[68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer

Ute Hennrich, Matthias Eder, Ute Hennrich, Matthias Eder

Abstract

For the positron emission tomography (PET) imaging of prostate cancer, radiotracers targeting the prostate-specific membrane antigen (PSMA) are nowadays used in clinical practice. Almost 10 years after its discovery, [68Ga]Ga-PSMA-11 has been approved in the United States by the Food and Drug Administration (FDA) as the first 68Ga-radiopharmaceutical for the PET imaging of PSMA-positive prostate cancer in 2020. This radiopharmaceutical combines the peptidomimetic Glu-NH-CO-NH-Lys(Ahx)-HBED-CC with the radionuclide 68Ga, enabling specific imaging of tumor cells expressing PSMA. Such a targeting approach may also be used for therapy planning as well as potentially for the evaluation of treatment response.

Keywords: PSMA; [68Ga]Ga-PSMA-11; positron emission tomography (PET); prostate cancer; theranostics.

Conflict of interest statement

M.E. holds patent rights on PSMA inhibitors.

Figures

Figure 1
Figure 1
The pharmacokinetic and binding properties of 68Ga-labeled PSMA targeting urea-based inhibitors are clearly affected by the exact composition of the linker and the presence of aromatic moieties. In case the linker is entirely aliphatic (PSMA-Ahx-DOTA), the affinity and internalization are low or lost, respectively, and the tracer is mainly localized in the liver without any detectable signal in the tumor. By introducing aromatic moieties in the linker region as represented by PSMA-(AMBA)2-DOTA, the compound exhibits better affinity and starts to show significant internalization of the tracer in the tumor cell, resulting in a visible tumor uptake and a changed PK profile. One of the unique characteristics of PSMA-11 is that the chelator HBED-CC takes over these functional requirements by its aromatic moieties and, therefore, interacts well with the binding pocket, resulting in a promising in vivo performance of the entire molecule. Data were obtained from previously published studies using LNCaP cells for the determination of affinity and internalization and LNCaP-tumor-bearing BALB/c nu/nu mice for PET imaging [13,14].
Figure 2
Figure 2
Chemical structure of [68Ga]Ga-PSMA-11.

References

    1. FDA Letter of Approval for [68Ga]Ga-PSMA-11. [(accessed on 31 May 2021)]; Available online: .
    1. Minner S., Wittmer C., Graefen M., Salomon G., Steuber T., Haese A., Huland H., Bokemeyer C., Yekebas E., Dierlamm J. High level PSMA expression is associated with early PSA recurrence in surgically treated prostate cancer. Prostate. 2011;71:281–288. doi: 10.1002/pros.21241.
    1. Ross J.S., Sheehan C.E., Fisher H.A.G., Kaufman R.P., Jr., Kaur P., Gray K., Webb I., Gray G.S., Mosher R., Kallakury B.V.S. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin. Cancer Res. 2003;9:6357–6362.
    1. Perner S., Hofer M.D., Kim R., Shah R.B., Li H., Möller P., Hautmann R.E., Gschwend J.E., Kuefer R., Rubin M.A. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum. Pathol. 2007;38:696–701. doi: 10.1016/j.humpath.2006.11.012.
    1. Tomlins S.A., Mehra R., Rhodes D.R., Cao X., Wang L., Dhanasekaran S.M., Kalyana-Sundaram S., Wei J.T., Rubin M.A., Pienta K.J. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 2007;39:41–51. doi: 10.1038/ng1935.
    1. Pomper M.G., Musachio J.L., Zhang J., Scheffel U., Zhou Y., Hilton J., Maini A., Dannals R.F., Wong D.F., Kozikowski A.P. 11C-MCG: Synthesis, uptake selectivity, and primate PET of a probe for glutamate carboxypeptidase II (NAALADase) Mol. Imaging. 2002;1:96–101. doi: 10.1162/153535002320162750.
    1. Foss C.A., Mease R.C., Fan H., Wang Y., Ravert H.T., Dannals R.F., Olszewski R.T., Heston W.D., Kozikowski A.P., Pomper M.G. Radiolabeled small-molecule ligands for prostate-specific membrane antigen: In Vivo imaging in experimental models of prostate cancer. Clin. Cancer Res. 2005;11:4022–4028. doi: 10.1158/1078-0432.CCR-04-2690.
    1. Pandit-Taskar N., O’Donoghue J.A., Durack J.C., Lyashchenko S.K., Cheal S.M., Beylergil V., Lefkowitz R.A., Carrasquillo J.A., Martinez D.F., Fung A.M., et al. A Phase I/II Study for Analytic Validation of 89Zr-J591 ImmunoPET as a Molecular Imaging Agent for Metastatic Prostate Cancer. Clin. Cancer Res. 2015;21:5277–5285. doi: 10.1158/1078-0432.CCR-15-0552.
    1. Mease R.C., Dusich C.L., Foss C.A., Ravert H.T., Dannals R.F., Seidel J., Prideaux A., Fox J.J., Sgouros G., Kozikowski A.P., et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: A new imaging probe for prostate cancer. Clin. Cancer Res. 2008;14:3036–3043. doi: 10.1158/1078-0432.CCR-07-1517.
    1. Chen Y., Pullambhatla M., Foss C.A., Byun Y., Nimmagadda S., Senthamizhchelvan S., Sgouros G., Mease R.C., Pomper M.G. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET Imaging Agent for Prostate Cancer. Clin. Cancer Res. 2011;17:7645–7653. doi: 10.1158/1078-0432.CCR-11-1357.
    1. Giesel F.L., Kesch C., Yun M., Cardinale J., Haberkorn U., Kopka K., Kratochwil C., Hadaschik B.A. 18F-PSMA-1007 PET/CT Detects Micrometastases in a Patient with Biochemically Recurrent Prostate Cancer. Clin. Genitourin Cancer. 2017;15:e497–e499. doi: 10.1016/j.clgc.2016.12.029.
    1. Cardinale J., Schäfer M., Benešová M., Bauder-Wüst U., Leotta K., Eder M., Neels O.C., Haberkorn U., Giesel F.L., Kopka K. Preclinical evaluation of 18F-PSMA-1007: A new PSMA ligand for prostate cancer imaging. J. Nucl. Med. 2017;58:425–431. doi: 10.2967/jnumed.116.181768.
    1. Eder M., Schäfer M., Bauder-Wüst U., Hull W.-E., Wängler C., Mier W., Haberkorn U., Eisenhut M. 68Ga-Complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconj. Chem. 2012;23:688–697. doi: 10.1021/bc200279b.
    1. Benešová M., Bauder-Wüst U., Schäfer M., Klika K.D., Mier W., Haberkorn U., Kopka K., Eder M. Linker Modification Strategies to Control the Prostate-Specific Membrane Antigen (PSMA)-Targeting and Pharmacokinetic Properties of DOTA-Conjugated PSMA Inhibitors. J. Med. Chem. 2016;59:1761–1775. doi: 10.1021/acs.jmedchem.5b01210.
    1. Afshar-Oromieh A., Haberkorn U., Eder M., Eisenhut M., Zechmann C.M. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: Comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:1085–1086. doi: 10.1007/s00259-012-2069-0.
    1. Kratochwil C., Giesel F.L., Stefanova M., Benešová M., Bronzel M., Afshar-Oromieh A., Mier W., Eder M., Kopka K., Haberkorn U. PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with 177Lu-Labeled PSMA-617. J. Nucl. Med. 2016;57:1170–1176. doi: 10.2967/jnumed.115.171397.
    1. Fendler W.P., Schmidt D.F., Wenter V., Thierfelder K.M., Zach C., Stief C., Bartenstein P., Kirchner T., Gildehaus F.J., Gratzke C., et al. 68Ga-PSMA PET/CT Detects the Location and Extent of Primary Prostate Cancer. J. Nucl. Med. 2016;57:1720–1725. doi: 10.2967/jnumed.116.172627.
    1. Sterzing F., Kratochwil C., Fiedler H., Katayama S., Habl G., Kopka K., Afshar-Oromieh A., Debus J., Haberkorn U., Giesel F.L. (68)Ga-PSMA-11 PET/CT: A new technique with high potential for the radiotherapeutic management of prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:34–41. doi: 10.1007/s00259-015-3188-1.
    1. Zamboglou C., Eiber M., Fassbender T.R., Eder M., Kirste S., Bock M., Schilling O., Reichel K., van der Heide U.A., Grosu A.L. Multimodal imaging for radiation therapy planning in patients with primary prostate cancer. Phys. Imaging Radiat. Oncol. 2018;8:8–16. doi: 10.1016/j.phro.2018.10.001.
    1. Zamboglou C., Sachpazidis I., Koubar K., Drendel V., Wiehle R., Kirste S., Mix M., Schiller F., Mavroidis P., Meyer P.T., et al. Evaluation of intensity modulated radiation therapy dose painting for localized prostate cancer using (68)Ga-HBED-CC PSMA-PET/CT: A planning study based on histopathology reference. Radiother. Oncol. 2017;123:472–477. doi: 10.1016/j.radonc.2017.04.021.
    1. Zamboglou C., Drendel V., Jilg C.A., Rischke H.C., Beck T.I., Schultze-Seemann W., Krauss T., Mix M., Schiller F., Wetterauer U., et al. Comparison of (68)Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology. Theranostics. 2017;7:228–237. doi: 10.7150/thno.16638.
    1. Afshar-Oromieh A., Zechmann C.M., Malcher A., Eder M., Eisenhut M., Linhart H.G., Holland-Letz T., Hadaschik B.A., Giesel F.L., Debus J., et al. Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:11–20. doi: 10.1007/s00259-013-2525-5.
    1. Schwenck J., Rempp H., Reischl G., Kruck S., Stenzl A., Nikolaou K., Pfannenberg C., la Fougère C. Comparison of 68Ga-labelled PSMA-11 and 11C-choline in the detection of prostate cancer metastases by PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:92–101. doi: 10.1007/s00259-016-3490-6.
    1. Afshar-Oromieh A., Livorsi da Cunha M., Wagner J., Haberkorn U., Debus N., Weber W., Eiber M., Holland-Letz T., Rauscher I. Performance of [68Ga]Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer after prostatectomy—a multicentre evaluation of 2533 patients. Eur. J. Nucl. Med. Mol. Imaging. 2021:1–10. doi: 10.1007/s00259-021-05189-3.
    1. Farolfi A., Gafita A., Calais J., Eiber M., Afshar-Oromieh A., Spohn F., Barbato F., Weber M., Ilhan M., Cervati V., et al. (68)Ga-PSMA-11 Positron Emission Tomography Detects Residual Prostate Cancer after Prostatectomy in a Multicenter Retrospective Study. J. Urol. 2019;202:1174–1181. doi: 10.1097/JU.0000000000000417.
    1. Afshar-Oromieh A., Holland-Letz T., Giesel F.L., Kratochwil C., Mier W., Haufe S., Debus N., Eder M., Eisenhut M., Schäfer M., et al. Diagnostic performance of 68Ga-PSMA-11 (HBED-CC) PET/CT in patients with recurrent prostate cancer: Evaluation in 1007 patients. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1258–1268. doi: 10.1007/s00259-017-3711-7.
    1. Fendler W.P., Ferdinandus J., Czernin J., Eiber M., Flavell R.R., Behr S.C., Wu I.K., Lawhn-Heath C., Pampaloni M.H., Reiter R.E., et al. Impact of (68)Ga-PSMA-11 PET on the Management of Recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial. J. Nucl. Med. 2020;61:1793–1799. doi: 10.2967/jnumed.120.242180.
    1. Sonni I., Eiber M., Fendler W.P., Alano R.M., Vangala S.S., Kishan A.U., Nickols N., Rettig M.B., Reiter R.E., Czernin J., et al. Impact of (68)Ga-PSMA-11 PET/CT on Staging and Management of Prostate Cancer Patients in Various Clinical Settings: A Prospective Single-Center Study. J. Nucl. Med. 2020;61:1153–1160. doi: 10.2967/jnumed.119.237602.
    1. Eiber M., Herrmann K., Calais J., Hadaschik B., Giesel F.L., Hartenbach M., Hope T., Reiter R., Maurer T., Weber W.A., et al. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand PET/CT. J. Nucl. Med. 2018;59:469–478. doi: 10.2967/jnumed.117.198119.
    1. Fendler W.P., Eiber M., Beheshti M., Bomanji J., Ceci F., Cho S., Giesel F., Haberkorn U., Hope T.A., Kopka K., et al. (68)Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging. 2017;44:1014–1024. doi: 10.1007/s00259-017-3670-z.
    1. Carlucci G., Ippisch R., Slavik R., Mishoe A., Blecha J., Zhu S. 68Ga-PSMA-11 NDA Approval: A Novel and Successful. Acad. Partnersh. J. Nucl. Med. 2021;62:149–155. doi: 10.2967/jnumed.120.260455.
    1. Schuhmacher J., Klivényi G., Hull W.E., Matys R., Hauser H., Kalthoff H., Schmiegel W.H., Maier-Borst W., Matzku S. A bifunctional HBED-derivative for labeling of antibodies with 67Ga, 111In and 59Fe. Comparative biodistribution with 111In-DPTA and 131I-labeled antibodies in mice bearing antibody internalizing and non-internalizing tumors. Int. J. Rad. Appl. Instrum. B. 1992;19:809–824. doi: 10.1016/0883-2897(92)90167-W.
    1. Eder M., Neels O., Müller M., Bauder-Wüst U., Remde Y., Schäfer M., Hennrich U., Eisenhut M., Afshar-Oromieh A., Haberkorn U., et al. Novel Preclinical and Radiopharmaceutical Aspects of [68Ga]Ga-PSMA-HBED-CC: A New PET Tracer for Imaging of Prostate Cancer. Pharmaceuticals. 2014;7:779–796. doi: 10.3390/ph7070779.
    1. Decay Characteristics of 68Ga. [(accessed on 20 May 2021)]; Available online: .
    1. Sanchez-Crespo A. Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl. Rad. Isot. 2013;76:55–62. doi: 10.1016/j.apradiso.2012.06.034.
    1. Brandt M., Cardinale J., Aulsebrook M.L., Gasser G., Mindt T.L. An Overview of PET Radiochemistry, Part 2: Radiometals. J. Nucl. Med. 2018;59:1500–1506. doi: 10.2967/jnumed.117.190801.
    1. Gallium-68 Cyclotron Production IAEA-TECDOC-1863. [(accessed on 20 May 2021)]; Available online: .
    1. Kumar K. The Current Status of the Production and Supply of Gallium-68. Cancer Biother. Radiopharm. 2020;35:163–165. doi: 10.1089/cbr.2019.3301.
    1. Rodnick M.E., Sollert C., Stark D., Clark M., Katsifis A., Hockley B.G., Parr D.C., Frigell J., Henderson B.D., Abghari-Gerst M., et al. Cyclotron-based production of 68Ga, [68Ga]GaCl3, and [68Ga]Ga-PSMA-11 from a liquid target. EJNMMI Radiopharm. Chem. 2020;5:25. doi: 10.1186/s41181-020-00106-9.
    1. Thisgaard H., Kumlin J., Langkjær N., Chua J., Hook B., Jensen M., Kassaian A., Zeisler S., Borjian S., Cross M., et al. Multi-curie production of gallium-68 on a biomedical cyclotron and automated radiolabelling of PSMA-11 and DOTATATE. EJNMMI Radiopharm. Chem. 2021;6 doi: 10.1186/s41181-020-00114-9.
    1. European Pharmacopeia, Monograph Gallium (68Ga) Chloride Solution for Radiolabelling (01/2021:3109). European Pharmacopeia, 10th Edition. [(accessed on 15 July 2021)];2020 Available online: .
    1. TLX591-CDX. [(accessed on 4 May 2021)]; Available online:
    1. isoPROtrace-11. [(accessed on 4 May 2021)]; Available online:
    1. Calderoni L., Farolfi A., Pianori D., Maietti E., Cabitza V., Lambertini A., Ricci G., Telo S., Lodi F., Castellucci P., et al. Evaluation of an Automated Module Synthesis and a Sterile Cold Kit–Based Preparation of 68Ga-PSMA-11 in Patients with Prostate Cancer. J. Nucl. Med. 2020;61:716–722. doi: 10.2967/jnumed.119.231605.
    1. Satpati D. Recent Breakthrough in 68Ga-Radiopharmaceuticals Cold Kits for Convenient PET Radiopharmacy. Bioconj. Chem. 2021;32:430–447. doi: 10.1021/acs.bioconjchem.1c00010.
    1. Kurash M.M., Gill R., Khairulin M., Harbosh H., Keidar Z. 68Ga-labeled PSMA-11 (68Ga-isoPROtrace-11) synthesized with ready to use kit: Normal biodistribution and uptake characteristics of tumour lesions. Nat. Res. 2020;10:3109. doi: 10.1038/s41598-020-60099-y.
    1. European Pharmacopeia Monograph “Gallium 68 PSMA-11 Injection Solution” (04/2021:3044). European Pharmacopeia, 10th Edition. [(accessed on 28 May 2021)];2020 Available online: .
    1. Label for “Gallium Ga 68 PSMA-11 Injection”. [(accessed on 16 March 2021)]; Available online: .
    1. Afshar-Oromieh A., Malcher A., Eder M., Eisenhut M., Linhart H.G., Hadaschik B.A., Holland-Letz T., Giesel F.L., Kratochwil C., Haufe S., et al. PET imaging with a [(68)Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: Biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging. 2013;40:486–495. doi: 10.1007/s00259-012-2298-2.
    1. Tönnesmann R., Meyer P.T., Eder M., Baranski A.-C. [(177)Lu]Lu-PSMA-617 Salivary Gland Uptake Characterized by Quantitative In Vitro Autoradiography. Pharmaceuticals. 2019;12:18. doi: 10.3390/ph12010018.
    1. Rupp N.J., Umbricht C.A., Pizzuto D.A., Lenggenhager D., Töpfer A., Müller J., Muehlematter U.J., Ferraro D.A., Messerli M., Morand G.B., et al. First Clinicopathologic Evidence of a Non-PSMA-Related Uptake Mechanism for (68)Ga-PSMA-11 in Salivary Glands. J. Nucl. Med. 2019;60:1270–1276. doi: 10.2967/jnumed.118.222307.
    1. Kratochwil C., Bruchertseifer F., Rathke H., Bronzel M., Apostolidis C., Weichert W., Haberkorn U., Giesel F.L., Morgenstern A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017;58:1624–1631. doi: 10.2967/jnumed.117.191395.
    1. Afshar-Oromieh A., Hetzheim H., Kübler W., Kratochwil C., Giesel F.L., Hope T.A., Eder M., Eisenhut M., Kopka K., Haberkorn U. Radiation dosimetry of 68Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur. J. Nucl. Med. Mol. Imaging. 2016;43:1611–1620. doi: 10.1007/s00259-016-3419-0.
    1. Hofman M.S., Lawrentschuk N., Francis R.J., Tang C., Vela I., Thomas P., Rutherford N., Martin J.M., Frydenberg M., Shakher R., et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet. 2020;395:1208–1216. doi: 10.1016/S0140-6736(20)30314-7.
    1. Eder A.-C., Omrane M.A., Stadlbauer S., Roscher M., Khoder W.Y., Gratzke C., Kopka K., Eder M., Meyer P.T., Jilg C.A., et al. The PSMA-11-derived hybrid molecule PSMA-914 specifically identifies prostate cancer by preoperative PET/CT and intraoperative fluorescence imaging. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:2057–2058. doi: 10.1007/s00259-020-05184-0.
    1. Eiber M., Weirich G., Holzapfel K., Souvatzoglou M., Haller B., Rauscher I., Beer A.J., Wester H.-J., Gschwend J., Schwaiger M., et al. Simultaneous 68Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. Eur. Urol. 2016;70:829–836. doi: 10.1016/j.eururo.2015.12.053.
    1. Gorin M.A., Rowe S.P., Patel H.D., Vidal I., Mana-Ay M., Javadi M.S., Solnes L.B., Ross A.E., Schaeffer E.M., Bivalacqua T.J., et al. Prostate Specific Membrane Antigen Targeted (18)F-DCFPyL Positron Emission Tomography/Computerized Tomography for the Preoperative Staging of High Risk Prostate Cancer: Results of a Prospective, Phase II, Single Center Study. J. Urol. 2018;199:126–132. doi: 10.1016/j.juro.2017.07.070.
    1. Ferreira G., Iravani A., Hofman M.S., Hicks R.J. Intra-individual comparison of (68)Ga-PSMA-11 and (18)F-DCFPyL normal-organ biodistribution. Cancer Imaging. 2019;19:23. doi: 10.1186/s40644-019-0211-y.
    1. Rahbar K., Afshar-Oromieh A., Bögemann M., Wagner S., Schäfers M., Stegger L., Weckesser M. (18)F-PSMA-1007 PET/CT at 60 and 120 min in patients with prostate cancer: Biodistribution, tumour detection and activity kinetics. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1329–1334. doi: 10.1007/s00259-018-3989-0.
    1. Kesch C., Vinsensia M., Radtke J.P., Schlemmer H.P., Heller M., Ellert E., Holland-Letz T., Duensing S., Grabe N., Afshar-Oromieh A. Intraindividual Comparison of 18F-PSMA-1007 PET/CT, Multiparametric MRI, and Radical Prostatectomy Specimens in Patients with Primary Prostate Cancer: A Retrospective, Proof-of-Concept Study. J. Nucl. Med. 2017;58:1805–1810. doi: 10.2967/jnumed.116.189233.

Source: PubMed

3
구독하다