Value of Glucosylsphingosine (Lyso-Gb1) as a Biomarker in Gaucher Disease: A Systematic Literature Review

Shoshana Revel-Vilk, Maria Fuller, Ari Zimran, Shoshana Revel-Vilk, Maria Fuller, Ari Zimran

Abstract

The challenges in the diagnosis, prognosis, and monitoring of Gaucher disease (GD), an autosomal recessive inborn error of glycosphingolipid metabolism, can negatively impact clinical outcomes. This systematic literature review evaluated the value of glucosylsphingosine (lyso-Gb1), as the most reliable biomarker currently available for the diagnosis, prognosis, and disease/treatment monitoring of patients with GD. Literature searches were conducted using MEDLINE, Embase, PubMed, ScienceOpen, Science.gov, Biological Abstracts, and Sci-Hub to identify original research articles relevant to lyso-Gb1 and GD published before March 2019. Seventy-four articles met the inclusion criteria, encompassing 56 related to pathology and 21 related to clinical biomarkers. Evidence for lyso-Gb1 as a pathogenic mediator of GD was unequivocal, although its precise role requires further elucidation. Lyso-Gb1 was deemed a statistically reliable diagnostic and pharmacodynamic biomarker in GD. Evidence supports lyso-Gb1 as a disease-monitoring biomarker for GD, and some evidence supports lyso-Gb1 as a prognostic biomarker, but further study is required. Lyso-Gb1 meets the criteria for a biomarker as it is easily accessible and reliably quantifiable in plasma and dried blood spots, enables the elucidation of GD molecular pathogenesis, is diagnostically valuable, and reflects therapeutic responses. Evidentiary standards appropriate for verifying inter-laboratory lyso-Gb1 concentrations in plasma and in other anatomical sites are needed.

Keywords: Gaucher disease; biomarker; glucosylsphingosine; lyso-Gb1; lysosomal storage disorder; systematic literature review.

Conflict of interest statement

The SZMC Gaucher Unit receives support from Sanofi/Genzyme for participation in the ICGG Registry, from Takeda for the GOS Registry, and Pfizer for TALIAS. S.R.-V. has received research/speaker fees and travel support from Pfizer, Sanofi Genzyme, and Takeda (Shire) and advisory fee from Takeda (Shire) and Prevail therapeutics. M.F. has received travel and research support from Sanofi-Genzyme and Takeda (Shire) A.Z. has received honoraria from Pfizer, Takeda (Shire) and BioEvents, and consultancy fees from Prevail Therapeutics, Avrobio, Insightec and Takeda. Takeda was involved in the concept and design of the study, and had no role in the collection or interpretation of data.

Figures

Figure 1
Figure 1
Catabolic route of glycosphingolipid generation in Gaucher disease [7].
Figure 2
Figure 2
Research milestones culminating in glucosylsphingosine (lyso-Gb1) as a focus of biomarker research.
Figure 3
Figure 3
Literature identification and study selection process for publications reporting on glucosylsphingosine (lyso-Gb1) in Gaucher disease (PRISMA flowchart). a: Three articles reported on roles for lyso-Gb1 in pathophysiology and as a biomarker [26,45,53].

References

    1. Zimran A., Elstein D. Gaucher Disease and Related Lysosomal Storage Diseases. In: Kaushansky K., Lichtman M., Prchal J., Levi M.M., Press O., Burns L., Caligiuri M., editors. Williams Hematology. 9th ed. McGraw-Hill; New York, NY, USA: 2016.
    1. Hruska K.S., LaMarca M.E., Scott C.R., Sidransky E. Gaucher disease: Mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA) Hum. Mutat. 2008;29:567–583. doi: 10.1002/humu.20676.
    1. Kang L., Zhan X., Gu X., Zhang H. Successful newborn screening for Gaucher disease using fluorometric assay in China. J. Hum. Genet. 2017;62:763–768. doi: 10.1038/jhg.2017.36.
    1. Matern D., Gavrilov D., Oglesbee D., Raymond K., Rinaldo P., Tortorelli S. Newborn screening for lysosomal storage disorders. Semin. Perinatol. 2015;39:206–216. doi: 10.1053/j.semperi.2015.03.005.
    1. Horowitz M., Pasmanik-Chor M., Borochowitz Z., Falik-Zaccai T., Heldmann K., Carmi R., Parvari R., Beit-Or H., Goldman B., Peleg L., et al. Prevalence of glucocerebrosidase mutations in the Israeli Ashkenazi Jewish population. Hum. Mutat. 1998;12:240–244. doi: 10.1002/(SICI)1098-1004(1998)12:4<240::AID-HUMU4>;2-J.
    1. Ferraz M.J., Kallemeijn W.W., Mirzaian M., Herrera Moro D., Marques A., Wisse P., Boot R.G., Willems L.I., Overkleeft H.S., Aerts J.M. Gaucher disease and Fabry disease: New markers and insights in pathophysiology for two distinct glycosphingolipidoses. Biochim. Biophys. Acta. 2014;1841:811–825. doi: 10.1016/j.bbalip.2013.11.004.
    1. Aerts J., Kuo C.L., Lelieveld L.T., Boer D.E.C., van der Lienden M.J.C., Overkleeft H.S., Artola M. Glycosphingolipids and lysosomal storage disorders as illustrated by Gaucher disease. Curr. Opin. Chem. Biol. 2019;53:204–215. doi: 10.1016/j.cbpa.2019.10.006.
    1. Boven L.A., van Meurs M., Boot R.G., Mehta A., Boon L., Aerts J.M., Laman J.D. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am. J. Clin. Pathol. 2004;122:359–369. doi: 10.1309/BG5VA8JRDQH1M7HN.
    1. Brady R.O., Kanfer J.N., Bradley R.M., Shapiro D. Demonstration of a deficiency of glucocerebroside-cleaving enzyme in Gaucher’s disease. J. Clin. Investig. 1966;45:1112–1115. doi: 10.1172/JCI105417.
    1. Mistry P.K., Lopez G., Schiffmann R., Barton N.W., Weinreb N.J., Sidransky E. Gaucher disease: Progress and ongoing challenges. Mol. Genet. Metab. 2017;120:8–21. doi: 10.1016/j.ymgme.2016.11.006.
    1. Lobato B.J., Hidalgo M.J., Jimenez L.M.J. Biomarkers in lysosomal storage diseases. Diseases. 2016;4:40. doi: 10.3390/diseases4040040.
    1. Biomarkers Definitions Working Group Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharm. 2001;69:89–95.
    1. Hassan S., Sidransky E., Tayebi N. The role of epigenetics in lysosomal storage disorders: Uncharted territory. Mol. Genet. Metab. 2017;122:10–18. doi: 10.1016/j.ymgme.2017.07.012.
    1. Biegstraaten M., van Schaik I.N., Aerts J.M., Langeveld M., Mannens M.M., Bour L.J., Sidransky E., Tayebi N., Fitzgibbon E., Hollak C.E. A monozygotic twin pair with highly discordant Gaucher phenotypes. Blood Cells Mol. Dis. 2011;46:39–41. doi: 10.1016/j.bcmd.2010.10.007.
    1. Goker-Alpan O., Hruska K.S., Orvisky E., Kishnani P.S., Stubblefield B.K., Schiffmann R., Sidransky E. Divergent phenotypes in Gaucher disease implicate the role of modifiers. J. Med. Genet. 2005;42:e37. doi: 10.1136/jmg.2004.028019.
    1. Lachmann R.H., Grant I.R., Halsall D., Cox T.M. Twin pairs showing discordance of phenotype in adult Gaucher’s disease. QJM. 2004;97:199–204. doi: 10.1093/qjmed/hch036.
    1. Lo S.M., Choi M., Liu J., Jain D., Boot R.G., Kallemeijn W.W., Aerts J.M., Pashankar F., Kupfer G.M., Mane S., et al. Phenotype diversity in type 1 Gaucher disease: Discovering the genetic basis of Gaucher disease/hematologic malignancy phenotype by individual genome analysis. Blood. 2012;119:4731–4740. doi: 10.1182/blood-2011-10-386862.
    1. Sims K.B., Pastores G.M., Weinreb N.J., Barranger J., Rosenbloom B.E., Packman S., Kaplan P., Mankin H., Xavier R., Angell J., et al. Improvement of bone disease by imiglucerase (Cerezyme) therapy in patients with skeletal manifestations of type 1 Gaucher disease: Results of a 48-month longitudinal cohort study. Clin. Genet. 2008;73:430–440. doi: 10.1111/j.1399-0004.2008.00978.x.
    1. Stein P., Yu H., Jain D., Mistry P.K. Hyperferritinemia and iron overload in type 1 Gaucher disease. Am. J. Hematol. 2010;85:472–476. doi: 10.1002/ajh.21721.
    1. Koppe T., Doneda D., Siebert M., Paskulin L., Camargo M., Tirelli K.M., Vairo F., Daudt L., Schwartz I.V. The prognostic value of the serum ferritin in a southern Brazilian cohort of patients with Gaucher disease. Genet. Mol. Biol. 2016;39:30–34. doi: 10.1590/1678-4685-GMB-2015-0125.
    1. Stirnemann J., Boutten A., Vincent C., Mekinian A., Heraoui D., Fantin B., Fain O., Mentre F., Belmatoug N. Impact of imiglucerase on the serum glycosylated-ferritin level in Gaucher disease. Blood Cells Mol. Dis. 2011;46:34–38. doi: 10.1016/j.bcmd.2010.10.014.
    1. Cabrera-Salazar M.A., O’Rourke E., Henderson N., Wessel H., Barranger J.A. Correlation of surrogate markers of Gaucher disease. Implications for long-term follow up of enzyme replacement therapy. Clin. Chim. Acta. 2004;344:101–107. doi: 10.1016/j.cccn.2004.02.018.
    1. Boot R.G., Verhoek M., de Fost M., Hollak C.E., Maas M., Bleijlevens B., van Breemen M.J., van Meurs M., Boven L.A., Laman J.D., et al. Marked elevation of the chemokine CCL18/PARC in Gaucher disease: A novel surrogate marker for assessing therapeutic intervention. Blood. 2004;103:33–39. doi: 10.1182/blood-2003-05-1612.
    1. Hollak C.E., van Weely S., van Oers M.H., Aerts J.M. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J. Clin. Investig. 1994;93:1288–1292. doi: 10.1172/JCI117084.
    1. Deegan P.B., Moran M.T., McFarlane I., Schofield J.P., Boot R.G., Aerts J.M., Cox T.M. Clinical evaluation of chemokine and enzymatic biomarkers of Gaucher disease. Blood Cells Mol. Dis. 2005;35:259–267. doi: 10.1016/j.bcmd.2005.05.005.
    1. Ferraz M.J., Marques A.R., Appelman M.D., Verhoek M., Strijland A., Mirzaian M., Scheij S., Ouairy C.M., Lahav D., Wisse P., et al. Lysosomal glycosphingolipid catabolism by acid ceramidase: Formation of glycosphingoid bases during deficiency of glycosidases. FEBS Lett. 2016;590:716–725. doi: 10.1002/1873-3468.12104.
    1. Gonzalez D.E., Turkia H.B., Lukina E.A., Kisinovsky I., Dridi M.F., Elstein D., Zahrieh D., Crombez E., Bhirangi K., Barton N.W., et al. Enzyme replacement therapy with velaglucerase alfa in Gaucher disease: Results from a randomized, double-blind, multinational, Phase 3 study. Am. J. Hematol. 2013;88:166–171. doi: 10.1002/ajh.23381.
    1. Pastores G.M., Shankar S.P., Petakov M., Giraldo P., Rosenbaum H., Amato D.J., Szer J., Chertkoff R., Brill-Almon E., Zimran A. Enzyme replacement therapy with taliglucerase alfa: 36-month safety and efficacy results in adult patients with Gaucher disease previously treated with imiglucerase. Am. J. Hematol. 2016;91:661–665. doi: 10.1002/ajh.24399.
    1. Schutyser E., Richmond A., Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J. Leukoc. Biol. 2005;78:14–26. doi: 10.1189/jlb.1204712.
    1. van Dussen L., Hendriks E.J., Groener J.E., Boot R.G., Hollak C.E., Aerts J.M. Value of plasma chitotriosidase to assess non-neuronopathic Gaucher disease severity and progression in the era of enzyme replacement therapy. J. Inherit. Metab. Dis. 2014;37:991–1001. doi: 10.1007/s10545-014-9711-x.
    1. Suzuki K. Twenty five years of the “psychosine hypothesis”: A personal perspective of its history and present status. Neurochem. Res. 1998;23:251–259. doi: 10.1023/A:1022436928925.
    1. Linari S., Castaman G. Clinical manifestations and management of Gaucher disease. Clin. Cases Min. Bone Metab. 2015;12:157–164. doi: 10.11138/ccmbm/2015.12.2.157.
    1. Dekker N., van Dussen L., Hollak C.E., Overkleeft H., Scheij S., Ghauharali K., van Breemen M.J., Ferraz M.J., Groener J.E., Maas M., et al. Elevated plasma glucosylsphingosine in Gaucher disease: Relation to phenotype, storage cell markers, and therapeutic response. Blood. 2011;118:e118–e127. doi: 10.1182/blood-2011-05-352971.
    1. Meikle P.J., Whitfield P.D., Rozaklis T., Blacklock D., Duplock S., Elstein D., Zimran A., Mengel E., Cannell P., Hopwood J.J., et al. Plasma lipids are altered in Gaucher disease: Biochemical markers to evaluate therapeutic intervention. Blood Cells Mol. Dis. 2008;40:420–427. doi: 10.1016/j.bcmd.2007.10.004.
    1. Groener J.E., Poorthuis B.J., Kuiper S., Helmond M.T., Hollak C.E., Aerts J.M. HPLC for simultaneous quantification of total ceramide, glucosylceramide, and ceramide trihexoside concentrations in plasma. Clin. Chem. 2007;53:742–747. doi: 10.1373/clinchem.2006.079012.
    1. Mistry P.K., Lukina E., Ben Turkia H., Shankar S.P., Baris H., Ghosn M., Mehta A., Packman S., Pastores G., Petakov M., et al. Outcomes after 18 months of eliglustat therapy in treatment-naive adults with Gaucher disease type 1: The phase 3 ENGAGE trial. Am. J. Hematol. 2017;92:1170–1176. doi: 10.1002/ajh.24877.
    1. Arkadir D., Dinur T., Revel-Vilk S., Becker Cohen M., Cozma C., Hovakimyan M., Eichler S., Rolfs A., Zimran A. Glucosylsphingosine is a reliable response biomarker in Gaucher disease. Am. J. Hematol. 2018;93:E140–E142. doi: 10.1002/ajh.25074.
    1. Chipeaux C., de Person M., Burguet N., Billette de Villemeur T., Rose C., Belmatoug N., Heron S., Le Van Kim C., Franco M., Moussa F. Optimization of ultra-high pressure liquid chromatography-tandem mass spectrometry determination in plasma and red blood cells of four sphingolipids and their evaluation as biomarker candidates of Gaucher’s disease. J. Chromatogr. A. 2017;1525:116–125. doi: 10.1016/j.chroma.2017.10.038.
    1. Elstein D., Mellgard B., Dinh Q., Lan L., Qiu Y., Cozma C., Eichler S., Bottcher T., Zimran A. Reductions in glucosylsphingosine (lyso-Gb1) in treatment-naive and previously treated patients receiving velaglucerase alfa for type 1 Gaucher disease: Data from phase 3 clinical trials. Mol. Genet. Metab. 2017;122:113–120. doi: 10.1016/j.ymgme.2017.08.005.
    1. Franco M., Reihani N., Marin M., De Person M., Billette de Villemeur T., Rose C., Colin Y., Moussa F., Belmatoug N., Le Van Kim C. Effect of velaglucerase alfa enzyme replacement therapy on red blood cell properties in Gaucher disease. Am. J. Hematol. 2017;92:E561–E563. doi: 10.1002/ajh.24816.
    1. Fuller M., Szer J., Stark S., Fletcher J.M. Rapid, single-phase extraction of glucosylsphingosine from plasma: A universal screening and monitoring tool. Clin. Chim. Acta. 2015;450:6–10. doi: 10.1016/j.cca.2015.07.026.
    1. Gaspar P., Kallemeijn W.W., Strijland A., Scheij S., Van Eijk M., Aten J., Overkleeft H.S., Balreira A., Zunke F., Schwake M., et al. Action myoclonus-renal failure syndrome: Diagnostic applications of activity-based probes and lipid analysis. J. Lipid Res. 2014;55:138–145. doi: 10.1194/jlr.M043802.
    1. Lukina E., Watman N., Dragosky M., Lau H., Avila Arreguin E., Rosenbaum H., Zimran A., Foster M.C., Gaemers S.J.M., Peterschmitt M.J. Outcomes after 8 years of eliglustat therapy for Gaucher disease type 1: Final results from the Phase 2 trial. Am. J. Hematol. 2019;94:29–38. doi: 10.1002/ajh.25300.
    1. Mirzaian M., Wisse P., Ferraz M.J., Gold H., Donker-Koopman W.E., Verhoek M., Overkleeft H.S., Boot R.G., Kramer G., Dekker N., et al. Mass spectrometric quantification of glucosylsphingosine in plasma and urine of type 1 Gaucher patients using an isotope standard. Blood Cells Mol. Dis. 2015;54:307–314. doi: 10.1016/j.bcmd.2015.01.006.
    1. Mistry P.K., Liu J., Sun L., Chuang W.L., Yuen T., Yang R., Lu P., Zhang K., Li J., Keutzer J., et al. Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease. Proc. Natl. Acad. Sci. USA. 2014;111:4934–4939. doi: 10.1073/pnas.1400768111.
    1. Moraitou M., Dimitriou E., Dekker N., Monopolis I., Aerts J., Michelakakis H. Gaucher disease: Plasmalogen levels in relation to primary lipid abnormalities and oxidative stress. Blood Cells Mol. Dis. 2014;53:30–33. doi: 10.1016/j.bcmd.2014.01.005.
    1. Murugesan V., Chuang W.L., Liu J., Lischuk A., Kacena K., Lin H., Pastores G.M., Yang R., Keutzer J., Zhang K., et al. Glucosylsphingosine is a key biomarker of Gaucher disease. Am. J. Hematol. 2016;91:1082–1089. doi: 10.1002/ajh.24491.
    1. Murugesan V., Liu J., Yang R., Lin H., Lischuk A., Pastores G., Zhang X., Chuang W.L., Mistry P.K. Validating glycoprotein non-metastatic melanoma B (gpNMB, osteoactivin), a new biomarker of Gaucher disease. Blood Cells Mol. Dis. 2018;68:47–53. doi: 10.1016/j.bcmd.2016.12.002.
    1. Narita A., Shirai K., Itamura S., Matsuda A., Ishihara A., Matsushita K., Fukuda C., Kubota N., Takayama R., Shigematsu H., et al. Ambroxol chaperone therapy for neuronopathic Gaucher disease: A pilot study. Ann. Clin. Transl. Neurol. 2016;3:200–215. doi: 10.1002/acn3.292.
    1. Rolfs A., Giese A.K., Grittner U., Mascher D., Elstein D., Zimran A., Bottcher T., Lukas J., Hubner R., Golnitz U., et al. Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a non-Jewish, Caucasian cohort of Gaucher disease patients. PLoS ONE. 2013;8:e79732. doi: 10.1371/journal.pone.0079732.
    1. Smid B.E., Ferraz M.J., Verhoek M., Mirzaian M., Wisse P., Overkleeft H.S., Hollak C.E., Aerts J.M. Biochemical response to substrate reduction therapy versus enzyme replacement therapy in Gaucher disease type 1 patients. Orphanet J. Rare Dis. 2016;11:28. doi: 10.1186/s13023-016-0413-3.
    1. Tylki-Szymanska A., Szymanska-Rozek P., Hasinski P., Lugowska A. Plasma chitotriosidase activity versus plasma glucosylsphingosine in wide spectrum of Gaucher disease phenotypes-A statistical insight. Mol. Genet. Metab. 2018;123:495–500. doi: 10.1016/j.ymgme.2018.02.004.
    1. Zhang W., Oehrle M., Prada C.E., Schwartz I.V.D., Chutipongtanate S., Wattanasirichaigoon D., Inskeep V., Dai M., Pan D., Sun Y., et al. A convenient approach to facilitate monitoring Gaucher disease progression and therapeutic response. Analyst. 2017;142:3380–3387. doi: 10.1039/C7AN00938K.
    1. Nilsson O., Grabowski G.A., Ludman M.D., Desnick R.J., Svennerholm L. Glycosphingolipid studies of visceral tissues and brain from type 1 Gaucher disease variants. Clin. Genet. 1985;27:443–450. doi: 10.1111/j.1399-0004.1985.tb00229.x.
    1. Nilsson O., Mansson J.E., Hakansson G., Svennerholm L. The occurrence of psychosine and other glycolipids in spleen and liver from the three major types of Gaucher’s disease. Biochim. Biophys. Acta. 1982;712:453–463. doi: 10.1016/0005-2760(82)90272-7.
    1. Nilsson O., Svennerholm L. Accumulation of glucosylceramide and glucosylsphingosine (psychosine) in cerebrum and cerebellum in infantile and juvenile Gaucher disease. J. Neurochem. 1982;39:709–718. doi: 10.1111/j.1471-4159.1982.tb07950.x.
    1. Orvisky E., Park J.K., LaMarca M.E., Ginns E.I., Martin B.M., Tayebi N., Sidransky E. Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: Correlation with phenotype and genotype. Mol. Genet. Metab. 2002;76:262–270. doi: 10.1016/S1096-7192(02)00117-8.
    1. Orvisky E., Sidransky E., McKinney C.E., Lamarca M.E., Samimi R., Krasnewich D., Martin B.M., Ginns E.I. Glucosylsphingosine accumulation in mice and patients with type 2 Gaucher disease begins early in gestation. Pediatr. Res. 2000;48:233–237. doi: 10.1203/00006450-200008000-00018.
    1. Park J.K., Orvisky E., Tayebi N., Kaneski C., Lamarca M.E., Stubblefield B.K., Martin B.M., Schiffmann R., Sidransky E. Myoclonic epilepsy in Gaucher disease: Genotype-phenotype insights from a rare patient subgroup. Pediatr. Res. 2003;53:387–395. doi: 10.1203/01.PDR.0000049515.79882.94.
    1. Raghavan S.S., Mumford R.A., Kanfer J.N. Deficiency of glucosylsphingosine: Beta-glucosidase in Gaucher disease. Biochem. Biophys. Res. Commun. 1973;54:256–263. doi: 10.1016/0006-291X(73)90916-9.
    1. Tayebi N., Walker J., Stubblefield B., Orvisky E., LaMarca M.E., Wong K., Rosenbaum H., Schiffmann R., Bembi B., Sidransky E. Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 2003;79:104–109. doi: 10.1016/S1096-7192(03)00071-4.
    1. Conradi N.G., Sourander P., Nilsson O., Svennerholm L., Erikson A. Neuropathology of the Norrbottnian type of Gaucher disease. Morphological and biochemical studies. Acta Neuropathol. 1984;65:99–109. doi: 10.1007/BF00690463.
    1. Lloyd-Evans E., Pelled D., Riebeling C., Bodennec J., de-Morgan A., Waller H., Schiffmann R., Futerman A.H. Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J. Biol. Chem. 2003;278:23594–23599. doi: 10.1074/jbc.M300212200.
    1. Atsumi S., Nosaka C., Iinuma H., Umezawa K. Accumulation of tissue glucosylsphingosine in Gaucher-like mouse induced by the glucosylceramidase inhibitor cyclophellitol. Arch. Biochem. Biophys. 1993;304:302–304. doi: 10.1006/abbi.1993.1353.
    1. Barnes S., Xu Y.H., Zhang W., Liou B., Setchell K.D., Bao L., Grabowski G.A., Sun Y. Ubiquitous transgene expression of the glucosylceramide-synthesizing enzyme accelerates glucosylceramide accumulation and storage cells in a Gaucher disease mouse model. PLoS ONE. 2014;9:e116023. doi: 10.1371/journal.pone.0116023.
    1. Dahl M., Doyle A., Olsson K., Mansson J.E., Marques A.R.A., Mirzaian M., Aerts J.M., Ehinger M., Rothe M., Modlich U., et al. Lentiviral gene therapy using cellular promoters cures type 1 Gaucher disease in mice. Mol. Ther. 2015;23:835–844. doi: 10.1038/mt.2015.16.
    1. Dai M., Liou B., Swope B., Wang X., Zhang W., Inskeep V., Grabowski G.A., Sun Y., Pan D. Progression of behavioral and CNS deficits in a viable murine model of chronic neuronopathic Gaucher disease. PLoS ONE. 2016;11:e0162367. doi: 10.1371/journal.pone.0162367.
    1. Dasgupta N., Xu Y.H., Li R., Peng Y., Pandey M.K., Tinch S.L., Liou B., Inskeep V., Zhang W., Setchell K.D., et al. Neuronopathic Gaucher disease: Dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model. Hum. Mol. Genet. 2015;24:7031–7048. doi: 10.1093/hmg/ddv404.
    1. Enquist I.B., Lo Bianco C., Ooka A., Nilsson E., Mansson J.E., Ehinger M., Richter J., Brady R.O., Kirik D., Karlsson S. Murine models of acute neuronopathic Gaucher disease. Proc. Natl. Acad. Sci. USA. 2007;104:17483–17488. doi: 10.1073/pnas.0708086104.
    1. Farfel-Becker T., Vitner E.B., Kelly S.L., Bame J.R., Duan J., Shinder V., Merrill A.H., Jr., Dobrenis K., Futerman A.H. Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum. Mol. Genet. 2014;23:843–854. doi: 10.1093/hmg/ddt468.
    1. Ferraz M.J., Marques A.R., Gaspar P., Mirzaian M., van Roomen C., Ottenhoff R., Alfonso P., Irun P., Giraldo P., Wisse P., et al. Lyso-glycosphingolipid abnormalities in different murine models of lysosomal storage disorders. Mol. Genet. Metab. 2016;117:186–193. doi: 10.1016/j.ymgme.2015.12.006.
    1. Hamler R., Brignol N., Clark S.W., Morrison S., Dungan L.B., Chang H.H., Khanna R., Frascella M., Valenzano K.J., Benjamin E.R., et al. Glucosylceramide and glucosylsphingosine quantitation by liquid chromatography-tandem mass spectrometry to enable in vivo preclinical studies of neuronopathic Gaucher disease. Anal. Chem. 2017;89:8288–8295. doi: 10.1021/acs.analchem.7b01442.
    1. Karageorgos L., Hein L., Rozaklis T., Adams M., Duplock S., Snel M., Hemsley K., Kuchel T., Smith N., Hopwood J.J. Glycosphingolipid analysis in a naturally occurring ovine model of acute neuronopathic Gaucher disease. Neurobiol. Dis. 2016;91:143–154. doi: 10.1016/j.nbd.2016.03.011.
    1. Liu J., Halene S., Yang M., Iqbal J., Yang R., Mehal W.Z., Chuang W.L., Jain D., Yuen T., Sun L., et al. Gaucher disease gene GBA functions in immune regulation. Proc. Natl. Acad. Sci. USA. 2012;109:10018–10023. doi: 10.1073/pnas.1200941109.
    1. Lukas J., Cozma C., Yang F., Kramp G., Meyer A., Nesslauer A.M., Eichler S., Bottcher T., Witt M., Brauer A.U., et al. Glucosylsphingosine causes hematological and visceral changes in mice-evidence for a pathophysiological role in Gaucher disease. Int. J. Mol. Sci. 2017;18:2192. doi: 10.3390/ijms18102192.
    1. Marshall J., Sun Y., Bangari D.S., Budman E., Park H., Nietupski J.B., Allaire A., Cromwell M.A., Wang B., Grabowski G.A., et al. CNS-accessible inhibitor of glucosylceramide synthase for substrate reduction therapy of neuronopathic Gaucher disease. Mol Ther. 2016;24:1019–1029. doi: 10.1038/mt.2016.53.
    1. Mistry P.K., Liu J., Yang M., Nottoli T., McGrath J., Jain D., Zhang K., Keutzer J., Chuang W.L., Mehal W.Z., et al. Glucocerebrosidase gene-deficient mouse recapitulates Gaucher disease displaying cellular and molecular dysregulation beyond the macrophage. Proc. Natl. Acad. Sci. USA. 2010;107:19473–19478. doi: 10.1073/pnas.1003308107.
    1. Pandey M.K., Burrow T.A., Rani R., Martin L.J., Witte D., Setchell K.D., McKay M.A., Magnusen A.F., Zhang W., Liou B., et al. Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease. Nature. 2017;543:108–112. doi: 10.1038/nature21368.
    1. Pavlova E.V., Archer J., Wang S., Dekker N., Aerts J.M., Karlsson S., Cox T.M. Inhibition of UDP-glucosylceramide synthase in mice prevents Gaucher disease-associated B-cell malignancy. J. Pathol. 2015;235:113–124. doi: 10.1002/path.4452.
    1. Pavlova E.V., Wang S.Z., Archer J., Dekker N., Aerts J.M., Karlsson S., Cox T.M. B cell lymphoma and myeloma in murine Gaucher’s disease. J. Pathol. 2013;231:88–97. doi: 10.1002/path.4227.
    1. Rocha E.M., Smith G.A., Park E., Cao H., Graham A.R., Brown E., McLean J.R., Hayes M.A., Beagan J., Izen S.C., et al. Sustained systemic glucocerebrosidase inhibition induces brain alpha-synuclein aggregation, microglia and complement C1q activation in mice. Antioxid. Redox Signal. 2015;23:550–564. doi: 10.1089/ars.2015.6307.
    1. Sardi S.P., Viel C., Clarke J., Treleaven C.M., Richards A.M., Park H., Olszewski M.A., Dodge J.C., Marshall J., Makino E., et al. Glucosylceramide synthase inhibition alleviates aberrations in synucleinopathy models. Proc. Natl. Acad. Sci. USA. 2017;114:2699–2704. doi: 10.1073/pnas.1616152114.
    1. Smith N.J., Fuller M., Saville J.T., Cox T.M. Reduced cerebral vascularization in experimental neuronopathic Gaucher disease. J. Pathol. 2018;244:120–128. doi: 10.1002/path.4992.
    1. Taguchi Y.V., Liu J., Ruan J., Pacheco J., Zhang X., Abbasi J., Keutzer J., Mistry P.K., Chandra S.S. Glucosylsphingosine promotes alpha-synuclein pathology in mutant GBA-associated Parkinson’s disease. J. Neurosci. 2017;37:9617–9631. doi: 10.1523/JNEUROSCI.1525-17.2017.
    1. Vardi A., Zigdon H., Meshcheriakova A., Klein A.D., Yaacobi C., Eilam R., Kenwood B.M., Rahim A.A., Massaro G., Merrill A.H., Jr., et al. Delineating pathological pathways in a chemically induced mouse model of Gaucher disease. J. Pathol. 2016;239:496–509. doi: 10.1002/path.4751.
    1. Sun Y., Liou B., Ran H., Skelton M.R., Williams M.T., Vorhees C.V., Kitatani K., Hannun Y.A., Witte D.P., Xu Y.H., et al. Neuronopathic Gaucher disease in the mouse: Viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits. Hum. Mol. Genet. 2010;19:1088–1097. doi: 10.1093/hmg/ddp580.
    1. Sun Y., Zhang W., Xu Y.H., Quinn B., Dasgupta N., Liou B., Setchell K.D., Grabowski G.A. Substrate compositional variation with tissue/region and Gba1 mutations in mouse models-implications for Gaucher disease. PLoS ONE. 2013;8:e57560. doi: 10.1371/journal.pone.0057560.
    1. Bodennec J., Trajkovic-Bodennec S., Futerman A.H. Simultaneous quantification of lyso-neutral glycosphingolipids and neutral glycosphingolipids by N-acetylation with [3H] acetic anhydride. J. Lipid Res. 2003;44:1413–1419. doi: 10.1194/jlr.D300010-JLR200.
    1. Cabrera-Salazar M.A., Bercury S.D., Ziegler R.J., Marshall J., Hodges B.L., Chuang W.L., Pacheco J., Li L., Cheng S.H., Scheule R.K. Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease. Exp. Neurol. 2010;225:436–444. doi: 10.1016/j.expneurol.2010.07.023.
    1. Cabrera-Salazar M.A., Deriso M., Bercury S.D., Li L., Lydon J.T., Weber W., Pande N., Cromwell M.A., Copeland D., Leonard J., et al. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease. PLoS ONE. 2012;7:e43310. doi: 10.1371/journal.pone.0043310.
    1. Sun Y., Ran H., Liou B., Quinn B., Zamzow M., Zhang W., Bielawski J., Kitatani K., Setchell K.D., Hannun Y.A., et al. Isofagomine in vivo effects in a neuronopathic Gaucher disease mouse. PLoS ONE. 2011;6:e19037. doi: 10.1371/journal.pone.0019037.
    1. Sun Y., Liou B., Xu Y.H., Quinn B., Zhang W., Hamler R., Setchell K.D., Grabowski G.A. Ex vivo and in vivo effects of isofagomine on acid beta-glucosidase variants and substrate levels in Gaucher disease. J. Biol. Chem. 2012;287:4275–4287. doi: 10.1074/jbc.M111.280016.
    1. Raghavan S.S., Mumford R.A., Kanfer J.N. Isolation and characterization of glucosylsphingosine from Gaucher’s spleen. J. Lipid Res. 1974;15:484–490.
    1. Aflaki E., Stubblefield B.K., Maniwang E., Lopez G., Moaven N., Goldin E., Marugan J., Patnaik S., Dutra A., Southall N., et al. Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs. Sci. Transl. Med. 2014;6:240ra73. doi: 10.1126/scitranslmed.3008659.
    1. Aflaki E., Westbroek W., Sidransky E. The complicated relationship between Gaucher disease and Parkinsonism: Insights from a rare disease. Neuron. 2017;93:737–746. doi: 10.1016/j.neuron.2017.01.018.
    1. Igisu H., Hamasaki N., Ito A., Ou W. Inhibition of cytochrome c oxidase and hemolysis caused by lysosphingolipids. Lipids. 1988;23:345–348. doi: 10.1007/BF02537346.
    1. Nair S., Boddupalli C.S., Verma R., Liu J., Yang R., Pastores G.M., Mistry P.K., Dhodapkar M.V. Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation. Blood. 2015;125:1256–1271. doi: 10.1182/blood-2014-09-600270.
    1. Reed M.C., Schiffer C., Heales S., Mehta A.B., Hughes D.A. Impact of sphingolipids on osteoblast and osteoclast activity in Gaucher disease. Mol. Genet. Metab. 2018;124:278–286. doi: 10.1016/j.ymgme.2018.06.007.
    1. Sasagasako N., Kobayashi T., Yamaguchi Y., Shinnoh N., Goto I. Glucosylceramide and glucosylsphingosine metabolism in cultured fibroblasts deficient in acid beta-glucosidase activity. J. Biochem. 1994;115:113–119. doi: 10.1093/oxfordjournals.jbchem.a124284.
    1. Schueler U.H., Kolter T., Kaneski C.R., Blusztajn J.K., Herkenham M., Sandhoff K., Brady R.O. Toxicity of glucosylsphingosine (glucopsychosine) to cultured neuronal cells: A model system for assessing neuronal damage in Gaucher disease type 2 and 3. Neurobiol. Dis. 2003;14:595–601. doi: 10.1016/j.nbd.2003.08.016.
    1. Westbroek W., Nguyen M., Siebert M., Lindstrom T., Burnett R.A., Aflaki E., Jung O., Tamargo R., Rodriguez-Gil J.L., Acosta W., et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis. Model. Mech. 2016;9:769–778. doi: 10.1242/dmm.024588.
    1. Xu Y.H., Xu K., Sun Y., Liou B., Quinn B., Li R.H., Xue L., Zhang W., Setchell K.D., Witte D., et al. Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice. Hum. Mol. Genet. 2014;23:3943–3957. doi: 10.1093/hmg/ddu105.
    1. Sun Y., Florer J., Mayhew C.N., Jia Z., Zhao Z., Xu K., Ran H., Liou B., Zhang W., Setchell K.D., et al. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: Potential role in neuropathology. PLoS ONE. 2015;10:e0118771. doi: 10.1371/journal.pone.0118771.
    1. Giri S., Khan M., Rattan R., Singh I., Singh A.K. Krabbe disease: Psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death. J. Lipid Res. 2006;47:1478–1492. doi: 10.1194/jlr.M600084-JLR200.
    1. Hannun Y.A., Bell R.M. Lysosphingolipids inhibit protein kinase C: Implications for the sphingolipidoses. Science. 1987;235:670–674. doi: 10.1126/science.3101176.
    1. Im D.S., Heise C.E., Nguyen T., O’Dowd B.F., Lynch K.R. Identification of a molecular target of psychosine and its role in globoid cell formation. J. Cell Biol. 2001;153:429–434. doi: 10.1083/jcb.153.2.429.
    1. Taketomi T., Kawamura N., Hara A., Murakami S. Comparative studies on chemical, hemolytic and diffusion-in-gel precipitation properties of various lysosphingolipids. Biochim. Biophys. Acta. 1976;424:106–113.
    1. Aflaki E., Borger D.K., Moaven N., Stubblefield B.K., Rogers S.A., Patnaik S., Schoenen F.J., Westbroek W., Zheng W., Sullivan P., et al. A new glucocerebrosidase chaperone reduces alpha-synuclein and glycolipid levels in iPSC-derived dopaminergic neurons from patients with Gaucher disease and Parkinsonism. J. Neurosci. 2016;36:7441–7452. doi: 10.1523/JNEUROSCI.0636-16.2016.
    1. Ridley C.M., Thur K.E., Shanahan J., Thillaiappan N.B., Shen A., Uhl K., Walden C.M., Rahim A.A., Waddington S.N., Platt F.M., et al. beta-Glucosidase 2 (GBA2) activity and imino sugar pharmacology. J. Biol. Chem. 2013;288:26052–26066. doi: 10.1074/jbc.M113.463562.
    1. Kuo C.L., Kallemeijn W.W., Lelieveld L.T., Mirzaian M., Zoutendijk I., Vardi A., Futerman A.H., Meijer A.H., Spaink H.P., Overkleeft H.S., et al. In vivo inactivation of glycosidases by conduritol B epoxide and cyclophellitol as revealed by activity-based protein profiling. Febs. J. 2019;286:584–600. doi: 10.1111/febs.14744.
    1. Sun Y., Zhang W. Glycosphingolipid aspects of Gaucher disease lipidomics. Future Med. 2013 doi: 10.2217/ebo.12.206.
    1. Stirnemann J., Belmatoug N., Camou F., Serratrice C., Froissart R., Caillaud C., Levade T., Astudillo L., Serratrice J., Brassier A., et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and Treatments. Int. J. Mol. Sci. 2017;18:441. doi: 10.3390/ijms18020441.
    1. Nair S., Branagan A.R., Liu J., Boddupalli C.S., Mistry P.K., Dhodapkar M.V. Clonal immunoglobulin against lysolipids in the origin of myeloma. N. Engl. J. Med. 2016;374:555–561. doi: 10.1056/NEJMoa1508808.
    1. Cozma C., Iurascu M., Mascher H., Rolfs A. Quantification of glucosylsphingosine (luso-Gb1) for the diagnosis and monitoring of Gaucher disease. Mol. Genet. Metab. 2018;123:S35.
    1. Mao X.Y., Burgunder J.M., Zhang Z.J., An X.K., Zhang J.H., Yang Y., Li T., Wang Y.C., Chang X.L., Peng R. Association between GBA L444P mutation and sporadic Parkinson’s disease from Mainland China. Neurosci. Lett. 2010;469:256–259. doi: 10.1016/j.neulet.2009.12.007.
    1. de Fost M., Hollak C.E., Groener J.E., Aerts J.M., Maas M., Poll L.W., Wiersma M.G., Haussinger D., Brett S., Brill N., et al. Superior effects of high-dose enzyme replacement therapy in type 1 Gaucher disease on bone marrow involvement and chitotriosidase levels: A 2-center retrospective analysis. Blood. 2006;108:830–835. doi: 10.1182/blood-2005-12-5072.
    1. Luan Z., Li L., Higaki K., Nanba E., Suzuki Y., Ohno K. The chaperone activity and toxicity of ambroxol on Gaucher cells and normal mice. Brain Dev. 2013;35:317–322. doi: 10.1016/j.braindev.2012.05.008.
    1. Savostyanova K., Pushkova A., Mura’vovaa L., Movsisyana G., Rykunovaa A., Ponomarevb R., Lukinab K., Lukinab E., Namazova-Baranovaa L. Glucosylfingosine (lyso-GL1) may be the primary biomarker for screening Gaucher disease in Russian patients [Abstract number 318] Mol. Genet. Metab. 2019;126:S130.
    1. Saville J.T., McDermott B.K., Chin S.J., Fletcher J.M., Fuller M. Expanding the clinical utility of glucosylsphingosine for Gaucher disease. J. Inherit. Metab. Dis. 2020;43:558–563. doi: 10.1002/jimd.12192.
    1. Polo G., Burlina A.P., Ranieri E., Colucci F., Rubert L., Pascarella A., Duro G., Tummolo A., Padoan A., Plebani M., et al. Plasma and dried blood spot lysosphingolipids for the diagnosis of different sphingolipidoses: A comparative study. Clin. Chem. Lab. Med. 2019;57:1863–1874. doi: 10.1515/cclm-2018-1301.
    1. Burlina A., Polo G., Rubert L., Gueraldi D., Cazzorla C., Duro G., Salviati L., Burlina A. Implementation of Second-Tier Tests in Newborn Screening for Lysosomal Disorders in North Eastern Italy. Int. J. Neonatal. Screen. 2019;5:24. doi: 10.3390/ijns5020024.
    1. Bender F., Burin M.G., Tirelli K.M., Medeiros F., Bitencourt F.H., Civallero G., Kubaski F., Bravo H., Daher A., Carnier V., et al. Newborn screening for lysosomal disorders in Brazil: A pilot study using customized fluorimetric assays. Genet. Mol. Biol. 2020;43:e20180334. doi: 10.1590/1678-4685-gmb-2018-0334.
    1. Cullufi P., Tabaku M., Beetz C., Tomori S., Velmishi V., Gjikopulli A., Bauer P., Wirth S., Rolfs A. Comprehensive clinical, biochemical and genetic screening reveals four distinct GBA genotypes as underlying variable manifestation of Gaucher disease in a single family. Mol. Genet. Metab. Rep. 2019;21:100532. doi: 10.1016/j.ymgmr.2019.100532.
    1. Peterschmitt M.J., Foster M.C., Zhang K., Ji A., Cox G. Correlations between glucosylsphingosine (lyso-GL-1) and baseline disease severity as well as response to treatment in two clinical trials of eliglustat in treatment-naïve adults with type 1 Gaucher disease (abstract number 281) Mol. Genet. Metab. 2019;126:S117. doi: 10.1016/j.ymgme.2018.12.297.
    1. Dao J., Goker-Alpan O., Limgala R. Evaluation of disease burden and therapy modifications using glucosylsphingosine (lyso-GL1) in Gaucher disease (abstract number 81) Mol. Genet. Metab. 2019;126:S45. doi: 10.1016/j.ymgme.2018.12.097.
    1. Dinur T., Zimran A., Becker-Cohen M., Arkadir D., Cozma C., Hovakimyan M., Oppermann S., Demuth L., Rolfs A., Revel-Vilk S. Long term follow-up of 103 untreated adult patients with type 1 Gaucher disease. J. Clin. Med. 2019;8:1662. doi: 10.3390/jcm8101662.
    1. Hurvitz N., Dinur T., Becker-Cohen M., Cozma C., Hovakimyan M., Oppermann S., Demuth L., Rolfs A., Abramov A., Zimran A., et al. Glucosylsphingosine (lyso-Gb1) as a biomarker for monitoring treated and untreated children with Gaucher disease. Int. J. Mol. Sci. 2019;20:3033. doi: 10.3390/ijms20123033.
    1. Cozma C., Cullufi P., Kramp G., Hovakimyan M., Velmishi V., Gjikopulli A., Tomori S., Fischer S., Oppermann S., Grittner U., et al. Treatment Efficiency in Gaucher Patients Can Reliably Be Monitored by Quantification of Lyso-Gb1 Concentrations in Dried Blood Spots. Int. J. Mol. Sci. 2020;21:4577. doi: 10.3390/ijms21134577.
    1. Jones M.G., Blake D., Heidelberger S.M., Turner C., Dalton R.N., Cregeen D., Jackson M. Plasma lysosphingolipid analysis by LC-DMS-MS/MS: Rapid sample preparation and resolution of stereoisomers (Abstract P-451) J. Inherit. Metab. Dis. 2019;42
    1. Smith S.E., Longua M., DiPerna J. Quantitative measurement of glucosylsphingosine (lysoGb1) and galactosylsphingosine (psychosine) from dried blood spots; Presented at the 15th Annual WORLD Symposium; Orlando, FL, USA. 4–8 February 2019.
    1. Zakaria R., Allen K.J., Koplin J.J., Roche P., Greaves R.F. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process. EJIFCC. 2016;27:288–317.
    1. de Vries R., Barfield M., van de Merbel N., Schmid B., Siethoff C., Ortiz J., Verheij E., van Baar B., Cobb Z., White S., et al. The effect of hematocrit on bioanalysis of DBS: Results from the EBF DBS-microsampling consortium. Bioanalysis. 2013;5:2147–2160. doi: 10.4155/bio.13.170.
    1. Moher D., Shamseer L., Clarke M., Ghersi D., Liberati A., Petticrew M., Shekelle P., Stewart L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015;4:1. doi: 10.1186/2046-4053-4-1.
    1. National Institute for Health and Care Excellence, NICE Technology Appraisal Guidance. [(accessed on 22 July 2019)];2018 Available online: .
    1. Wells G.A., Shea B., O’Connell D., Peterson J., Welch V., Losos M., Tugwell P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality If Nonrandomized Studies in Meta-Analyses. [(accessed on 20 November 2019)];2012 Available online: .
    1. Hooijmans C.R., Rovers M.M., de Vries R.B., Leenaars M., Ritskes-Hoitinga M., Langendam M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014;14:43. doi: 10.1186/1471-2288-14-43.

Source: PubMed

3
구독하다