Bispecific antibodies in multiple myeloma treatment: A journey in progress

Shih-Feng Cho, Tsung-Jang Yeh, Kenneth C Anderson, Yu-Tzu Tai, Shih-Feng Cho, Tsung-Jang Yeh, Kenneth C Anderson, Yu-Tzu Tai

Abstract

The incorporation of novel agents and monoclonal antibody-based therapies into the treatment of multiple myeloma (MM) has significantly improved long-term patient survival. However, the disease is still largely incurable, with high-risk patients suffering shorter survival times, partly due to weakened immune systems. Bispecific molecules, including bispecific antibodies (BisAbs) and bispecific T-cell engagers (BiTEs), encourage immune cells to lyse MM cells by simultaneously binding antigens on MM cells and immune effector cells, bringing those cells into close proximity. BisAbs that target B-cell maturation antigen (BCMA) and GPRC5D have shown impressive clinical activity, and the results of early-phase clinical trials targeting FcRH5 in patients with relapsed/refractory MM (RRMM) are also promising. Furthermore, the safety profile of these agents is favorable, including mainly low-grade cytokine release syndrome (CRS). These off-the-shelf bispecific molecules will likely become an essential part of the MM treatment paradigm. Here, we summarize and highlight various bispecific immunotherapies under development in MM treatment, as well as the utility of combining them with current standard-of-care treatments and new strategies. With the advancement of novel combination treatment approaches, these bispecific molecules may lead the way to a cure for MM.

Keywords: BCMA; CD38; FcRH5; GPRC5D; bispecific T-cell engager; bispecific antibody; immunotherapy; multiple myeloma.

Conflict of interest statement

Author KA serves on advisory boards to Pfizer, Amgen, AstraZeneca, Janssen, Precision Biosciences, Window, and Starton, and is a scientific founder of OncoPep, C4 Therapeutics, Raqia, and NextRNA. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Cho, Yeh, Anderson and Tai.

Figures

Figure 1
Figure 1
Anti-myeloma activity of bispecific antibody (BiAb) and bispecific T-cell engager (BiTE) molecules in the bone marrow MM microenvironment. T-cell–redirecting BiAb and BiTE simultaneously bind to the myeloma-specific antigens on MM cells and CD3 on T cells. MM antigens include BCMA, CD38, CS1/SLAMF7, GPRC5D, and FcRH5, as indicated. Upon engagement, the immune synapse is formed, followed by the production and secretion of cytolytic molecules, i.e., perforin and granzymes, from T cells, resulting in MM cell lysis. This further induces T-cell activation, proliferation, and differentiation into various memory subsets. The BiAb/BiTE-mediated T-cell activation leads to increased levels of granzyme B, IFN-γ, IL2, IL6, IL8, IL10, and TNF-α. The BiAb/BiTE-mediated MM cell killing is negatively affected by cellular and molecular factors including bone marrow stromal cells (BMSC), osteoclast (OC), regulatory T cells (Treg), a proliferation-inducing ligand (APRIL), transforming growth factor-β (TGF-β), interleukin-6 (IL-6), soluble BCMA (sBCMA), and upregulation in PD-L1/PD1 axis. Conversely, upregulation in effector/target (E/T) ratio, CD8+ T cell, and differentiated T cells with central and stem-like memory subsets are associated with improved BiAb/BiTE-mediated MM cell lysis. Furthermore, the potency and durability of their ability to kill MM cells could be enhanced when combined with current standard-of-care therapies including daratumumab (DARA), elotuzumab (ELO), lenalidomide (LEN), or pomalidomide (POM). Moreover, soluble BCMA (sBCMA), constantly shed by gamma-secretase (GS), could antagonize optimal MM cell eradication by BCMA-targeting agents. The GS inhibitor (GSI) rapidly blocks the release of sBCMA and augments BCMA protein retention on the MM cell membrane, thereby MM cell targeting and killing are significantly improved. In a similar manner, the BiAbs or natural killer cell engagers (NKCEs) also target natural killer (NK) cell-related receptor antigens (i.e., CD16A, NKG2D, NKp30) to activate NK cells and augment their anti-MM activities. For example, the anti-CS1 Ab elotuzumab (ELO) enhances NK cell function via CS1 and NKG2D to kill MM cells. (Some elements of Figure 1 are created with BioRender.com).

References

    1. Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, et al. . Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med (2005) 352(24):2487–98. doi: 10.1056/NEJMoa043445
    1. Durie BGM, Hoering A, Abidi MH, Rajkumar SV, Epstein J, Kahanic SP, et al. . Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): A randomised, open-label, phase 3 trial. Lancet (2017) 389(10068):519–27. doi: 10.1016/S0140-6736(16)31594-X
    1. Rosinol L, Oriol A, Teruel AI, Hernandez D, Lopez-Jimenez J, de la Rubia J, et al. . Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: A randomized phase 3 PETHEMA/GEM study. Blood (2012) 120(8):1589–96. doi: 10.1182/blood-2012-02-408922
    1. Stewart AK, Rajkumar SV, Dimopoulos MA, Masszi T, Spicka I, Oriol A, et al. . Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med (2015) 372(2):142–52. doi: 10.1056/NEJMoa1411321
    1. Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, et al. . Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med (2016) 374(17):1621–34. doi: 10.1056/NEJMoa1516282
    1. Richardson PG, Oriol A, Beksac M, Liberati AM, Galli M, Schjesvold F, et al. . Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): A randomised, open-label, phase 3 trial. Lancet Oncol (2019) 20(6):781–94. doi: 10.1016/S1470-2045(19)30152-4
    1. Al Hamed R, Bazarbachi AH, Malard F, Harousseau JL, Mohty M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J (2019) 9(4):44. doi: 10.1038/s41408-019-0205-9
    1. Nishimura KK, Barlogie B, van Rhee F, Zangari M, Walker BA, Rosenthal A, et al. . Long-term outcomes after autologous stem cell transplantation for multiple myeloma. Blood Adv (2020) 4(2):422–31. doi: 10.1182/bloodadvances.2019000524
    1. Fonseca R, Abouzaid S, Bonafede M, Cai Q, Parikh K, Cosler L, et al. . Trends in overall survival and costs of multiple myeloma, 2000-2014. Leukemia (2017) 31(9):1915–21. doi: 10.1038/leu.2016.380
    1. Kumar SK, Dimopoulos MA, Kastritis E, Terpos E, Nahi H, Goldschmidt H, et al. . Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: A multicenter imwg study. Leukemia (2017) 31(11):2443–8. doi: 10.1038/leu.2017.138
    1. Yong K, Delforge M, Driessen C, Fink L, Flinois A, Gonzalez-McQuire S, et al. . Multiple myeloma: Patient outcomes in real-world practice. Br J Haematol (2016) 175(2):252–64. doi: 10.1111/bjh.14213
    1. Neri P, Bahlis NJ, Lonial S. New strategies in multiple myeloma: Immunotherapy as a novel approach to treat patients with multiple myeloma. Clin Cancer Res (2016) 22(24):5959–65. doi: 10.1158/1078-0432.CCR-16-0184
    1. Fowler JA, Mundy GR, Lwin ST, Edwards CM. Bone marrow stromal cells create a permissive microenvironment for myeloma development: A new stromal role for wnt inhibitor Dkk1. Cancer Res (2012) 72(9):2183–9. doi: 10.1158/0008-5472.CAN-11-2067
    1. An G, Acharya C, Feng X, Wen K, Zhong M, Zhang L, et al. . Osteoclasts promote immune suppressive microenvironment in multiple myeloma: Therapeutic implication. Blood (2016) 128(12):1590–603. doi: 10.1182/blood-2016-03-707547
    1. Tai YT, Cho SF, Anderson KC. Osteoclast immunosuppressive effects in multiple myeloma: Role of programmed cell death ligand 1. Front Immunol (2018) 9:1822. doi: 10.3389/fimmu.2018.01822
    1. Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. . Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res (2017) 23(15):4290–300. doi: 10.1158/1078-0432.CCR-16-3192
    1. Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, et al. . Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood (2016) 128(3):384–94. doi: 10.1182/blood-2015-12-687749
    1. Zhang L, Tai YT, Ho M, Xing L, Chauhan D, Gang A, et al. . Regulatory b cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu. Blood Cancer J (2017) 7(3):e547. doi: 10.1038/bcj.2017.24
    1. Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, et al. . Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood (2013) 121(15):2975–87. doi: 10.1182/blood-2012-08-448548
    1. De Beule N, De Veirman K, Maes K, De Bruyne E, Menu E, Breckpot K, et al. . Tumour-associated macrophage-mediated survival of myeloma cells through STAT3 activation. J Pathol (2017) 241(4):534–46. doi: 10.1002/path.4860
    1. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T, et al. . Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: A therapeutic target. Cancer Cell (2009) 16(4):309–23. doi: 10.1016/j.ccr.2009.08.019
    1. Barille S, Bataille R, Amiot M. The role of interleukin-6 and interleukin-6/interleukin-6 receptor-alpha complex in the pathogenesis of multiple myeloma. Eur Cytokine Netw (2000) 11(4):546–51.
    1. Alexandrakis MG, Goulidaki N, Pappa CA, Boula A, Psarakis F, Neonakis I, et al. . Interleukin-10 induces both plasma cell proliferation and angiogenesis in multiple myeloma. Pathol Oncol Res (2015) 21(4):929–34. doi: 10.1007/s12253-015-9921-z
    1. Hayashi T, Hideshima T, Nguyen AN, Munoz O, Podar K, Hamasaki M, et al. . Transforming growth factor beta receptor I kinase inhibitor down-regulates cytokine secretion and multiple myeloma cell growth in the bone marrow microenvironment. Clin Cancer Res (2004) 10(22):7540–6. doi: 10.1158/1078-0432.CCR-04-0632
    1. Tai YT, Acharya C, An G, Moschetta M, Zhong MY, Feng X, et al. . APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood (2016) 127(25):3225–36. doi: 10.1182/blood-2016-01-691162
    1. Chatterjee M, Jain S, Stuhmer T, Andrulis M, Ungethum U, Kuban RJ, et al. . STAT3 and MAPK signaling maintain overexpression of heat shock proteins 90alpha and beta in multiple myeloma cells, which critically contribute to tumor-cell survival. Blood (2007) 109(2):720–8. doi: 10.1182/blood-2006-05-024372
    1. Frerichs KA, Broekmans MEC, Marin Soto JA, van Kessel B, Heymans MW, Holthof LC, et al. . Preclinical activity of JnJ-7957, a novel BCMAxCD3 bispecific antibody for the treatment of multiple myeloma, is potentiated by daratumumab. Clin Cancer Res (2020) 26(9):2203–15. doi: 10.1158/1078-0432.CCR-19-2299
    1. Dahlen E, Veitonmaki N, Norlen P. Bispecific antibodies in cancer immunotherapy. Ther Adv Vaccines Immunother (2018) 6(1):3–17. doi: 10.1177/2515135518763280
    1. Caraccio C, Krishna S, Phillips DJ, Schurch CM. Bispecific antibodies for multiple myeloma: A review of targets, drugs, clinical trials, and future directions. Front Immunol (2020) 11:501. doi: 10.3389/fimmu.2020.00501
    1. Cho SF, Lin L, Xing L, Li Y, Yu T, Anderson KC, et al. . BCMA-targeting therapy: Driving a new era of immunotherapy in multiple myeloma. Cancers (Basel) (2020) 12(6):1473. doi: 10.3390/cancers12061473
    1. Usmani SZ, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, et al. . Teclistamab, a b-cell maturation antigen x CD3 bispecific antibody, in patients with relapsed or refractory multiple myeloma (MajesTEC-1): A multicentre, open-label, single-arm, phase 1 study. Lancet (2021) 398(10301):665–74. doi: 10.1016/S0140-6736(21)01338-6
    1. Harrison SJ, Minnema MC, Lee HC, Spencer A, Kapoor P, Madduri D, et al. . A phase 1 first in human (FIH) study of AMG 701, an anti-b-cell maturation antigen (BCMA) half-life extended (HLE) BiTE® (bispecific T-cell engager) molecule. J Blood 136 (Supplement 1) :28–9. doi: 10.1182/blood-2020-134063
    1. Hipp S, Tai YT, Blanset D, Deegen P, Wahl J, Thomas O, et al. . A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia (2017) 31(8):1743–51. doi: 10.1038/leu.2016.388
    1. Cho SF, Lin L, Xing L, Li Y, Wen K, Yu T, et al. . The immunomodulatory drugs lenalidomide and pomalidomide enhance the potency of AMG 701 in multiple myeloma preclinical models. Blood Adv (2020) 4(17):4195–207. doi: 10.1182/bloodadvances.2020002524
    1. Slaney CY, Wang P, Darcy PK, Kershaw MH. Cars versus bites: A comparison between T cell-redirection strategies for cancer treatment. Cancer Discovery (2018) 8(8):924–34. doi: 10.1158/-18-0297
    1. Mack M, Gruber R, Schmidt S, Riethmuller G, Kufer P. Biologic properties of a bispecific single-chain antibody directed against 17-1a (EPCAM) and CD3: Tumor cell-dependent T cell stimulation and cytotoxic activity. J Immunol (1997) 158(8):3965–70.
    1. Pillarisetti K, Powers G, Luistro L, Babich A, Baldwin E, Li Y, et al. . Teclistamab is an active T cell-redirecting bispecific antibody against b-cell maturation antigen for multiple myeloma. Blood Adv (2020) 4(18):4538–49. doi: 10.1182/bloodadvances.2020002393
    1. Seckinger A, Delgado JA, Moser S, Moreno L, Neuber B, Grab A, et al. . Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell (2017) 31(3):396–410. doi: 10.1016/j.ccell.2017.02.002
    1. Laurent SA, Hoffmann FS, Kuhn PH, Cheng Q, Chu Y, Schmidt-Supprian M, et al. . Gamma-secretase directly sheds the survival receptor BCMA from plasma cells. Nat Commun (2015) 6:7333. doi: 10.1038/ncomms8333
    1. Ghermezi M, Li M, Vardanyan S, Harutyunyan NM, Gottlieb J, Berenson A, et al. . Serum b-cell maturation antigen: A novel biomarker to predict outcomes for multiple myeloma patients. Haematologica (2017) 102(4):785–95. doi: 10.3324/haematol.2016.150896
    1. Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C, et al. . Anti-b-cell maturation antigen bite molecule AMG 420 induces responses in multiple myeloma. J Clin Oncol (2020) 38(8):775–83. doi: 10.1200/JCO.19.02657
    1. Goyos A, Li C-M, Deegen P, Bogner P, Thomas O, Wahl J, et al. . Abstract lb-299: Cynomolgus monkey plasma cell gene signature to quantify the in vivo activity of a half-life extended anti-BCMA BiTE® for the treatment of multiple myeloma. Cancer Res (2018) 78(13 Supplement):LB–299-LB. doi: 10.1158/1538-7445.am2018-lb-299
    1. Goldstein RL, Goyos A, Li CM, Deegen P, Bogner P, Sternjak A, et al. . AMG 701 induces cytotoxicity of multiple myeloma cells and depletes plasma cells in cynomolgus monkeys. Blood Adv (2020) 4(17):4180–94. doi: 10.1182/bloodadvances.2020002565
    1. Moreau P, Garfall AL, van de Donk N, Nahi H, San-Miguel JF, Oriol A, et al. . Teclistamab in relapsed or refractory multiple myeloma. N Engl J Med (2022) 387(6):495–505. doi: 10.1056/NEJMoa2203478
    1. Karwacz K, Hooper AT, Chang C-PB, Krupka H, Chou J, Lam V, et al. . Abstract 4557: BCMA-CD3 bispecific antibody pf-06863135: Preclinical rationale for therapeutic combinations. Cancer Res (2020) 80(16_Supplement):4557. doi: 10.1158/1538-7445.AM2020-4557
    1. Sebag M, Raje NS, Bahlis NJ, Costello C, Dholaria B, Solh M, et al. . Elranatamab (PF-06863135), a b-cell maturation antigen (BCMA) targeted CD3-engaging bispecific molecule, for patients with relapsed or refractory multiple myeloma: Results from MagnetisMM-1. Blood (2021) 138(Supplement 1):895. doi: 10.1182/blood-2021-150519
    1. Jakubowiak AJ, Bahlis NJ, Raje NS, Costello C, Dholaria BR, Solh MM, et al. . Elranatamab, a BCMA-targeted T-cell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma: Updated results from MagnetisMM-1. Blood (2022) 40(16_suppl):8014. doi: 10.1200/JCO.2022.40.16_suppl.8014
    1. Cooper D, Madduri D, Lentzsch S, Jagannath S, Li J, Boyapati A, et al. . Safety and preliminary clinical activity of REGN5458, an anti-BCMA x anti-CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma. Blood (2019) 134(Supplement_1):3176. doi: 10.1182/blood-2019-126818
    1. DiLillo DJ, Olson K, Mohrs K, Meagher TC, Bray K, Sineshchekova O, et al. . A BCMAxCD3 bispecific T cell–engaging antibody demonstrates robust antitumor efficacy similar to that of anti-BCMA CAR T cells. Blood Adv (2021) 5(5):1291–304. doi: 10.1182/bloodadvances.2020002736
    1. Zonder JA, Richter J, Bumma N, Brayer J, Hoffman JE, Bensinger WI, et al. . S189: Early, deep, and durable responses, and low rates of crs with REGN5458, a BCMAxCD3 bispecific antibody, in a phase 1/2 first-in-human study in patients with relapsed/refractory multiple myeloma. HemaSphere (2022) 6:90–1. doi: 10.1097/01.Hs9.0000843648.44771.79
    1. Buelow B, Choudry P, Clarke S, Dang K, Davison L, Aldred SF, et al. . Pre-clinical development of TNB-383B, a fully human T-cell engaging bispecific antibody targeting BCMA for the treatment of multiple myeloma. J Clin Oncol (2018) 36(15_suppl):8034+. doi: 10.1200/JCO.2018.36.15_suppl.8034
    1. Foureau DM, Bhutani M, Robinson M, Guo F, Pham D, Buelow B, et al. . Ex vivo efficacy of BCMA-bispecific antibody TNB-383B in relapsed/refractory multiple myeloma. EJHaem (2020) 1(1):113–21. doi: 10.1002/jha2.69
    1. D'Souza A, Shah N, Rodriguez C, Voorhees PM, Weisel K, Bueno OF, et al. . A phase i first-in-human study of ABBV-383, a b-cell maturation antigen x CD3 bispecific T-cell redirecting antibody, in patients with relapsed/refractory multiple myeloma. J Clin Oncol (2022) JCO2201504. doi: 10.1200/JCO.22.01504
    1. Costa LJ, Wong SW, Bermúdez A, de la Rubia J, Mateos M-V, Ocio EM, et al. . First clinical study of the b-cell maturation antigen (BCMA) 2+1 T cell engager (TCE) CC-93269 in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Interim results of a phase 1 multicenter trial. Blood (2019) 134(Supplement_1):143. doi: 10.1182/blood-2019-122895
    1. Smith EL, Harrington K, Staehr M, Masakayan R, Jones J, Long TJ, et al. . GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci Transl Med (2019) 11(485):1196–206. doi: 10.1126/scitranslmed.aau7746
    1. Verkleij CPM, Broekmans MEC, van Duin M, Frerichs KA, Kuiper R, de Jonge AV, et al. . Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv (2021) 5(8):2196–215. doi: 10.1182/bloodadvances.2020003805
    1. Pillarisetti K, Edavettal S, Mendonça M, Li Y, Tornetta M, Babich A, et al. . A t-cell–redirecting bispecific g-protein–coupled receptor class 5 member d x CD3 antibody to treat multiple myeloma. Blood (2020) 135(15):1232–43. doi: 10.1182/blood.2019003342
    1. Minnema MC, Krishnan AY, Berdeja JG, Rocafiguera AO, NWCJvd D, Rodríguez-Otero P, et al. . Efficacy and safety of talquetamab, a G protein-coupled receptor family c group 5 member d x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): Updated results from MonumenTAL-1. J Clin Oncol (2022) 40(16_suppl):8015. doi: 10.1200/JCO.2022.40.16_suppl.8015
    1. Hasselbalch Riley C, Hutchings M, Yoon S-S, Koh Y, Manier S, Facon T, et al. . S180: RG6234, a novel GPRC5D T-cell engaging bispecific antibody, induces rapid responses in patients with relapsed/refractory multiple myeloma: Preliminary results from a first-in-human trial. HemaSphere (2022) 6:81–2. doi: 10.1097/01.Hs9.0000843612.41180.42
    1. Kodama T, Kochi Y, Nakai W, Mizuno H, Baba T, Habu K, et al. . Anti-GPRC5D/CD3 bispecific T-cell-redirecting antibody for the treatment of multiple myeloma. Mol Cancer Ther (2019) 18(9):1555–64. doi: 10.1158/1535-7163.MCT-18-1216
    1. Stewart AK, Krishnan AY, Singhal S, Boccia RV, Patel MR, Niesvizky R, et al. . Phase I study of the anti-FcRH5 antibody-drug conjugate DFRF4539A in relapsed or refractory multiple myeloma. Blood Cancer J (2019) 9(2):17. doi: 10.1038/s41408-019-0178-8
    1. Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, et al. . Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell (2017) 31(3):383–95. doi: 10.1016/j.ccell.2017.02.001
    1. Cohen AD, Harrison SJ, Krishnan A, Fonseca R, Forsberg PA, Spencer A, et al. . Initial clinical activity and safety of BFCR4350A, a FcRH5/CD3 T-cell-engaging bispecific antibody, in relapsed/refractory multiple myeloma. Blood (2020) 136(Supplement 1):42–3. doi: 10.1182/blood-2020-136985
    1. Trudel S, Cohen AD, Krishnan AY, Fonseca R, Spencer A, Berdeja JG, et al. . Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM): Updated results from an ongoing phase I study. Blood (2021) 138(Supplement 1):157. doi: 10.1182/blood-2021-147983
    1. Mastelic-Gavillet B, Navarro Rodrigo B, Decombaz L, Wang H, Ercolano G, Ahmed R, et al. . Adenosine mediates functional and metabolic suppression of peripheral and tumor-infiltrating CD8(+) T cells. J Immunother Cancer (2019) 7(1):257. doi: 10.1186/s40425-019-0719-5
    1. Kennedy BE, Sadek M, Elnenaei MO, Reiman A, Gujar SA. Targeting NAD(+) synthesis to potentiate CD38-based immunotherapy of multiple myeloma. Trends Cancer (2020) 6(1):9–12. doi: 10.1016/j.trecan.2019.11.005
    1. Ogiya D, Liu J, Ohguchi H, Kurata K, Samur MK, Tai YT, et al. . The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: Therapeutic implications. Blood (2020) 136(20):2334–45. doi: 10.1182/blood.2019004332
    1. Xing L, Wang S, Liu J, Yu T, Chen H, Wen K, et al. . BCMA-specific ADC MEDI2228 and daratumumab induce synergistic myeloma cytotoxicity via IFN-driven immune responses and enhanced CD38 expression. Clin Cancer Res (2021) 27(19):5376–88. doi: 10.1158/1078-0432.CCR-21-1621
    1. Doucey M-A, Pouleau B, Estoppey C, Stutz C, Croset A, Laurendon A, et al. . Isb 1342: A first-in-class CD38 T cell engager for the treatment of relapsed refractory multiple myeloma. J Clin Oncol (2021) 39(15_suppl):8044. doi: 10.1200/JCO.2021.39.15_suppl.8044
    1. Zuch de Zafra CL, Fajardo F, Zhong W, Bernett MJ, Muchhal US, Moore GL, et al. . Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res (2019) 25(13):3921–33. doi: 10.1158/1078-0432.CCR-18-2752
    1. He X, Zhang Y, Lai YW, Baguley S, Li Y, Cao X, et al. . Preclinical characterization of an anti-CD38/CD3 T cell-redirecting bispecific antibody. Blood (2019) 134(Supplement_1):4463. doi: 10.1182/blood-2019-131540
    1. Fayon M, Martinez-Cingolani C, Abecassis A, Roders N, Nelson E, Choisy C, et al. . BI38-3 is a novel CD38/CD3 bispecific T-cell engager with low toxicity for the treatment of multiple myeloma. Haematologica (2021) 106(4):1193–7. doi: 10.3324/haematol.2019.242453
    1. Akhmetzyanova I, McCarron MJ, Parekh S, Chesi M, Bergsagel PL, Fooksman DR. Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination. Leukemia (2020) 34(1):245–56. doi: 10.1038/s41375-019-0519-4
    1. Seidel C, Sundan A, Hjorth M, Turesson I, Dahl IM, Abildgaard N, et al. . Serum syndecan-1: A new independent prognostic marker in multiple myeloma. Blood (2000) 95(2):388–92. doi: 10.1182/blood.V95.2.388
    1. Jagannath S, Heffner LT, Jr., Ailawadhi S, Munshi NC, Zimmerman TM, Rosenblatt J, et al. . Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clin Lymphoma Myeloma Leuk (2019) 19(6):372–80. doi: 10.1016/j.clml.2019.02.006
    1. Kelly KR, Siegel DS, Chanan-Khan AA, Somlo G, Heffner LT, Jagannath S, et al. . Indatuximab ravtansine (BT062) in combination with low-dose dexamethasone and lenalidomide or pomalidomide: Clinical activity in patients with relapsed / refractory multiple myeloma. Blood (2016) 128(22):4486–. doi: 10.1182/blood.V128.22.4486.4486
    1. Yu T, Chaganty B, Lin L, Xing L, Ramakrishnan B, Wen K, et al. . VIS832, a novel CD138-targeting monoclonal antibody, potently induces killing of human multiple myeloma and further synergizes with imids or bortezomib in vitro and in vivo . Blood Cancer J (2020) 10(11):110. doi: 10.1038/s41408-020-00378-z
    1. Zou J, Chen D, Zong Y, Ye S, Tang J, Meng H, et al. . Immunotherapy based on bispecific T-cell engager with hIgG1 fc sequence as a new therapeutic strategy in multiple myeloma. Cancer Sci (2015) 106(5):512–21. doi: 10.1111/cas.12631
    1. Chen D, Zou J, Zong Y, Meng H, An G, Yang L. Anti-human CD138 monoclonal antibodies and their bispecific formats: Generation and characterization. Immunopharmacol Immunotoxicol (2016) 38(3):175–83. doi: 10.3109/08923973.2016.1153110
    1. Gleason MK, Verneris MR, Todhunter DA, Zhang B, McCullar V, Zhou SX, et al. . Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol Cancer Ther (2012) 11(12):2674–84. doi: 10.1158/1535-7163.MCT-12-0692
    1. Gantke T, Weichel M, Herbrecht C, Reusch U, Ellwanger K, Fucek I, et al. . Trispecific antibodies for CD16a-directed NK cell engagement and dual-targeting of tumor cells. Protein Eng Des Sel (2017) 30(9):673–84. doi: 10.1093/protein/gzx043
    1. Gantke T, Reusch U, Kellner C, Ellwanger K, Fucek I, Weichel M, et al. . AFM26 is a novel, highly potent BCMA/CD16a-directed bispecific antibody for high affinity NK-cell engagement in multiple myeloma. J Clin Oncol (2017) 35(15_suppl):8045. doi: 10.1200/JCO.2017.35.15_suppl.8045
    1. Chan WK, Kang S, Youssef Y, Glankler EN, Barrett ER, Carter AM, et al. . A CS1-NKG2D bispecific antibody collectively activates cytolytic immune cells against multiple myeloma. Cancer Immunol Res (2018) 6(7):776–87. doi: 10.1158/2326-6066.CIR-17-0649
    1. Wang Y, Li H, Xu W, Pan M, Qiao C, Cai J, et al. . BCMA-targeting bispecific antibody that simultaneously stimulates NKG2D-enhanced efficacy against multiple myeloma. J Immunother (2020) 43(6):175–88. doi: 10.1097/CJI.0000000000000320
    1. Watkins-Yoon J, Guzman W, Oliphant A, Haserlat S, Leung A, Chottin C, et al. . CTX-8573, an innate-cell engager targeting BCMA, is a highly potent multispecific antibody for the treatment of multiple myeloma. Blood (2019) 134(Supplement_1):3182. doi: 10.1182/blood-2019-128749
    1. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol (2020) 17(3):147–67. doi: 10.1038/s41571-019-0297-y
    1. Wu L, Seung E, Xu L, Rao E, Lord DM, Wei RR, et al. . Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation. Nat Cancer (2020) 1(1):86–98. doi: 10.1038/s43018-019-0004-z
    1. Meermeier EW, Welsh SJ, Sharik ME, Du MT, Garbitt VM, Riggs DL, et al. . Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy. Blood Cancer Discovery (2021) 2(4):354–69. doi: 10.1158/2643-3230.BCD-21-0038
    1. Rodriguez Otero P, D’Souza A, Reece D, van de Donk NW, Chari A, Krishnan A, et al. . S188: Teclistamab in combination with daratumumab, a novel, immunotherapy-based approach for the treatment of relapsed/refractory multiple myeloma: Updated phase 1b results. HemaSphere (2022) 6:89–90. doi: 10.1097/01.Hs9.0000843644.02496.66
    1. Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med (2019) 25(9):1341–55. doi: 10.1038/s41591-019-0564-6
    1. Munshi NC, Anderson LD, Jr., Shah N, Madduri D, Berdeja J, Lonial S, et al. . Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med (2021) 384(8):705–16. doi: 10.1056/NEJMoa2024850
    1. Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. . Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med (2019) 380(18):1726–37. doi: 10.1056/NEJMoa1817226
    1. Subklewe M. Bites better than CAR T cells. Blood Adv (2021) 5(2):607–12. doi: 10.1182/bloodadvances.2020001792
    1. Waqar SHB, Khanam R, Rehman MEU, Chattaraj A, Ali H, Anwer F. T-Cell redirected bispecific antibodies in relapsed and refractory multiple myeloma: A systematic review and meta-analysis. J Clin Oncol (2022) 40(16_suppl):e20014–e. doi: 10.1200/JCO.2022.40.16_suppl.e20014
    1. Fleury ME, Farner AM, Unger JM. Association of the COVID-19 outbreak with patient willingness to enroll in cancer clinical trials. JAMA Oncol (2021) 7(1):131–2. doi: 10.1001/jamaoncol.2020.5748
    1. Philipp N, Kazerani M, Nicholls A, Vick B, Wulf J, Straub T, et al. . T-Cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood (2022) 140(10):1104–18. doi: 10.1182/blood.2022015956

Source: PubMed

3
구독하다