Maternal Microbiota Modulate a Fragile X-like Syndrome in Offspring Mice

Bernard J Varian, Katherine T Weber, Lily J Kim, Tony E Chavarria, Sebastian E Carrasco, Sureshkumar Muthupalani, Theofilos Poutahidis, Marwa Zafarullah, Reem R Al Olaby, Mariana Barboza, Kemal Solakyildirim, Carlito Lebrilla, Flora Tassone, Fuqing Wu, Eric J Alm, Susan E Erdman, Bernard J Varian, Katherine T Weber, Lily J Kim, Tony E Chavarria, Sebastian E Carrasco, Sureshkumar Muthupalani, Theofilos Poutahidis, Marwa Zafarullah, Reem R Al Olaby, Mariana Barboza, Kemal Solakyildirim, Carlito Lebrilla, Flora Tassone, Fuqing Wu, Eric J Alm, Susan E Erdman

Abstract

Maternal microbial dysbiosis has been implicated in adverse postnatal health conditions in offspring, such as obesity, cancer, and neurological disorders. We observed that the progeny of mice fed a Westernized diet (WD) with low fiber and extra fat exhibited higher frequencies of stereotypy, hyperactivity, cranial features and lower FMRP protein expression, similar to what is typically observed in Fragile X Syndrome (FXS) in humans. We hypothesized that gut dysbiosis and inflammation during pregnancy influenced the prenatal uterine environment, leading to abnormal phenotypes in offspring. We found that oral in utero supplementation with a beneficial anti-inflammatory probiotic microbe, Lactobacillus reuteri, was sufficient to inhibit FXS-like phenotypes in offspring mice. Cytokine profiles in the pregnant WD females showed that their circulating levels of pro-inflammatory cytokine interleukin (Il)-17 were increased relative to matched gravid mice and to those given supplementary L. reuteri probiotic. To test our hypothesis of prenatal contributions to this neurodevelopmental phenotype, we performed Caesarian (C-section) births using dissimilar foster mothers to eliminate effects of maternal microbiota transferred during vaginal delivery or nursing after birth. We found that foster-reared offspring still displayed a high frequency of these FXS-like features, indicating significant in utero contributions. In contrast, matched foster-reared progeny of L. reuteri-treated mothers did not exhibit the FXS-like typical features, supporting a key role for microbiota during pregnancy. Our findings suggest that diet-induced dysbiosis in the prenatal uterine environment is strongly associated with the incidence of this neurological phenotype in progeny but can be alleviated by addressing gut dysbiosis through probiotic supplementation.

Keywords: FMRP; FXS; Lactobacillus reuteri; microbiome; probiotic.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Experimental overview. The present study focused upon offspring from an earlier multigenerational study that spontaneously exhibited a syndrome of behavioral atypia and features resembling phenotypic features of FXS in humans. These mice were subsequently characterized using morphometrics, videotape analyses of behaviors, and post-mortem evaluation of tissues, displaying a neurodevelopmental phenotype with Fragile X-like features. To test a microbe-driven hypothesis, pregnant mice with a history of (h/o) WD (n = 12) were then randomly subdivided with half receiving a probiotic L. reuteri (LR) ATCC-PTA-6475 in their drinking water. These animals underwent testing of inflammatory cytokines, and their progeny was examined for FXS-like phenotypes and FMRP expression levels. Finally, pregnant mice underwent Caesarian (C-section) rederivation to test our hypothesis that in utero microbial events rather than post-partum microbes were leading aberrant behavioral phenotypes in offspring.
Figure 2
Figure 2
Measuring dysmorphia of head and ears. Misshaped head and ears are a characteristic phenotype of FXS in humans. We tested ear pinnae morphology by measuring the height and the width of each ear and estimating the effective diameter to examine the presence of this phenotype in our mice. Analysis of the control group (n = 7), the history of (h/o) WD group (n = 5), and the h/o WD + LR group (n = 8) showed significant differences in the ear size and the skull width (p < 0.05).
Figure 3
Figure 3
Hyperactivity (a) and stereotypic head bobbing (b) in mice with FXS-like phenotype. To examine other classic features of FXS including hyperactivity and head-bobbing stereotypy, we examined video footage of sham control animals (n = 6), animals with a history of (h/o) WD (n = 6), and animals with h/o WD + LR (n = 6). The animals were measured at 30 s intervals in home cages under standardized conditions. Significant differences were found between treatment groups (* p < 0.05 and *** p < 0.001).
Figure 4
Figure 4
In utero probiotic L. reuteri effects on FXS-like phenotypes in progeny mice. To test our microbe-driven hypothesis, pregnant mothers with a history of (h/o) WD were randomly subdivided with half receiving probiotic L. reuteri in their drinking water (n = 6) and half receiving regular drinking water (n = 6). The frequency of FXS-like features was measured in each treatment group. Significant differences (*** p < 0.001) were found after in utero dosing with L. reuteri, and the benefits of in utero L. reuteri were preserved after C-section rederivation. There were no significant (NS) differences between groups in females.
Figure 5
Figure 5
Expression of pro-inflammatory cytokine Il-17A in pregnant mother mice. To test systemic levels of inflammatory cytokines under different dietary and microbial conditions, we used whole blood from control mothers (n = 8), the mothers with a history of (h/o) WD (n = 8), and mothers with h/o WD + LR (n = 8).To test systemic levels of Il-17A in offspring mice, we used whole blood collected by terminal cardiac puncture and diluted 1:1. Circulating Il-17A levels were determined using ELISA at Eve Technologies (Calgary, AB, Canada). We found significant differences among treatment groups (* p < 0.05 and ** p < 0.001).
Figure 6
Figure 6
Brain expression levels of FMRP in offspring mice. FMRP expression level was measured using Western Blot analysis in male mice with a history of (h/o) WD + LR (n = 19) and male mice with h/o WD only (n = 8). Significant differences between the groups (* p < 0.05) were observed.

References

    1. Smith S.M., Vale W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006;8:383–395. doi: 10.31887/DCNS.2006.8.4/ssmith.
    1. Collado M.C., Rautava S., Aakko J., Isolauri E., Salminen A. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016;6:23129. doi: 10.1038/srep23129.
    1. Dunn A.B., Jordan S., Baker B.J., Carlson N.S. The Maternal Infant Microbiome. MCN Am. J. Matern./Child Nurs. 2017;42:318–325. doi: 10.1097/NMC.0000000000000373.
    1. Li Y., Toothaker J.M., Ben-Simon S., Ozeri L., Schweitzer R., McCourt B.T., McCourt C.C., Werner L., Snapper S.B., Shouval D.S., et al. In utero human intestine harbors unique metabolome, including bacterial metabolites. JCI Insight. 2020;5:e138751. doi: 10.1172/jci.insight.138751.
    1. Ma J., Prince A.L., Bader D., Hu M., Ganu R., Baquero K., Blundell P., Alan Harris R., Frias A.E., Grove K.L., et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 2014;5:3889. doi: 10.1038/ncomms4889.
    1. Singh R.K., Chang H.-W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017;15:73. doi: 10.1186/s12967-017-1175-y.
    1. Poutahidis T., Varian B.J., Levkovich T., Lakritz J.R., Mirabal S., Kwok C., Ibrahim Y.M., Kearney S.M., Chatzigiagkos A., Alm E.J., et al. Dietary microbes modulate transgenerational cancer risk. Cancer Res. 2015;75:1197–1204. doi: 10.1158/0008-5472.CAN-14-2732.
    1. D’Hulst C., Heulens I., Brouwer J.R., Willemsen R., De Geest N., Reeve S.P., De Deyn P.P., Hassan B.A., Kooy R.F. Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS) Brain Res. 2009;1253:176–183. doi: 10.1016/j.brainres.2008.11.075.
    1. Buffington S.A., Di Prisco G.V., Auchtung T.A., Ajami N.J., Petrosino J.F., Costa-Mattioli M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell. 2016;165:1762–1775. doi: 10.1016/j.cell.2016.06.001.
    1. Erdman S.E., Poutahidis T. Microbes and Oxytocin: Benefits for Host Physiology and Behavior. Int. Rev. Neurobiol. 2016;131:91–126. doi: 10.1016/bs.irn.2016.07.004.
    1. Hagerman R.J., Berry-Kravis E., Hazlett H.C., Bailey D.B., Jr., Moine H., Kooy R.F., Tassone F., Gantois I., Sonenberg N., Mandel J.L., et al. Fragile X syndrome. Nat. Rev. Dis. Primers. 2017;3:17065. doi: 10.1038/nrdp.2017.65.
    1. Darnell J.C., Klann E. The translation of translational control by FMRP: Therapeutic targets for FXS. Nat. Neurosci. 2013;16:1530–1536. doi: 10.1038/nn.3379.
    1. Schwartz J.L., Jones K.L., Yeo G.W. Repeat RNA expansion disorders of the nervous system: Post-transcriptional mechanisms and therapeutic strategies. Crit. Rev. Biochem. Mol. Biol. 2021;56:31–53. doi: 10.1080/10409238.2020.1841726.
    1. Nobile V., Pucci C., Chiurazzi P., Neri G., Tabolacci E. DNA Methylation, Mechanisms of FMR1 Inactivation and Therapeutic Perspectives for Fragile X Syndrome. Biomolecules. 2021;11:296. doi: 10.3390/biom11020296.
    1. Verkerk A.J., Pieretti M., Sutcliffe J.S., Fu Y.H., Kuhl D.P., Pizzuti A., Reiner O., Richards S., Victoria M.F., Zhang F.P., et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell. 1991;65:905–914. doi: 10.1016/0092-8674(91)90397-H.
    1. Bassell G.J., Warren S.T. Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron. 2008;60:201–214. doi: 10.1016/j.neuron.2008.10.004.
    1. Kaufmann W.E., Kidd S.A., Andrews H.F., Budimirovic D.B., Esler A., Haas-Givler B., Stackhouse T., Riley C., Peacock G., Sherman S.L., et al. Autism Spectrum Disorder in Fragile X Syndrome: Cooccurring Conditions and Current Treatment. Pediatrics. 2017;139:S194–S206. doi: 10.1542/peds.2016-1159F.
    1. Rude K.M., Pusceddu M.M., Keogh C.E., Sladek J.A., Rabasa G., Miller E.N., Sethi S., Keil K.P., Pessah I.N., Lein P.J., et al. Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice. Environ. Pollut. 2019;253:708–721. doi: 10.1016/j.envpol.2019.07.066.
    1. Muhle R., Trentacoste S.V., Rapin I. The genetics of autism. Pediatrics. 2004;113:e472–e486. doi: 10.1542/peds.113.5.e472.
    1. Berry-Kravis E. Epilepsy in fragile X syndrome. Dev. Med. Child Neurol. 2002;44:724–728. doi: 10.1111/j.1469-8749.2002.tb00277.x.
    1. Boyle L., Kaufmann W.E. The behavioral phenotype of FMR1 mutations. Am. J. Med. Genet. C Semin. Med. Genet. 2010;154:469–476. doi: 10.1002/ajmg.c.30277.
    1. Sinclair D., Oranje B., Razak K.A., Siegel S.J., Schmid S. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models. Neurosci. Biobehav. Rev. 2017;76:235–253. doi: 10.1016/j.neubiorev.2016.05.029.
    1. Hagerman R.J. Lessons from fragile X regarding neurobiology, autism, and neurodegeneration. J. Dev. Behav. Pediatr. 2006;27:63–74. doi: 10.1097/00004703-200602000-00012.
    1. Harris S.W., Hessl D., Goodlin-Jones B., Ferranti J., Bacalman S., Barbato I., Tassone F., Hagerman P.J., Herman H., Hagerman R.J. Autism profiles of males with fragile X syndrome. Am. J. Ment. Retard. 2008;113:427–438. doi: 10.1352/2008.113:427-438.
    1. Maltman N., Friedman L., Lorang E., Sterling A. Brief Report: Linguistic Mazes and Perseverations in School-Age Boys with Fragile X Syndrome and Autism Spectrum Disorder and Relationships with Maternal Maze Use. J. Autism Dev. Disord. 2021;52:897–907. doi: 10.1007/s10803-021-04981-2.
    1. Kaufmann W.E., Cortell R., Kau A.S., Bukelis I., Tierney E., Gray R.M., Cox C., Capone G.T., Stanard P. Autism spectrum disorder in fragile X syndrome: Communication, social interaction, and specific behaviors. Am. J. Med. Genet. A. 2004;129:225–234. doi: 10.1002/ajmg.a.30229.
    1. Dolen G., Osterweil E., Rao B.S., Smith G.B., Auerbach B.D., Chattarji S., Bear M.F. Correction of fragile X syndrome in mice. Neuron. 2007;56:955–962. doi: 10.1016/j.neuron.2007.12.001.
    1. D’Hulst C., De Geest N., Reeve S.P., Van Dam D., De Deyn P.P., Hassan B.A., Kooy R.F. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 2006;1121:238–245. doi: 10.1016/j.brainres.2006.08.115.
    1. Gibson J.R., Bartley A.F., Hays S.A., Huber K.M. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 2008;100:2615–2626. doi: 10.1152/jn.90752.2008.
    1. Anbuhl K.L., Benichoux V., Greene N.T., Brown A.D., Tollin D.J. Development of the head, pinnae, and acoustical cues to sound location in a precocial species, the guinea pig (Cavia porcellus) Hear. Res. 2017;356:35–50. doi: 10.1016/j.heares.2017.10.015.
    1. McCullagh E.A., Poleg S., Greene N.T., Huntsman M.M., Tollin D.J., Klug A. Characterization of Auditory and Binaural Spatial Hearing in a Fragile X Syndrome Mouse Model. eNeuro. 2020;7 doi: 10.1523/ENEURO.0300-19.2019.
    1. Simon Y., Marchadier A., Riviere M.K., Vandamme K., Koenig F., Lezot F., Trouve A., Benhamou C.L., Saffar J.L., Berdal A., et al. Cephalometric assessment of craniofacial dysmorphologies in relation with Msx2 mutations in mouse. Orthod. Craniofac. Res. 2014;17:92–105. doi: 10.1111/ocr.12035.
    1. Kawakami M., Yamamura K. Cranial bone morphometric study among mouse strains. BMC Evol. Biol. 2008;8:73. doi: 10.1186/1471-2148-8-73.
    1. Poutahidis T., Kleinewietfeld M., Smillie C., Levkovich T., Perrotta A., Bhela S., Varian B.J., Ibrahim Y.M., Lakritz J.R., Kearney S.M., et al. Microbial reprogramming inhibits Western diet-associated obesity. PLoS ONE. 2013;8:e68596. doi: 10.1371/journal.pone.0068596.
    1. Budimirovic D.B., Schlageter A., Filipovic-Sadic S., Protic D.D., Bram E., Mahone E.M., Nicholson K., Culp K., Javanmardi K., Kemppainen J., et al. A Genotype-Phenotype Study of High-Resolution FMR1 Nucleic Acid and Protein Analyses in Fragile X Patients with Neurobehavioral Assessments. Brain Sci. 2020;10:694. doi: 10.3390/brainsci10100694.
    1. Fatemi S.H., Folsom T.D. The role of fragile X mental retardation protein in major mental disorders. Neuropharmacology. 2011;60:1221–1226. doi: 10.1016/j.neuropharm.2010.11.011.
    1. Baker E.K., Arpone M., Aliaga S.M., Bretherton L., Kraan C.M., Bui M., Slater H.R., Ling L., Francis D., Hunter M.F., et al. Incomplete silencing of full mutation alleles in males with fragile X syndrome is associated with autistic features. Mol. Autism. 2019;10:21. doi: 10.1186/s13229-019-0271-7.
    1. Goo N., Bae H.J., Park K., Kim J., Jeong Y., Cai M., Cho K., Jung S.Y., Kim D.H., Ryu J.H. The effect of fecal microbiota transplantation on autistic-like behaviors in Fmr1 KO mice. Life Sci. 2020;262:118497. doi: 10.1016/j.lfs.2020.118497.
    1. Altimiras F., Garcia J.A., Palacios-Garcia I., Hurley M.J., Deacon R., Gonzalez B., Cogram P. Altered Gut Microbiota in a Fragile X Syndrome Mouse Model. Front. Neurosci. 2021;15:653120. doi: 10.3389/fnins.2021.653120.
    1. Tabouy L., Getselter D., Ziv O., Karpuj M., Tabouy T., Lukic I., Maayouf R., Werbner N., Ben-Amram H., Nuriel-Ohayon M., et al. Dysbiosis of microbiome and probiotic treatment in a genetic model of autism spectrum disorders. Brain Behav. Immun. 2018;73:310–319. doi: 10.1016/j.bbi.2018.05.015.
    1. Del Hoyo Soriano L., Thurman A.J., Harvey D.J., Ted Brown W., Abbeduto L. Genetic and maternal predictors of cognitive and behavioral trajectories in females with fragile X syndrome. J. Neurodev. Disord. 2018;10:22. doi: 10.1186/s11689-018-9240-2.
    1. Cerdo T., Garcia-Valdes L., Altmae S., Ruiz A., Suarez A., Campoy C. Role of microbiota function during early life on child’s neurodevelopment. Trends Food Sci. Tech. 2016;57:273–288. doi: 10.1016/j.tifs.2016.08.007.
    1. Laker R.C., Wlodek M.E., Connelly J.J., Yan Z. Epigenetic origins of metabolic disease: The impact of the maternal condition to the offspring epigenome and later health consequences. Food Sci. Hum. Wellness. 2013;2:1–11. doi: 10.1016/j.fshw.2013.03.002.
    1. Borre Y.E., O’Keeffe G.W., Clarke G., Stanton C., Dinan T.G., Cryan J.F. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014;20:509–518. doi: 10.1016/j.molmed.2014.05.002.
    1. Varian B.J., Poutahidis T., DiBenedictis B.T., Levkovich T., Ibrahim Y., Didyk E., Shikhman L., Cheung H.K., Hardas A., Ricciardi C.E., et al. Microbial lysate upregulates host oxytocin. Brain Behav. Immun. 2017;61:36–49. doi: 10.1016/j.bbi.2016.11.002.
    1. Choi G.B., Yim Y.S., Wong H., Kim S., Kim H., Kim S.V., Hoeffer C.A., Littman D.R., Huh J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–939. doi: 10.1126/science.aad0314.
    1. Al Olaby R.R., Zafarullah M., Barboza M., Solakyildirim K., Peng G., Alvarez M.R., Erdman S.E., Lebrilla C., Tassone F. Differenital methylation profile in Fragile X syndrome-prone offspring mice after in utero exposure to Lactobacillus reuteri. Genes. 2022;13:1300. doi: 10.3390/genes13081300.
    1. Soden M.E., Chen L. Fragile X Protein FMRP Is Required for Homeostatic Plasticity and Regulation of Synaptic Strength by Retinoic Acid. J. Neurosci. 2010;30:16910–16921. doi: 10.1523/JNEUROSCI.3660-10.2010.
    1. Lessard M., Chouiali A., Drouin R., Sebire G., Corbin F. Quantitative measurement of FMRP in blood platelets as a new screening test for fragile X syndrome. Clin. Genet. 2012;82:472–477. doi: 10.1111/j.1399-0004.2011.01798.x.
    1. Kim K., Hessl D., Randol J.L., Espinal G.M., Schneider A., Protic D., Aydin E.Y., Hagerman R.J., Hagerman P.J. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS ONE. 2019;14:e0226811. doi: 10.1371/journal.pone.0226811.
    1. Boggs A.E., Schmitt L.M., McLane R.D., Adayev T., LaFauci G., Horn P.S., Dominick K.C., Gross C., Erickson C.A. Optimization, validation and initial clinical implications of a Luminex-based immunoassay for the quantification of Fragile X Protein from dried blood spots. Sci. Rep. 2022;12:5617. doi: 10.1038/s41598-022-09633-8.
    1. LaFauci G., Adayev T., Kascsak R., Kascsak R., Nolin S., Mehta P., Brown W.T., Dobkin C. Fragile X screening by quantification of FMRP in dried blood spots by a Luminex immunoassay. J. Mol. Diagn. 2013;15:508–517. doi: 10.1016/j.jmoldx.2013.02.006.
    1. Schachtle M.A., Rosshart S.P. The Microbiota-Gut-Brain Axis in Health and Disease and Its Implications for Translational Research. Front. Cell Neurosci. 2021;15:698172. doi: 10.3389/fncel.2021.698172.
    1. Zheng D., Liwinski T., Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506. doi: 10.1038/s41422-020-0332-7.
    1. Sivamaruthi B.S., Suganthy N., Kesika P., Chaiyasut C. The Role of Microbiome, Dietary Supplements, and Probiotics in Autism Spectrum Disorder. Int. J. Environ. Res. Public Health. 2020;17:2647. doi: 10.3390/ijerph17082647.
    1. Castle J.C., Zhang C., Shah J.K., Kulkarni A.V., Kalsotra A., Cooper T.A., Johnson J.M. Expression of 24,426 human alternative splicing events and predicted cis regulation in 48 tissues and cell lines. Nat. Genet. 2008;40:1416–1425. doi: 10.1038/ng.264.
    1. Hu V.W. The expanding genomic landscape of autism: Discovering the ‘forest’ beyond the ‘trees’. Future Neurol. 2013;8:29–42. doi: 10.2217/fnl.12.83.
    1. Simmons D. Epigenetic influence and disease. Nat. Educ. 2008;1:6.

Source: PubMed

3
구독하다