Gut Microbiome and Neurodevelopmental Disorders: A Link Yet to Be Disclosed

Zoi Iliodromiti, Anastasia-Rafaella Triantafyllou, Marina Tsaousi, Abraham Pouliakis, Chrysa Petropoulou, Rozeta Sokou, Paraskevi Volaki, Theodora Boutsikou, Nicoletta Iacovidou, Zoi Iliodromiti, Anastasia-Rafaella Triantafyllou, Marina Tsaousi, Abraham Pouliakis, Chrysa Petropoulou, Rozeta Sokou, Paraskevi Volaki, Theodora Boutsikou, Nicoletta Iacovidou

Abstract

Τhe importance of the gut microbiome and its functions has only recently been recognized and researched in greater depth. The establishment of the human gut microbiome begins in utero, forming its adult-like phenotype in the first 2-3 years of life. Several factors affect and alter the gut microbiome composition and its metabolic functions, such as early onset of breastfeeding, mode of delivery, antibiotic administration, or exposure to chemical substances, among others. Existing data support the important connection between health status and gut microbiome homeostasis. In cases when this balance is disturbed, several disorders may arise, such as inflammatory reactions that lead to atopy, eczema, or allergic asthma. The so-called gut-brain axis refers to the complex biochemical pathways between the central nervous system and the gastrointestinal system. One of the most fascinating areas of ongoing research is the broad spectrum of neurodevelopmental disorders (NDDs) and how gut health may be associated with such disorders. The prevalence of NDDs, such as autism spectrum disorder or attention deficit hyperactivity disorder, has increased over recent years. Whether gut microbiota homeostasis plays a role in these disorders is not yet fully understood. The aim of this narrative review is to provide an account of current knowledge on how gut health is linked with these disorders. We performed a literature review in order to identify and synthesize available data that highlights the potential association between NDDs and a balanced gut microbiome in terms of composition and proper function. The connection between the gut microbiome and NDDs offers promising new opportunities for future research.

Keywords: breastfeeding; children’s health; gut microbiome; neonates; neurodevelopmental disorders.

Conflict of interest statement

The authors declare no conflict of interest, financial or otherwise. We confirm that neither the manuscript nor any parts of its content are currently under consideration or published in another journal.

Figures

Figure 1
Figure 1
Factors that affect gut microbiota establishment.
Figure 2
Figure 2
Interactions between gut microbiota and neurodevelopmental disorders.

References

    1. Health and Well-Being. [(accessed on 16 December 2022)]. Available online: .
    1. Robertson R.C., Manges A.R., Finlay B.B., Prendergast A.J. The Human Microbiome and Child Growth–First 1000 Days and Beyond. Trends Microbiol. 2019;27:131–147. doi: 10.1016/j.tim.2018.09.008.
    1. Enquobahrie D.A., Tekola-Ayele F., Mersha T.B. Editorial: Genetic and Epigenetic Insights Into the Developmental Origins of Health and Disease. Front. Genet. 2022;12:814126. doi: 10.3389/fgene.2021.814126.
    1. Ardissone A.N., de la Cruz D.M., Davis-Richardson A.G., Rechcigl K.T., Li N., Drew J.C., Murgas-Torrazza R., Sharma R., Hudak M.L., Triplett E.W., et al. Meconium microbiome analysis identifies bacteria correlated with premature birth. PLoS ONE. 2014;9:e90784. doi: 10.1371/journal.pone.0090784.
    1. Dimitroglou M., Iliodromiti Z., Christou E., Volaki P., Petropoulou C., Sokou R., Boutsikou T., Iacovidou N. Human Breast Milk: The Key Role in the Maturation of Immune, Gastrointestinal and Central Nervous Systems: A Narrative Review. Diagnostics. 2022;2:2208. doi: 10.3390/diagnostics12092208.
    1. Dominguez-Bello M.G., Costello E.K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA. 2010;107:11971–11975. doi: 10.1073/pnas.1002601107.
    1. Association A.P. Neurodevelopmental Disorders: DSM-5® Selections. American Psychiatric Pub; Washington, DC, USA: 2015. p. 198.
    1. Iglesias-Vázquez L., Van Ginkel Riba G., Arija V., Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients. 2020;12:792. doi: 10.3390/nu12030792.
    1. Vos WM de Tilg H., Hul M.V., Cani P.D. Gut microbiome and health: Mechanistic insights. Gut. 2022;71:1020–1032. doi: 10.1136/gutjnl-2021-326789.
    1. Sekirov I., Russell S.L., Antunes L.C.M., Finlay B.B. Gut microbiota in health and disease. Physiol. Rev. 2010;90:859–904. doi: 10.1152/physrev.00045.2009.
    1. Ferreira C.M., Vieira A.T., Vinolo M.A.R., Oliveira F.A., Curi R., Martins F., Dos S. The Central Role of the Gut Microbiota in Chronic Inflammatory Diseases. J. Immunol. Res. 2014;2014:689492. doi: 10.1155/2014/689492.
    1. The Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234.
    1. Jandhyala S.M., Talukdar R., Subramanyam C., Vuyyuru H., Sasikala M., Reddy D.N. Role of the normal gut microbiota. World J. Gastroenterol. 2015;21:8787–8803. doi: 10.3748/wjg.v21.i29.8787.
    1. Salvucci E. Microbiome, holobiont and the net of life. Crit. Rev. Microbiol. 2016;42:485–494. doi: 10.3109/1040841X.2014.962478.
    1. Foster J.A., McVey Neufeld K.A. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–312. doi: 10.1016/j.tins.2013.01.005.
    1. DiGiulio D.B., Gervasi M., Romero R., Vaisbuch E., Mazaki-Tovi S., Kusanovic J.P., Seok K.S., Gómez R., Mittal P., Gotsch F., et al. Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J. Perinat. Med. 2010;38:495–502. doi: 10.1515/jpm.2010.076.
    1. Jiménez E., Fernández L., Marín M.L., Martín R., Odriozola J.M., Nueno-Palop C., Narbad A., Olivares M., Xaus J., Rodríguez J.M. Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr. Microbiol. 2005;51:270–274. doi: 10.1007/s00284-005-0020-3.
    1. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The Placenta Harbors a Unique Microbiome. Sci. Transl. Med. 2014;6:237ra65. doi: 10.1126/scitranslmed.3008599.
    1. Mueller N.T., Bakacs E., Combellick J., Grigoryan Z., Dominguez-Bello M.G. The infant microbiome development: Mom matters. Trends Mol. Med. 2015;21:109–117. doi: 10.1016/j.molmed.2014.12.002.
    1. Penders J., Thijs C., Vink C., Stelma F.F., Snijders B., Kummeling I., van den Brandt P.A., Stobberingh E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–521. doi: 10.1542/peds.2005-2824.
    1. Biasucci G., Rubini M., Riboni S., Morelli L., Bessi E., Retetangos C. Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 2010;86((Suppl. S1)):13–15. doi: 10.1016/j.earlhumdev.2010.01.004.
    1. Rodrigues I.M., Costa T.L., Avelar J.B., Amaral W.N., Castro A.M., Avelino M.M. Assessment of laboratory methods used in the diagnosis of congenital toxoplasmosis after maternal treatment with spiramycin in pregnancy. BMC Infect. Dis. 2014;14:349. doi: 10.1186/1471-2334-14-349.
    1. Makino H., Kushiro A., Ishikawa E., Muylaert D., Kubota H., Sakai T., Oishi K., Martin R., Ben Amor K., Oozeer R., et al. Transmission of Intestinal Bifidobacterium longum subsp. longum Strains from Mother to Infant, Determined by Multilocus Sequencing Typing and Amplified Fragment Length Polymorphism. Appl. Environ. Microbiol. 2011;77:6788–6793. doi: 10.1128/AEM.05346-11.
    1. Milani C., Duranti S., Bottacini F., Casey E., Turroni F., Mahony J., Belzer C., Delgado Palacio S., Arboleya Montes S., Mancabelli L., et al. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota. Microbiol. Mol. Biol. Rev. 2017;81:e00036-17. doi: 10.1128/MMBR.00036-17.
    1. Hill C.J., Lynch D.B., Murphy K., Ulaszewska M., Jeffery I.B., O’Shea C.A., Watkins C., Dempsey E., Mattivi F., Tuohy K., et al. Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort. Microbiome. 2017;5:4. doi: 10.1186/s40168-016-0213-y.
    1. Rougé C., Goldenberg O., Ferraris L., Berger B., Rochat F., Legrand A., Göbel U.B., Vodovar M., Voyer M., Rozé J.C., et al. Investigation of the intestinal microbiota in preterm infants using different methods. Anaerobe. 2010;16:362–370. doi: 10.1016/j.anaerobe.2010.06.002.
    1. Aujoulat F., Roudière L., Picaud J.C., Jacquot A., Filleron A., Neveu D., Baum T.-P., Marchandin H., Jumas-Bilak E. Temporal dynamics of the very premature infant gut dominant microbiota. BMC Microbiol. 2014;14:325. doi: 10.1186/s12866-014-0325-0.
    1. Groer M.W., Gregory K.E., Louis-Jacques A., Thibeau S., Walker W.A. The very low birth weight infant microbiome and childhood health. Birth Defects Res. C Embryo Today. 2015;105:252–264. doi: 10.1002/bdrc.21115.
    1. Cernada M., Bäuerl C., Serna E., Collado M.C., Martínez G.P., Vento M. Sepsis in preterm infants causes alterations in mucosal gene expression and microbiota profiles compared to non-septic twins. Sci. Rep. 2016;6:25497. doi: 10.1038/srep25497.
    1. Madan J.C., Salari R.C., Saxena D., Davidson L., O’Toole G.A., Moore J.H., Sogin M.L., Foster J.A., Edwards W.H., Palumbo P., et al. Gut microbial colonisation in premature neonates predicts neonatal sepsis. Arch. Dis. Child.-Fetal Neonatal Ed. 2012;97:F456–F462. doi: 10.1136/fetalneonatal-2011-301373.
    1. Arboleya S., Binetti A., Salazar N., Fernández N., Solís G., Hernández-Barranco A., Margolles A., de Los Reyes-Gavilán C.G., Gueimonde M. Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol. Ecol. 2012;79:763–772. doi: 10.1111/j.1574-6941.2011.01261.x.
    1. Praveen P., Jordan F., Priami C., Morine M.J. The role of breast-feeding in infant immune system: A systems perspective on the intestinal microbiome. Microbiome. 2015;24:41. doi: 10.1186/s40168-015-0104-7.
    1. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., Li Y., Xia Y., Xie H., Zhong H. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015;17:690–703. doi: 10.1016/j.chom.2015.04.004.
    1. O’Sullivan A., Farver M., Smilowitz J.T. The Influence of Early Infant-Feeding Practices on the Intestinal Microbiome and Body Composition in Infants. Nutr. Metab. Insights. 2015;8((Suppl. S1)):1–9.
    1. Sela D.A., Chapman J., Adeuya A., Kim J.H., Chen F., Whitehead T.R., Lapidus A., Rokhsar D.S., Lebrilla C.B., German J.B., et al. The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. USA. 2008;105:18964–18969. doi: 10.1073/pnas.0809584105.
    1. Ninonuevo M.R., Park Y., Yin H., Zhang J., Ward R.E., Clowers B.H., German J.B., Freeman S.L., Killeen K., Grimm R., et al. A strategy for annotating the human milk glycome. J. Agric. Food Chem. 2006;54:7471–7480. doi: 10.1021/jf0615810.
    1. Schwartz S., Friedberg I., Ivanov I.V., Davidson L.A., Goldsby J.S., Dahl D.B., Herman D., Wang M., Donovan S.M., Chapkin R.S. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 2012;13:r32. doi: 10.1186/gb-2012-13-4-r32.
    1. Davis M.Y., Zhang H., Brannan L.E., Carman R.J., Boone J.H. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk. Microbiome. 2016;4:53. doi: 10.1186/s40168-016-0198-6.
    1. Rodríguez J.M., Murphy K., Stanton C., Ross R.P., Kober O.I., Juge N., Avershina E., Rudi K., Narbad A., Jenmalm M.C., et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 2015;26:26050. doi: 10.3402/mehd.v26.26050.
    1. Lin A., Bik E.M., Costello E.K., Dethlefsen L., Haque R., Relman D.A., Singh U. Distinct Distal Gut Microbiome Diversity and Composition in Healthy Children from Bangladesh and the United States. PLoS ONE. 2013;8:e53838. doi: 10.1371/journal.pone.0053838.
    1. Laursen M.F., Zachariassen G., Bahl M.I., Bergström A., Høst A., Michaelsen K.F., Licht T.R. Having older siblings is associated with gut microbiota development during early childhood. BMC Microbiol. 2015;5:154. doi: 10.1186/s12866-015-0477-6.
    1. Bonder M.J., Kurilshikov A., Tigchelaar E.F., Mujagic Z., Imhann F., Vila A.V., Deelen P., Vatanen T., Schirmer M., Smeekens S.P., et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48:1407–1412. doi: 10.1038/ng.3663.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A Core Gut Microbiome in Obese and Lean Twins. [(accessed on 28 November 2022)];Nature. 2009 457:480–484. doi: 10.1038/nature07540. Available online:
    1. Woo V., Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes. 2022;14:2022407. doi: 10.1080/19490976.2021.2022407.
    1. Romano K.A., Rey F.E. Is maternal microbial metabolism an early-life determinant of health? Lab. Anim. 2018;47:239–243. doi: 10.1038/s41684-018-0129-1.
    1. Sharma M., Li Y., Stoll M.L., Tollefsbol T.O. The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Front. Genet. 2020;15:1329. doi: 10.3389/fgene.2019.01329.
    1. Holt P.G. Environmental factors and primary T-cell sensitisation to inhalant allergens in infancy: Reappraisal of the role of infections and air pollution. Pediatr. Allergy Immunol. 1995;6:1–10. doi: 10.1111/j.1399-3038.1995.tb00250.x.
    1. Björkstén B. Risk factors in early childhood for the development of atopic diseases. Allergy. 1994;49:400–407. doi: 10.1111/j.1398-9995.1994.tb00831.x.
    1. Bisgaard H., Li N., Bonnelykke K., Chawes B.L.K., Skov T., Paludan-Müller G., Stokholm J., Smith B., Krogfelt K.A. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 2011;128:646–652.e1–5. doi: 10.1016/j.jaci.2011.04.060.
    1. Liang G., Bushman F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Microbiol. 2021;19:514–527. doi: 10.1038/s41579-021-00536-5.
    1. Shkoporov A.N., Hill C. Bacteriophages of the Human Gut: The “Known Unknown” of the Microbiome. Cell Host Microbe. 2019;25:195–209. doi: 10.1016/j.chom.2019.01.017.
    1. Aggarwala V., Liang G., Bushman F.D. Viral communities of the human gut: Metagenomic analysis of composition and dynamics. Mob. DNA. 2017;8:12. doi: 10.1186/s13100-017-0095-y.
    1. Breitbart M., Haynes M., Kelley S., Angly F., Edwards R.A., Felts B., Mahaffy J.M., Mueller J., Nulton J., Rayhawk S., et al. Viral diversity and dynamics in an infant gut. Res. Microbiol. 2008;159:367–373. doi: 10.1016/j.resmic.2008.04.006.
    1. Ianiro G., Bruno G., Lopetuso L., Beghella F.B., Laterza L., D’Aversa F., Gigante G., Cammarota G., Gasbarrini A. Role of yeasts in healthy and impaired gut microbiota: The gut mycome. Curr. Pharm. Des. 2014;20:4565–4569. doi: 10.2174/13816128113196660723.
    1. Dash S., Syed Y.A., Khan M.R. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. [(accessed on 17 December 2022)];Front. Cell Dev. Biol. 2022 10:880544. doi: 10.3389/fcell.2022.880544. Available online: .
    1. Wang N., Gao X., Zhang Z., Yang L. Composition of the Gut Microbiota in Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2022;13:838941. doi: 10.3389/fendo.2022.838941.
    1. Bundgaard-Nielsen C., Knudsen J., Leutscher P.D.C., Lauritsen M.B., Nyegaard M., Hagstrøm S., Sørensen S. Gut microbiota profiles of autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic literature review. Gut Microbes. 2020;11:1172–1187. doi: 10.1080/19490976.2020.1748258.
    1. Valdes-Socin H., Rubio Almanza M., Tomé Fernández-Ladreda M., Debray F.G., Bours V., Beckers A. Reproduction, smell, and neurodevelopmental disorders: Genetic defects in different hypogonadotropic hypogonadal syndromes. Front. Endocrinol. 2014;5:109. doi: 10.3389/fendo.2014.00109.
    1. Thapar A., Cooper M., Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4:39–46. doi: 10.1016/S2215-0366(16)30376-5.
    1. Whoqol Group The World Health Organization Quality of Life Assessment (WHOQOL): Position Paper from the World Health Organization. [(accessed on 28 November 2022)];Soc. Sci. Med. 1995 41:1403–1409. doi: 10.1016/0277-9536(95)00112-K. Available online:
    1. Danckaerts M., Sonuga-Barke E.J.S., Banaschewski T., Buitelaar J., Döpfner M., Hollis C., Santosh P., Rothenberger A., Sergeant J., Steinhausen H.C., et al. The quality of life of children with attention deficit/hyperactivity disorder: A systematic review. Eur. Child Adolesc Psychiatry. 2010;19:103–105. doi: 10.1007/s00787-009-0046-3.
    1. Potvin M.C., Snider L., Prelock P.A., Wood-Dauphinee S., Kehayia E. Health-related quality of life in children with high-functioning autism. Autism. 2015;19:14–19. doi: 10.1177/1362361313509730.
    1. Varni J.W., Burwinkle T.M., Berrin S.J., Sherman S.A., Artavia K., Malcarne V.L., Chambers H.G. The PedsQL in pediatric cerebral palsy: Reliability, validity, and sensitivity of the Generic Core Scales and Cerebral Palsy Module. Dev. Med. Child Neurol. 2006;48:442–449. doi: 10.1017/S001216220600096X.
    1. Petrou S., Johnson S., Wolke D., Hollis C., Kochhar P., Marlow N. Economic costs and preference-based health-related quality of life outcomes associated with childhood psychiatric disorders. Br. J. Psychiatry. 2010;197:395–404. doi: 10.1192/bjp.bp.110.081307.
    1. Petrou S., Kupek E. Estimating Preference-Based Health Utilities Index Mark 3 Utility Scores for Childhood Conditions in England and Scotland. Med. Decis. Mak. 2009;29:291–303. doi: 10.1177/0272989X08327398.
    1. Wang Y., Kasper L.H. The role of microbiome in central nervous system disorders. Brain Behav. Immun. 2014;38:1–12. doi: 10.1016/j.bbi.2013.12.015.
    1. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X.N., Kubo C., Koga Y. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 2004;558:263–275. doi: 10.1113/jphysiol.2004.063388.
    1. Carabotti M., Scirocco A., Maselli M.A., Severi C. The Gut-Brain Axis: Interactions Between Enteric Microbiota, Central and Enteric Nervous System. [(accessed on 28 November 2022)];Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015 28:203. Available online:
    1. CrCryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019;99:1877–2013. doi: 10.1152/physrev.00018.2018.
    1. Chen Y., Xu J., Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients. 2021;3:99. doi: 10.3390/nu13062099.
    1. Clapp M., Aurora N., Herrera L., Bhatia M., Wilen E., Wakefield S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 2017;7:987. doi: 10.4081/cp.2017.987.
    1. Wang Y., Li N., Yang J.J., Zhao D.M., Chen B., Zhang G.Q., Chen S., Cao R.F., Yu H., Zhao C.Y., et al. Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacol. Res. 2020;157:104784. doi: 10.1016/j.phrs.2020.104784.
    1. Humann J., Mann B., Gao G., Moresco P., Ramahi J., Loh L.N., Farr A., Hu Y., Durick-Eder K., Fillon S.A., et al. Bacterial Peptidoglycan Traverses the Placenta to Induce Fetal Neuroproliferation and Aberrant Postnatal Behavior. Cell Host Microbe. 2016;19:388–399. doi: 10.1016/j.chom.2016.02.009.
    1. Pearson-Leary J., Zhao C., Bittinger K., Eacret D., Luz S., Vigderman A.S., Dayanim G., Bhatnagar S. The Gut Microbiome Regulates the Increases in Depressive-Type Behaviors and in Inflammatory Processes in the Ventral Hippocampus of Stress VULNERABLE rats. [(accessed on 17 December 2022)];Mol. Psychiatry. 2020 25:1068–1079. doi: 10.1038/s41380-019-0380-x. Available online: .
    1. Erny D., Hrabě de Angelis A.L., Jaitin D., Wieghofer P., Staszewski O., David E., Keren-Shaul H., Mahlakoiv T., Jakobshagen K., Buch T., et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 2015;18:965–977. doi: 10.1038/nn.4030.
    1. Hoban A.E., Stilling R.M., Ryan F.J., Shanahan F., Dinan T.G., Claesson M.J., Clarke G., Cryan J.F. Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry. 2016;6:e774. doi: 10.1038/tp.2016.42.
    1. Parker A., Fonseca S., Carding S.R. Gut Microbes and Metabolites as Modulators of Blood-Brain Barrier Integrity and Brain Health. [(accessed on 17 December 2022)];Gut Microbes. 2020 11:135–157. doi: 10.1080/19490976.2019.1638722. Available online:
    1. Sampson T.R., Debelius J.W., Thron T., Janssen S., Shastri G.G., Ilhan Z.E., Challis C., Schretter C.E., Rocha S., Gradinaru V., et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 2016;167:1469–1480.e12. doi: 10.1016/j.cell.2016.11.018.
    1. Braniste V., Al-Asmakh M., Kowal C., Anuar F., Abbaspour A., Tóth M., Korecka A., Bakocevic N., Ng L.G., Kundu P., et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 2014;6:263ra158. doi: 10.1126/scitranslmed.3009759.
    1. Schneiderhan J., Master-Hunter T., Locke A. Targeting gut flora to treat and prevent disease. J. Fam. Pract. 2016;65:34–38.
    1. Bezawada N., Phang T.H., Hold G.L., Hansen R. Autism Spectrum Disorder and the Gut Microbiota in Children: A Systematic Review. Ann. Nutr. Metab. 2020;76:16–29. doi: 10.1159/000505363.
    1. Liu F., Li J., Wu F., Zheng H., Peng Q., Zhou H. Altered composition and function of intestinal microbiota in autism spectrum disorders: A systematic review. Transl. Psychiatry. 2019;9:3. doi: 10.1038/s41398-019-0389-6.
    1. Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22. doi: 10.1186/1471-230X-11-22.
    1. De Angelis M., Francavilla R., Piccolo M., De Giacomo A., Gobbetti M. Autism spectrum disorders and intestinal microbiota. Gut Microbes. 2015;6:207–213. doi: 10.1080/19490976.2015.1035855.
    1. Finegold S.M., Molitoris D., Song Y., Liu C., Vaisanen M., Bolte E., McTeague M., Sandler R., Wexler H., Marlowe E.M., et al. Gastrointestinal Microflora Studies in Late-Onset Autism. Clin. Infect. Dis. 2002;35:S6–S16. doi: 10.1086/341914.
    1. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–453. doi: 10.1016/j.anaerobe.2010.06.008.
    1. Parracho H.M., Bingham M.O., Gibson G.R., McCartney A.L. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J. Med. Microbiol. 2005;54:987–991. doi: 10.1099/jmm.0.46101-0.
    1. Tomova A., Husarova V., Lakatosova S., Bakos J., Vlkova B., Babinska K., Ostatnikova D. Gastrointestinal microbiota in children with autism in Slovakia. Physiol. Behav. 2015;138:179–187. doi: 10.1016/j.physbeh.2014.10.033.
    1. Wang L., Christophersen C.T., Sorich M.J., Gerber J.P., Angley M.T., Conlon M.A. Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Dig. Dis. Sci. 2012;57:2096–2102. doi: 10.1007/s10620-012-2167-7.
    1. Pärtty A., Kalliomäki M., Wacklin P., Salminen S., Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatr. Res. 2015;77:823–828. doi: 10.1038/pr.2015.51.
    1. Prehn-Kristensen A., Zimmermann A., Tittmann L., Lieb W., Schreiber S., Baving L., Fischer A. Reduced microbiome alpha diversity in young patients with ADHD. PLoS ONE. 2018;13:e0200728. doi: 10.1371/journal.pone.0200728.
    1. Jiang H.Y., Zhou Y.Y., Zhou G.L., Li Y.C., Yuan J., Li X.H., Ruan B. Gut microbiota profiles in treatment-naïve children with attention deficit hyperactivity disorder. Behav. Brain Res. 2018;347:408–413. doi: 10.1016/j.bbr.2018.03.036.
    1. Vendrik K.E.W., Ooijevaar R.E., de Jong P.R.C., Laman J.D., van Oosten B.W., van Hilten J.J., Ducarmon Q.R., Keller J.J., Kuijper E.J., Contarino M.F. Fecal Microbiota Transplantation in Neurological Disorders. Front. Cell Infect. Microbiol. 2020;24:98. doi: 10.3389/fcimb.2020.00098.
    1. Qu Z., Tian P., Yang B., Zhao J., Wang G., Chen W. Fecal microbiota transplantation for diseases: Therapeutic potential, methodology, risk management in clinical practice. Life Sci. 2022;304:120719. doi: 10.1016/j.lfs.2022.120719.
    1. Commissioner O of the Fecal Microbiota for Transplantation: Safety Alert–Risk of Serious Adverse Events Likely Due to Transmission of Pathogenic Organisms. FDA. [(accessed on 30 January 2023)]; Available online: .
    1. Ly V., Bottelier M., Hoekstra P.J., Arias Vasquez A., Buitelaar J.K., Rommelse N.N. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur. Child Adolesc. Psychiatry. 2017;26:1067–1079. doi: 10.1007/s00787-017-0959-1.
    1. Stevenson J., Buitelaar J., Cortese S., Ferrin M., Konofal E., Lecendreux M., Simonoff E., Wong I.C.K., Sonuga-Barke E. Research Review: The role of diet in the treatment of attention-deficit/hyperactivity disorder—An appraisal of the evidence on efficacy and recommendations on the design of future studies. [(accessed on 29 November 2022)];J. Child Psychol. Psychiatry. 2014 55:416–427. doi: 10.1111/jcpp.12215. Available online: .
    1. Sonuga-Barke E.J., Brandeis D., Cortese S., Daley D., Ferrin M., Holtmann M., Stevenson J., Danckaerts M., Van der Oord S., Döpfner M., et al. Nonpharmacological Interventions for ADHD: Systematic Review and Meta-Analyses of Randomized Controlled Trials of Dietary and Psychological Treatments. [(accessed on 29 November 2022)];Am. J. Psychiatry. 2013 170:275–289. doi: 10.1176/appi.ajp.2012.12070991. Available online: .
    1. Williams N.T. Probiotics. Am. J. Health Syst. Pharm. 2010;67:449–458. doi: 10.2146/ajhp090168.
    1. Sivamaruthi B.S., Suganthy N., Kesika P., Chaiyasut C. The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. Int. J. Environ Res. Public Health. 2020;17:2647. doi: 10.3390/ijerph17082647.
    1. Shaaban S.Y., El Gendy Y.G., Mehanna N.S., El-Senousy W.M., El-Feki H.S.A., Saad K., El-Asheer O.M. The role of probiotics in children with autism spectrum disorder: A prospective, open-label study. Nutr. Neurosci. 2018;21:676–681. doi: 10.1080/1028415X.2017.1347746.
    1. McElhanon B.O., McCracken C., Karpen S., Sharp W.G. Gastrointestinal Symptoms in Autism Spectrum Disorder: A Meta-Analysis. [(accessed on 29 November 2022)];Pediatrics. 2014 133:872–883. doi: 10.1542/peds.2013-3995. Available online:
    1. Ma B., Liang J., Dai M., Wang J., Luo J., Zhang Z., Jing J. Altered Gut Microbiota in Chinese Children With Autism Spectrum Disorders. Front. Cell Infect. Microbiol. 2019;9:40. doi: 10.3389/fcimb.2019.00040.
    1. Kang D.W., Adams J.B., Gregory A.C., Borody T., Chittick L., Fasano A., Khoruts A., Geis E., Maldonado J., McDonough-Means S., et al. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017;5:10. doi: 10.1186/s40168-016-0225-7.
    1. Louie T. Open Forum Infectious Diseases. Oxford University Press; Oxford, UK: 2016. [(accessed on 29 November 2022)]. Combined oral fecal capsules plus fecal enema as treatment of late onset autism spectrum disorder in children: Report of a small case series. Available online: .
    1. Liao J.F., Cheng Y.F., Li S.W., Lee W.T., Hsu C.C., Wu C.C., Jeng O.J., Wang S., Tsai Y.C. Lactobacillus plantarum PS128 ameliorates 2,5-Dimethoxy-4-iodoamphetamine-induced tic-like behaviors via its influences on the microbiota-gut-brain-axis. Brain Res. Bull. 2019;153:59–73. doi: 10.1016/j.brainresbull.2019.07.027.
    1. Quagliariello A., Del Chierico F., Russo A., Reddel S., Conte G., Lopetuso L.R., Ianiro G., Dallapiccola B., Cardona F., Gasbarrini A., et al. Gut Microbiota Profiling and Gut–Brain Crosstalk in Children Affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric Disorders Associated With Streptococcal Infections. Front. Microbiol. 2018;9:675. doi: 10.3389/fmicb.2018.00675.
    1. Ding X., Zhang F., Li Q., Ting Z., Cui B., Li P. Sa1926–Selective Microbiota Transplantation is Effective for Controlling Tourette’s Syndrome. Gastroenterology. 2019;156:S-456–S-457. doi: 10.1016/S0016-5085(19)37992-2.
    1. Mayer E.A., Nance K., Chen S. The Gut-Brain Axis. Annu Rev. Med. 2022;73:439–453. doi: 10.1146/annurev-med-042320-014032.
    1. Sandgren A.M., Brummer R.J.M. ADHD-originating in the gut? The emergence of a new explanatory model. Med. Hypotheses. 2018;120:135–145. doi: 10.1016/j.mehy.2018.08.022.
    1. Abdel-Haq R., Schlachetzki J.C., Glass C.K., Mazmanian S.K. Microbiome–microglia connections via the gut–brain axis. [(accessed on 17 December 2022)];J. Exp. Med. 2019 216:41–59. doi: 10.1084/jem.20180794. Available online: .
    1. Sgritta M., Dooling S.W., Buffington S.A., Momin E.N., Francis M.B., Britton R.A., Costa-Mattioli M. Mechanisms Underlying Microbial-Mediated Changes in Social Behavior in Mouse Models of Autism Spectrum Disorder. [(accessed on 17 December 2022)];Neuron. 2019 101:246–259. doi: 10.1016/j.neuron.2018.11.018. Available online: .
    1. Golubeva A.V., Joyce S.A., Moloney G., Burokas A., Sherwin E., Arboleya S., Flynn I., Khochanskiy D., Moya-Pérez A., Peterson V., et al. Microbiota-Related Changes in Bile Acid & Tryptophan Metabolism Are Associated with Gastrointestinal Dysfunction in a Mouse Model of Autism. [(accessed on 17 December 2022)];eBioMedicine. 2017 24:166–178. Available online: .
    1. Wohleb E.S., McKim D.B., Sheridan J.F., Godbout J.P. Monocyte trafficking to the brain with stress and inflammation: A novel axis of immune-to-brain communication that influences mood and behavior. Front. Neurosci. 2015;8:447. doi: 10.3389/fnins.2014.00447.
    1. Rea K., Dinan T.G., Cryan J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress. 2016;4:23–33. doi: 10.1016/j.ynstr.2016.03.001.
    1. Rosenfeld C.S. Microbiome Disturbances and Autism Spectrum Disorders. Drug. Metab. Dispos. 2015;43:1557–1571. doi: 10.1124/dmd.115.063826.
    1. Zhao G., Vatanen T., Droit L., Park A., Kostic A.D., Poon T.W., Vlamakis H., Siljander H., Härkönen T., Hämäläinen A.M., et al. Intestinal virome changes precede autoimmunity in type I diabetes-susceptible children. Proc. Natl. Acad. Sci. USA. 2017;114:E6166–E6175. doi: 10.1073/pnas.1706359114.
    1. Clooney A.G., Sutton T.D.S., Shkoporov A.N., Holohan R.K., Daly K.M., O’Regan O., Ryan F.J., Draper L.A., Plevy S.E., Ross R.P., et al. Whole-Virome Analysis Sheds Light on Viral Dark Matter in Inflammatory Bowel Disease. Cell Host Microbe. 2019;26:764–778.e5. doi: 10.1016/j.chom.2019.10.009.
    1. Fernandes M.A., Verstraete S.G., Phan T.G., Deng X., Stekol E., LaMere B., Lynch S.V., Heyman M.B., Delwart E. Enteric Virome and Bacterial Microbiota in Children With Ulcerative Colitis and Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2019;68:30–36. doi: 10.1097/MPG.0000000000002140.
    1. Larroya A., Pantoja J., Codoñer-Franch P., Cenit M.C. Towards Tailored Gut Microbiome-Based and Dietary Interventions for Promoting the Development and Maintenance of a Healthy Brain. Front Pediatr. 2021;9:705859. doi: 10.3389/fped.2021.705859.
    1. Kirschen G.W., Panda S., Burd I. Congenital Infection Influence on Early Brain Development Through the Gut-Brain Axis. Front. Neurosci. 2022;16:894955. doi: 10.3389/fnins.2022.894955.
    1. Stockdale S.R., Draper L.A., O’Donovan S.M., Barton W., O’Sullivan O., Volpicelli-Daley L.A., Sullivan A.M., O’Neill C., Hill C. Alpha-synuclein alters the faecal viromes of rats in a gut-initiated model of Parkinson’s disease. Commun. Biol. 2021;4:1140. doi: 10.1038/s42003-021-02666-1.
    1. Mihindukulasuriya K.A., Mars R.A.T., Johnson A.J., Ward T., Priya S., Lekatz H.R., Kalari K.R., Droit L., Zheng T., Blekhman R., et al. Multi-omics analyses show disease, diet, and transcriptome interactions with the virome. Gastroenterology. 2021;161:1194–1207.e8. doi: 10.1053/j.gastro.2021.06.077.
    1. Miguel P.M., Pereira L.O., Silveira P.P., Meaney M.J. Early environmental influences on the development of children’s brain structure and function. Dev. Med. Child. Neurol. 2019;61:127–133. doi: 10.1111/dmcn.14182.
    1. Woodburn S.C., Bollinger J.L., Wohleb E.S. The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. J. Neuroinflamm. 2021;18:258. doi: 10.1186/s12974-021-02309-6.
    1. Andersen S.L. Neuroinflammation, Early-Life Adversity, and Brain Development. Harv. Rev. Psychiatry. 2022;30:4–39. doi: 10.1097/HRP.0000000000000325.
    1. Osadchiy V., Martin C.R., Mayer E.A. The Gut-Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. 2019;17:322–332. doi: 10.1016/j.cgh.2018.10.002.
    1. Bonaz B., Sinniger V., Pellissier S. The Vagus Nerve in the Neuro-Immune Axis: Implications in the Pathology of the Gastrointestinal Tract. Front. Immunol. 2017;8:1452. doi: 10.3389/fimmu.2017.01452.
    1. Pereira T.M.C., Côco L.Z., Ton A.M.M., Meyrelles S.S., Campos-Toimil M., Campagnaro B.P., Vasquez E.C. The Emerging Scenario of the Gut-Brain Axis: The Therapeutic Actions of the New Actor Kefir against Neurodegenerative Diseases. Antioxidants. 2021;10:1845. doi: 10.3390/antiox10111845.
    1. Vasquez E.C., Aires R., Ton A.M.M., Amorim F.G. New Insights on the Beneficial Effects of the Probiotic Kefir on Vascular Dysfunction in Cardiovascular and Neurodegenerative Diseases. Curr. Pharm. Des. 2020;26:3700–3710. doi: 10.2174/1381612826666200304145224.

Source: PubMed

3
구독하다