broderick K., Phanse S., Aly K.A., Babu M. Mitochondria under the spotlight: On the implications of mitochondrial dysfunction and its connectivity to neuropsychiatric disorders. Comput. Struct. Biotechnol. J. 2020;14:2535–2546. doi: 10.1016/j.csbj.2020.09.008.
    1. Vringer E., Tait S.W.G. Mitochondria and cell death-associated inflammation. Cell Death Differ. 2023;30:304–312. doi: 10.1038/s41418-022-01094-w.
    1. Monsour M., Gordon J., Lockard G., Alayli A., Borlongan C.V. Mitochondria in Cell-Based Therapy for Stroke. Antioxidants. 2023;12:178. doi: 10.3390/antiox12010178.
    1. Morris G., Walder K.R., Berk M., Marx W., Walker A.J., Maes M., Puri B.K. The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: Can we explain it and can we treat it? Mol. Biol. Rep. 2020;47:5587–5620. doi: 10.1007/s11033-020-05590-5.
    1. Ciobica A., Padurariu M., Dobrin M., Stefanescu C., Dobrin R. Oxidative stress in schizophrenia—Focusing on the main markers. Psychiatr. Danub. 2011;23:237–245.
    1. Murray A.J., Rogers J.C., Katshu M., Liddle P.F., Upthegrove R. Oxidative stress and the pathophysiology and symptom profile of schizophrenia spectrum disorders. Front. Psychiatry. 2021;12:703452. doi: 10.3389/fpsyt.2021.703452.
    1. Ene H.M., Karry R., Farfara D., Ben-Shachar D. Mitochondria play an essential role in the trajectory of adolescent neurodevelopment and behavior in adulthood: Evidence from a schizophrenia rat model. Mol. Psychiatry. 2023;28:1170–1181. doi: 10.1038/s41380-022-01865-4.
    1. Glantz L.A., Gilmore J.H., Lieberman J.A., Jarskog L.F. Apoptotic mechanismsand the synaptic pathology of schizophrenia. Schizophr. Res. 2006;81:47–63. doi: 10.1016/j.schres.2005.08.014.
    1. Ehrenshaft M., Deterding L.J., Mason R.P. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radic. Biol. Med. 2015;89:220–228. doi: 10.1016/j.freeradbiomed.2015.08.003.
    1. Kaplán P., Doval M., Majerová Z., Lehotský J., Racay P. Iron-induced lipid peroxidation and protein modification in endoplasmic reticulum membranes. Protection by stobadine. Int. J. Biochem. Cell Biol. 2000;32:539–547. doi: 10.1016/S1357-2725(99)00147-8.
    1. Kaplán P., Babušíková E., Lehotský J., Dobrota D. Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Mol. Cell. Biochem. 2003;248:41–47. doi: 10.1023/A:1024145212616.
    1. Dietrich-Muszalka A., Malinovska J., Olas B., Głowacki R., Bald E., Wachowicz B., Rabe-Jabłońska J. The oxidative stress may be induced by the elevated homocysteine in schizophrenic patients. Neurochem. Res. 2012;37:1057–1062. doi: 10.1007/s11064-012-0707-3.
    1. Dietrich-Muszalka A., Malinovska J., Olas B., Bald E. Oxidative/nitrative modifications of plasma proteins and thiols from patients with schizophrenia. Neuropsychobiology. 2009;59:1–7. doi: 10.1159/000202822.
    1. Tuncel O.K., Sansoy G., Bilgici B., Pazvantoglu O., Çetin E., Bahattin Avcı E.U., Böke O. Oxidative stress in bipolar and schizophrenia patients. Psychiatry Res. 2015;228:688–694. doi: 10.1016/j.psychres.2015.04.046.
    1. Fizikova I., Racay P. Oxidative modifications of plasma proteins and decreased leukocyte mitochondrial DNA of schizophrenia patients. Act. Nerv. Super. Rediviva. 2022;64:25–32.
    1. Martins-de-Souza D., Harris L.W., Guest P.C., Bahn S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid. Redox Signal. 2011;15:2067–2079. doi: 10.1089/ars.2010.3459.
    1. Moller I.M., Rogowska-wrzesinska R.S., Rao R.S. Protein carbonylation and metal-catalysed Protein oxidation in a cellular perspective. J. Proteom. 2011;74:2228–2242. doi: 10.1016/j.jprot.2011.05.004.
    1. Manzoor S., Khan A., Hasan B., Mushtag S., Ahmed N. Expression Analysis of 4-hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation. Curr. Proteom. 2022;19:102–113. doi: 10.2174/1570164618666210121151004.
    1. Goh X.X., Tang P.Y., Tee S.F. 8-Hydroxy-2′-Deoxyguanosine and Reactive Oxygen Species as Biomarkers of Oxidative Stress in Mental Illnesses: A Meta-Analysis. Psychiatry Investig. 2021;18:603–618. doi: 10.30773/pi.2020.0417.
    1. Dalleau S., Baradat M., Guéraud F., Huc L. Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013;20:1615–1630. doi: 10.1038/cdd.2013.138.
    1. Pecorelli A., Ciccoli L., Signorini C., Leoncini S., Giardini A., D’Esposito M., Filosa S., Hayek J., De Felice C., Valacchi G. Increased levels of 4HNE-protein plasma adducts in Rett syndrome. Clin. Biochem. 2011;44:368–371. doi: 10.1016/j.clinbiochem.2011.01.007.
    1. Pecorelli A., Leoncini S., De Felice C., Signorini C., Cerrone C., Valacchi G., Ciccoli L., Hayek J. Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism. Brain Dev. 2013;35:146–154. doi: 10.1016/j.braindev.2012.03.011.
    1. Pecorelli A., Leoncini C., Ciccoli S., Valacchi G., Signorini C., De Felice C., Hayek C. Comprehensive Guide to Autism. Springer; New York, NY, USA: 2014. 4HNE Protein Adducts in Autistic Spectrum Disorders: Rett Syndrome and Autism; pp. 2667–2688.
    1. Tatarkova Z., Kovalska M., Timkova V., Racay P., Lehotsky J., Kaplan P. The Effect of Aging on Mitochondrial Complex I and the Extent of Oxidative Stress in the Rat Brain Cortex. Neurochem. Res. 2016;41:2160–2172. doi: 10.1007/s11064-016-1931-z.
    1. Siems W., Grune T. Intracellular metabolism of 4-hydroxynonenal. Mol. Asp. Med. 2003;24:167–175. doi: 10.1016/S0098-2997(03)00011-6.
    1. Castro J.P., Jung T., Grune T., Siems W. 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free. Radic. Biol. Med. 2017;111:309–315. doi: 10.1016/j.freeradbiomed.2016.10.497.
    1. Feigenson K.A., Kusnecov A.W., Silverstein S.M. Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev. 2014;38:72–93. doi: 10.1016/j.neubiorev.2013.11.006.
    1. Fragaus D., Diaz-Caneja C.M., Ayora M., Hernández-Álvarez F., Rodríguez-Quiroga A., Recio S., Leza J.C., Arango C. Oxidative Stress and Inflammation in First-Episode Psychosis: A Systematic Review and Meta-analysis. Schizophr. Bull. 2019;18:742–751. doi: 10.1093/schbul/sby125.
    1. Kaplán P., Tatarková Z., Račay P., Doborota D., Lehotsky J., Pavlikova M. Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep. 2007;12:211–218. doi: 10.1179/135100007X200308.
    1. Sullivan C.R., O’Donovan S.M., Mc Cullumsmith R.E., Ramsey A. Defects in Bioenergetic Coupling in Schizophrenia. Biol. Psychiatry. 2018;83:739–750. doi: 10.1016/j.biopsych.2017.10.014.
    1. Duarte J.M.N., Xin L. Magnetic resonance spectroscopy in schizophrenia: Evidence for glutamatergic dysfunction and impaired energy metabolism. Neurochem. Res. 2019;44:102–116. doi: 10.1007/s11064-018-2521-z.
    1. Pruett B.S., Meador-Woodruff J.H. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: A focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr. Res. 2020;223:29–42. doi: 10.1016/j.schres.2020.09.003.
    1. Clay B., Sillivan S., Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int. J. Dev. Neurosci. 2011;29:311–324. doi: 10.1016/j.ijdevneu.2010.08.007.
    1. Fizikova I., Dragasek J. Mitochondrial dysfunction and new therapeutic targets in bipolar affective disorder. Psychiatr. Ann. 2017;47:100–104. doi: 10.3928/00485713-20170103-01.
    1. Zuccoli G.S., Saia-Cereda V.M., Nascimento J.M., Martins-de-Souza D. The energy metabolism dysfunction in psychiatric disorders postmortem brains: Focus on proteomic evidence. Front. Neurosci. 2017;11:493. doi: 10.3389/fnins.2017.00493.
    1. Bergman O., Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) Deficits in Schizophrenia: Possible Interactions with Cellular Processes. Can. J. Psychiatry. 2016;61:457–469. doi: 10.1177/0706743716648290.
    1. Ben-Shachar D. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr. Res. 2017;187:3–10. doi: 10.1016/j.schres.2016.10.022.
    1. Kumar P., Efstathopoulos P., Millischer V., Olsson E., Wei Y.B., Brüstle O., Schalling M., Villaescusa J.C., Ösby U., Lavebratt C. Mitochondrial DNA copy number is associated with psychosis severity and antipsychotic treatment. Sci. Rep. 2018;8:12743. doi: 10.1038/s41598-018-31122-0.
    1. Ermakov E.A., Dimitrieva E.M., Parshukova D.A., Kazantseva D.V., Vasilieva A.R., Smirnova L.P. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxid. Med. Cell. Longev. 2021;2021:8881770. doi: 10.1155/2021/8881770.
    1. Kim H.J., Hwang I.W., Kwon B.N., Han S.H., Lee N.R., Lim M.H., Kwon H.J., Jin H.J. Assessment of associations between mitochondrial DNA haplogroups and attention deficit and hyperactivity disorder in Korean children. Mitochondrion. 2019;47:174–178.
    1. Kim J.L., Lee S.Y., Park M., Kim J.W., Kim S.A., Kim B.N. Peripheral Mitochondrial DNA Copy Number is Increased in Korean Attention-Deficit Hyperactivity Disorder Patients. Front. Psychiatry. 2019;10:506. doi: 10.3389/fpsyt.2019.00506.
    1. Bergersen L.H. Lactate transport and signaling in the brain: Potential therapeutic targets and roles in body-brain interaction. J. Cereb. Blood Flow Metab. 2015;35:176–185. doi: 10.1038/jcbfm.2014.206.
    1. Brooks G.A. Cell-cell and intracellular lactate shuttles. J. Physiol. 2009;587:5591–5600. doi: 10.1113/jphysiol.2009.178350.
    1. Dogan A.F., Yuksel C., Chouinard V.A., Öngür D. Brain lactate and pH in schizophrenia and bipolar disorder: A systematic review of findings from magnetic resonance studies. Neuropsychopharmacology. 2018;43:1681–1690. doi: 10.1038/s41386-018-0041-9.
    1. Robinet C., Pellerin L. Brain-derived neurotrophic factor enhances the hippocampal expression of key postsynaptic proteins in vivo including the monocarboxylate transporter MCT2. Neuroscience. 2011;29:155–163. doi: 10.1016/j.neuroscience.2011.06.059.
    1. Suzuki A. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810–823. doi: 10.1016/j.cell.2011.02.018.
    1. Sullivan C.R., Mielnik C.A., Funk A., O’Donovan S.M., Bentea E., Pletnikov M., Ramsey A.J., Wen Z., Rowland L.M., McCullumsmith R.E. Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia. Sci. Rep. 2019;9:5087. doi: 10.1038/s41598-019-41572-9.
    1. Herbeth M., Koethe D., Bahn S., Cheng T.M., Krzyszton N.D., Schoeffmann S., Guest P.C., Rahmoune H., Harris L.W., Kranaster L., et al. Impaired glycolytic response in peripheral blood mononuclear cells of first-onset antipsychotic-naive schizophrenia patients. Mol. Psychiatry. 2011;16:848–859. doi: 10.1038/mp.2010.71.
    1. Ľuptak M., Fišar Z., Hroudova J. Effect of novel antipsychotics on energy metabolism—In vitro study in pig brain mitochondria. Mol. Neurobiol. 2021;58:5548–5563. doi: 10.1007/s12035-021-02498-4.
    1. Bar-Yosef T., Hussein W., Yitzhaki O., Damri O., Givon L., Marom C., Gurman V., Levine J., Bersudsky Y., Agam G., et al. Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: A proof of concept study. Sci. Rep. 2020;10:12258. doi: 10.1038/s41598-020-69207-4.
    1. Herbst E.A., Paglialunga S., Gerling C., Whitfield J., Mukai K., Chabowski A., Heigenhauser G.J., Spriet L.L., Holloway G.P. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J. Physiol. 2014;592:1341–1352. doi: 10.1113/jphysiol.2013.267336.
    1. Robinson D.G., Gallego J.A., John M., Hanna L.A., Zhang J.P., Birnbaum M.L., Greenberg J., Naraine M., Peters B.D., McNamara R.K., et al. A potential role for adjunctive omega-3 polyunsaturated fatty acids for depression and anxiety symptoms in recent onset psychosis: Results from a 16weekrandomized placebo-controlled trial for participants concurrently treated with risperidone. Schizophr. Res. 2019;204:295–303. doi: 10.1016/j.schres.2018.09.006.
    1. Pawelczyk T., Grancow-Grabka M., Trafalska E., Szemraj J., Żurner N., Pawełczyk A. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomised clinical trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2018;83:142–148. doi: 10.1016/j.pnpbp.2017.12.008.
    1. Pawelczyk T., Piatkowska-Janko E., Bogorodzki P., Gębski P., Grancow-Grabka M., Trafalska E., Żurner N., Pawełczyk A. Omega-3 fatty acid supplementation may prevent loss of gray matter thickness in the left parieto-occipital cortex in first episode schizophrenia: A secondary outcome analysis of the OFFER randomised controlled study. Schizophr. Res. 2018;195:168–175. doi: 10.1016/j.schres.2017.10.013.
    1. Sepehrmanesh Z., Heidary M., Akasheh N., Akbari H., Heidary M. Therapeutic effect of adjunctive N-acetyl cysteine (NAC) on symptoms of chronic schizophrenia: A double-blind, randomised clinical trial. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2018;82:289–296. doi: 10.1016/j.pnpbp.2017.11.001.
    1. Hu M., Zhang Y., Ma S., Li J., Wang X., Liang M., Sferruzzi-Perri A.N., Wu X., Ma H., Brännström M., et al. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome. Mol. Hum. Reprod. 2021;27:gaab067. doi: 10.1093/molehr/gaab067.

Source: PubMed

3
구독하다