The Role of Perioperative Sleep Disturbance in Postoperative Neurocognitive Disorders

Xuan Wang, Dongyu Hua, Xiaole Tang, Shan Li, Rao Sun, Zheng Xie, Zhiqiang Zhou, Yilin Zhao, Jintao Wang, Shiyong Li, Ailin Luo, Xuan Wang, Dongyu Hua, Xiaole Tang, Shan Li, Rao Sun, Zheng Xie, Zhiqiang Zhou, Yilin Zhao, Jintao Wang, Shiyong Li, Ailin Luo

Abstract

Postoperative neurocognitive disorder (PND) increases the length of hospital stay, mortality, and risk of long-term cognitive impairment. Perioperative sleep disturbance is prevalent and commonly ignored and may increase the risk of PND. However, the role of perioperative sleep disturbances in PND remains unclear. Nocturnal sleep plays an indispensable role in learning, memory, and maintenance of cerebral microenvironmental homeostasis. Hospitalized sleep disturbances also increase the incidence of postoperative delirium and cognitive dysfunction. This review summarizes the role of perioperative sleep disturbances in PND and elucidates the potential mechanisms underlying sleep-deprivation-mediated PND. Activated neuroinflammation and oxidative stress; impaired function of the blood-brain barrier and glymphatic pathway; decreased hippocampal brain-derived neurotrophic factor, adult neurogenesis, and sirtuin1 expression; and accumulated amyloid-beta proteins are associated with PND in individuals with perioperative sleep disorders. These findings suggest that the improvement of perioperative sleep might reduce the incidence of postoperative delirium and postoperative cognitive dysfunction. Future studies should further investigate the role of perioperative sleep disturbance in PND.

Keywords: cognitive impairment; neuroinflammation; perioperative sleep disturbance; postoperative cognitive dysfunction; postoperative delirium.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2021 Wang et al.

Figures

Figure 1
Figure 1
Shared risk factors between preoperative neurocognitive decline and POD and POCD. Shared mechanisms between MCI, AD, POD, and POCD include neuroinflammation, increased amyloid-beta deposition, and disruption of the blood-brain barrier. Common risk factors include advanced age, sleep disorders, and fragility. Moreover, the mutual risk factors for POD and POCD are surgery, anesthesia, and preoperative cognitive decline.
Figure 2
Figure 2
Potential mechanisms of sleep disturbance in postoperative neurocognitive disorders. (A) Signaling pathways associated with sleep deprivation-induced POCD, including neuroinflammation, oxidative stress, elevated biomarkers of aging, disturbed circadian rhythm, and decreased neurotrophic factors. (B) Sleep deprivation leads to several cellular pathological mechanisms in the hippocampus. Complements C3 and C5 in the hippocampus are elevated as a result of sleep deprivation, which activates microglia. Activated microglia further release IL-1β, TNF-α, and IL-6 to exaggerate neuroinflammation. Moreover, sleep deprivation activates neurotoxic astrocytes (A1-specific astrocytes) and weakens astrocytic phagocytosis and their function of synaptic pruning. Activated microglia and astrocytes promote neuronal loss. Sleep deprivation causes decreased spine density of neurons and impaired synaptic plasticity, and decreased BDNF after sleep deprivation also restrains hippocampal adult neurogenesis. All of these cellular pathological changes induced by sleep deprivation accelerate the development of POCD. (C) Structure changes. The blood-brain barrier is damaged by sleep deprivation through decreased tight junctions. Atrophy of the hippocampus and medial prefrontal cortex, as well as decreased hippocampal-prefrontal cortex functional connectivity, may indicate a higher risk of POCD. (D) Dysfunction of the glial-lymphatic pathway. Sleep deprivation causes decreased exchange of the cerebrospinal fluid (CSF) to the interstitial fluid (ISF), which promotes Aβ accumulation. Apolipoprotein E (APOE) in the CSF is reduced after sleep deprivation, resulting in depressed elimination of Aβ. Moreover, advanced age and accumulated Aβ lead to mislocalization of aquaporin 4 (AQP4) expressed in the endfeet of astrocytes, thereby forming a vicious circle to accelerate the development of POCD.

References

    1. Diekelmann S, Wilhelm I, Born J. The whats and whens of sleep-dependent memory consolidation. Sleep Med Rev. 2009;13(5):309–321. doi:10.1016/j.smrv.2008.08.002
    1. Izawa S, Chowdhury S, Miyazaki T, et al. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science. 2019;365(6459):1308–1313. doi:10.1126/science.aax9238
    1. Fultz NE, Bonmassar G, Setsompop K, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628–631. doi:10.1126/science.aax5440
    1. Raven F, Van der Zee EA, Meerlo P, Havekes R. The role of sleep in regulating structural plasticity and synaptic strength: implications for memory and cognitive function. Sleep Med Rev. 2018;39:3–11. doi:10.1016/j.smrv.2017.05.002
    1. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444(7119):610–613. doi:10.1038/nature05278
    1. Lu L, Wang S-B, Rao W, et al. The prevalence of sleep disturbances and sleep quality in older chinese adults: a comprehensive meta-analysis. Behav Sleep Med. 2019;17(6):683–697. doi:10.1080/15402002.2018.1469492
    1. Wesselius HM, van den Ende ES, Alsma J, et al. Quality and quantity of sleep and factors associated with sleep disturbance in hospitalized patients. JAMA Intern Med. 2018;178(9):1201–1208. doi:10.1001/jamainternmed.2018.2669
    1. Shi L, Chen S-J, Ma M-Y, et al. Sleep disturbances increase the risk of dementia: a systematic review and meta-analysis. Sleep Med Rev. 2018;40:4–16. doi:10.1016/j.smrv.2017.06.010
    1. Evered LA, Silbert BS. Postoperative cognitive dysfunction and noncardiac surgery. Anesth Analg. 2018;127(2):496–505. doi:10.1213/ANE.0000000000003514
    1. Robinson TN, Raeburn CD, Tran ZV, et al. Postoperative delirium in the elderly: risk factors and outcomes. Ann Surg. 2009;249(1):173–178. doi:10.1097/SLA.0b013e31818e4776
    1. Evans JL, Nadler JW, Preud’homme XA, et al. Pilot prospective study of post-surgery sleep and EEG predictors of post-operative delirium. Clin Neurophysiol. 2017;128(8):1421–1425. doi:10.1016/j.clinph.2017.05.004
    1. Song J, Chu S, Cui Y, et al. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice. Exp Neurol. 2018;306:45–54. doi:10.1016/j.expneurol.2018.04.009
    1. Evered L, Silbert B, Knopman DS, et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Br J Anaesth. 2018;121(5):1005–1012. doi:10.1016/j.bja.2017.11.087
    1. Sprung J, Roberts RO, Weingarten TN, et al. Postoperative delirium in elderly patients is associated with subsequent cognitive impairment. Br J Anaesth. 2017;119(2):316–323. doi:10.1093/bja/aex130
    1. Saczynski JS, Marcantonio ER, Quach L, et al. Cognitive trajectories after postoperative delirium. N Engl J Med. 2012;367(1):30–39. doi:10.1056/NEJMoa1112923
    1. Monk TG, Weldon B, Garvan C, et al. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18–30. doi:10.1097/01.anes.0000296071.19434.1e
    1. Kilduff TS, Lein ES, de la Iglesia H, et al. New developments in sleep research: molecular genetics, gene expression, and systems neurobiology. J Neurosci. 2008;28(46):11814–11818. doi:10.1523/JNEUROSCI.3768-08.2008
    1. Abel T, Havekes R, Saletin JM, Walker MP. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol. 2013;23(17):R774–788. doi:10.1016/j.cub.2013.07.025
    1. De Gennaro L, Ferrara M. Sleep spindles: an overview. Sleep Med Rev. 2003;7(5):423–440. doi:10.1053/smrv.2002.0252
    1. Molle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci. 2002;22(24):10941–10947. doi:10.1523/jneurosci.22-24-10941.2002
    1. Buzsaki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience. 1989;31(3):551–570. doi:10.1016/0306-4522(89)90423-5
    1. Mander BA, Rao V, Lu B, et al. Prefrontal atrophy, disrupted NREM slow waves and impaired hippocampal-dependent memory in aging. Nat Neurosci. 2013;16(3):357–364. doi:10.1038/nn.3324
    1. Ngo HV, Born J. Sleep and the balance between memory and forgetting. Cell. 2019;179(2):289–291. doi:10.1016/j.cell.2019.09.007
    1. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11(2):114–126. doi:10.1038/nrn2762
    1. Kim J, Gulati T, Ganguly K. Competing roles of slow oscillations and delta waves in memory consolidation versus forgetting. Cell. 2019;179(2):514–526 e513. doi:10.1016/j.cell.2019.08.040
    1. Li W, Ma L, Yang G, Gan WB. REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci. 2017;20(3):427–437. doi:10.1038/nn.4479
    1. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–1024. doi:10.1016/S1474-4422(18)30318-1
    1. Xie L, Kang H, Xu Q, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–377. doi:10.1126/science.1241224
    1. Panda S. The arrival of circadian medicine. Nat Rev Endocrinol. 2019;15(2):67–69. doi:10.1038/s41574-018-0142-x
    1. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35(1):445–462. doi:10.1146/annurev-neuro-060909-153128
    1. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291(5503):490–493. doi:10.1126/science.291.5503.490
    1. Kang JE, Lim MM, Bateman RJ, et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326(5955):1005–1007. doi:10.1126/science.1180962
    1. Nf R, Hwang CE, Wessells C, et al. Hippocampal-dependent learning requires a functional circadian system. Proc Natl Acad Sci U S A. 2008;105(40):15593–15598. doi:10.1073/pnas.0808259105
    1. Hablitz LM, Plá V, Giannetto M, et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat Commun. 2020;11(1):4411. doi:10.1038/s41467-020-18115-2
    1. Karatsoreos IN, Bhagat S, Bloss EB, Morrison JH, McEwen BS. Disruption of circadian clocks has ramifications for metabolism, brain, and behavior. Proc Natl Acad Sci U S A. 2011;108(4):1657–1662. doi:10.1073/pnas.1018375108
    1. Peng W, Wu Z, Song K, et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science. 2020;369(6508):eabb0556. doi:10.1126/science.abb0556
    1. Borbely AA. A two process model of sleep regulation. Hum Neurobiol. 1982;1:195–204.
    1. Skorucak J, Weber N, Carskadon MA, et al. Homeostatic response to sleep restriction in adolescents. Sleep. 2021. doi:10.1093/sleep/zsab106
    1. Scheer FA, Czeisler CA. Melatonin, sleep, and circadian rhythms. Sleep Med Rev. 2005;9(1):5–9. doi:10.1016/j.smrv.2004.11.004
    1. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol. 2000;526(Pt 3):695–702. doi:10.1111/j.1469-7793.2000.00695.x
    1. Jilg A, Bechstein P, Saade A, et al. Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. J Pineal Res. 2019;66(3):e12553. doi:10.1111/jpi.12553
    1. Zhu B, Dong Y, Xu Z, et al. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol Dis. 2012;48(3):348–355. doi:10.1016/j.nbd.2012.06.022
    1. Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA. Sleep fragmentation and the risk of incident alzheimer’s disease and cognitive decline in older persons. Sleep. 2013;36(7):1027–1032. doi:10.5665/sleep.2802
    1. Yaffe K, Falvey CM, Hoang T. Connections between sleep and cognition in older adults. Lancet Neurol. 2014;13(10):1017–1028. doi:10.1016/S1474-4422(14)70172-3
    1. Yaffe K, Laffan AM, Harrison SL, et al. Sleep-disordered breathing, hypoxia, and risk of mild cognitive impairment and dementia in older women. JAMA. 2011;306:613–619. doi:10.1001/jama.2011.1115
    1. Grau-Rivera O, Operto G, Falcón C, et al. Association between insomnia and cognitive performance, gray matter volume, and white matter microstructure in cognitively unimpaired adults. Alzheimers Res Ther. 2020;12(1):4. doi:10.1186/s13195-019-0547-3
    1. Ramos AR, Tarraf W, Daviglus M, et al. Sleep duration and neurocognitive function in the hispanic community health study/study of Latinos. Sleep. 2016;39(10):1843–1851. doi:10.5665/sleep.6166
    1. Ju YS, Ooms SJ, Sutphen C, et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels. Brain. 2017;140(8):2104–2111. doi:10.1093/brain/awx148
    1. Ooms S, Overeem S, Besse K, et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol. 2014;71(8):971–977. doi:10.1001/jamaneurol.2014.1173
    1. Guisle I, Gratuze M, Petry S, et al. Circadian and sleep/wake-dependent variations in tau phosphorylation are driven by temperature. Sleep. 2019;43(4):zsz266. doi:10.1093/sleep/zsz266
    1. Xu W, Tan CC, Zou JJ, Cao XP, Tan L. Sleep problems and risk of all-cause cognitive decline or dementia: an updated systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2020;91(3):236–244. doi:10.1136/jnnp-2019-321896
    1. Ni P, Dong H, Zhou Q, et al. Preoperative sleep disturbance exaggerates surgery-induced neuroinflammation and neuronal damage in aged mice. Mediators Inflamm. 2019;2019:8301725. doi:10.1155/2019/8301725
    1. Bellesi M, de Vivo L, Chini M, et al. Sleep loss promotes astrocytic phagocytosis and microglial activation in mouse cerebral cortex. J Neurosci. 2017;37(21):5263–5273. doi:10.1523/JNEUROSCI.3981-16.2017
    1. Pak VM, Onen S-H, Bliwise DL, et al. Sleep disturbances in MCI and AD: neuroinflammation as a possible mediating pathway. Front Aging Neurosci. 2020;12:69. doi:10.3389/fnagi.2020.00069
    1. Foley DJ, Monjan AA, Brown SL, et al. Sleep complaints among elderly persons: an epidemiologic study of three communities. Sleep. 1995;18(6):425–432. doi:10.1093/sleep/18.6.425
    1. Rosenberg J, Wildschiødtz G, Pedersen MH, von Jessen F, Kehlet H. Late postoperative nocturnal episodic hypoxaemia and associated sleep pattern. Br J Anaesth. 1994;72(2):145–150. doi:10.1093/bja/72.2.145
    1. Chung F, Liao P, Yang Y, et al. Postoperative sleep-disordered breathing in patients without preoperative sleep apnea. Anesth Analg. 2015;120(6):1214–1224. doi:10.1213/ane.0000000000000774
    1. Scarpa M, Pinto E, Saraceni E, et al. Randomized clinical trial of psychological support and sleep adjuvant measures for postoperative sleep disturbance in patients undergoing oesophagectomy. Br J Surg. 2017;104(10):1307–1314. doi:10.1002/bjs.10609
    1. Whitehead C, Sanders L, Appadurai I, et al. Zopiclone as a preoperative night hypnotic: a double-blind comparison with temazepam and placebo. Br J Anaesth. 1994;72(4):443–446. doi:10.1093/bja/72.4.443
    1. Bourne RS, Mills GH. Melatonin: possible implications for the postoperative and critically ill patient. Intensive Care Med. 2006;32(3):371–379. doi:10.1007/s00134-005-0061-x
    1. Treggiari-Venzi M, Borgeat A, Fuchs-Buder T, Gachoud JP, Suter PM. Overnight sedation with midazolam or propofol in the ICU: effects on sleep quality, anxiety and depression. Intensive Care Med. 1996;22(11):1186–1190. doi:10.1007/bf01709334
    1. Lee A, O’Loughlin E, Roberts LJ. A double-blinded randomized evaluation of alfentanil and morphine vs fentanyl: analgesia and sleep trial (DREAMFAST). Br J Anaesth. 2013;110(2):293–298. doi:10.1093/bja/aes362
    1. Hou J, Shen Q, Wan X, et al. REM sleep deprivation-induced circadian clock gene abnormalities participate in hippocampal-dependent memory impairment by enhancing inflammation in rats undergoing sevoflurane inhalation. Behav Brain Res. 2019;364:167–176. doi:10.1016/j.bbr.2019.01.038
    1. Lu B, Liu RJ, Meng B, et al. [Effect of fragmented sleep on postoperative cognitive function and central neuroinflammation]. Zhonghua Yi Xue Za Zhi. 2020;100:1341–1344. Chinese. doi:10.3760/cma.j.cn112137-20191215-02734
    1. Brown EN, Lydic R, Schiff ND, Schwartz RS. General anesthesia, sleep, and coma. N Engl J Med. 2010;363(27):2638–2650. doi:10.1056/NEJMra0808281
    1. Naguib M, Gottumukkala V, Goldstein PA. Melatonin and anesthesia: a clinical perspective. J Pineal Res. 2007;42(1):12–21. doi:10.1111/j.1600-079X.2006.00384.x
    1. Nelson LE, Franks NP, Maze M. Rested and refreshed after anesthesia? Overlapping neurobiologic mechanisms of sleep and anesthesia. Anesthesiology. 2004;100(6):1341–1342. doi:10.1097/00000542-200406000-00003
    1. Benveniste H, Heerdt PM, Fontes M, Rothman DL, Volkow ND. Glymphatic system function in relation to anesthesia and sleep states. Anesth Analg. 2019;128(4):747–758. doi:10.1213/ane.0000000000004069
    1. Krenk L, Jennum P, Kehlet H. Sleep disturbances after fast-track hip and knee arthroplasty. Br J Anaesth. 2012;109(5):769–775. doi:10.1093/bja/aes252
    1. Gökmen N, Baris I, Ocmen E, et al. Day-time isoflurane administration suppresses circadian gene expressions in both the brain and a peripheral organ, liver. Turk J Anaesthesiol Reanim. 2017;45(4):197. doi:10.5152/TJAR.2017.68466
    1. Ocmen E, Erdost HA, Duru LS, et al. Effect of day/night administration of three different inhalational anesthetics on melatonin levels in rats. Kaohsiung J Med Sci. 2016;32(6):302–305. doi:10.1016/j.kjms.2016.04.016
    1. Gogenur I, Bisgaard T, Burgdorf S, van Someren E, Rosenberg J. Disturbances in the circadian pattern of activity and sleep after laparoscopic versus open abdominal surgery. Surg Endosc. 2009;23(5):1026–1031. doi:10.1007/s00464-008-0112-9
    1. Cronin AJ, Keifer JC, Davies MF, King TS, Bixler EO. Melatonin secretion after surgery. Lancet. 2000;356(9237):1244–1245. doi:10.1016/S0140-6736(00)02795-1
    1. Todd OM, Gelrich L, MacLullich AM, et al. Sleep disruption at home as an independent risk factor for postoperative delirium. J Am Geriatr Soc. 2017;65(5):949–957. doi:10.1111/jgs.14685
    1. Leung JM, Sands LP, Newman S, et al. Preoperative sleep disruption and postoperative delirium. J Clin Sleep Med. 2015;11(8):907–913. doi:10.5664/jcsm.4944
    1. Simeone S, Pucciarelli G, Perrone M, et al. Delirium in ICU patients following cardiac surgery: an Observational Study. J Clin Nurs. 2018;27(9–10):1994–2002. doi:10.1111/jocn.14324
    1. Kratz T, Heinrich M, Schlauss E, Diefenbacher A. Preventing postoperative delirium. Dtsch Arztebl Int. 2015;112:289–296. doi:10.3238/arztebl.2015.0289
    1. Miller A, Roth T, Roehrs T, Yaremchuk K. Correlation between sleep disruption on postoperative pain. Otolaryngol Head Neck Surg. 2015;152(5):964–968. doi:10.1177/0194599815572127
    1. Strutz PK, Kronzer V, Tzeng W, et al. The relationship between obstructive sleep apnoea and postoperative delirium and pain: an Observational Study of a surgical cohort. Anaesthesia. 2019;74(12):1542–1550. doi:10.1111/anae.14855
    1. Scholtens RM, van Munster BC, van Faassen M, et al. Plasma melatonin levels in hip fracture patients with and without delirium: a Confirmation Study. Mech Ageing Dev. 2017;167:1–4. doi:10.1016/j.mad.2017.08.016
    1. Mahanna-Gabrielli E, Miano TA, Augoustides JG, et al. Does the melatonin receptor 1B gene polymorphism have a role in postoperative delirium? PLoS One. 2018;13(11):e0207941. doi:10.1371/journal.pone.0207941
    1. Karkela J, Vakkuri O, Kaukinen S, Huang WQ, Pasanen M. The influence of anaesthesia and surgery on the circadian rhythm of melatonin. Acta Anaesthesiol Scand. 2002;46(1):30–36. doi:10.1034/j.1399-6576.2002.460106.x
    1. Riemersma-van DL. Effect of bright light and melatonin on cognitive and noncognitive function in elderly residents of group care facilities: a randomized controlled trial. JAMA. 2008;299(22):2642–2655. doi:10.1001/jama.299.22.2642
    1. Nishimura S, Fujino Y, Shimaoka M, et al. Circadian secretion patterns of melatonin after major surgery. J Pineal Res. 1998;25(2):73–77. doi:10.1111/j.1600-079x.1998.tb00542.x
    1. de Jonghe A, van Munster BC, Goslings JC, et al. Effect of melatonin on incidence of delirium among patients with hip fracture: a multicentre, double-blind randomized controlled trial. CMAJ. 2014;186(14):E547–556. doi:10.1503/cmaj.140495
    1. Sultan SS. Assessment of role of perioperative melatonin in prevention and treatment of postoperative delirium after hip arthroplasty under spinal anesthesia in the elderly. Saudi J Anaesth. 2010;4(3):169–173. doi:10.4103/1658-354X.71132
    1. Lingehall HC, Smulter NS, Lindahl E, et al. Preoperative cognitive performance and postoperative delirium are independently associated with future dementia in older people who have undergone cardiac surgery: a Longitudinal Cohort Study. Crit Care Med. 2017;45(8):1295–1303. doi:10.1097/CCM.0000000000002483
    1. Simini B. Patients‘ perceptions of intensive care. Lancet. 1999;354(9178):571–572. doi:10.1016/S0140-6736(99)02728-2
    1. Young JS, Bourgeois JA, Hilty DM, Hardin KA. Sleep in hospitalized medical patients, part 2: behavioral and pharmacological management of sleep disturbances. J Hosp Med. 2009;4(1):50–59. doi:10.1002/jhm.397
    1. Krenk L, Rasmussen LS, Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction. Acta Anaesthesiol Scand. 2010;54(8):951–956. doi:10.1111/j.1399-6576.2010.02268.x
    1. Rosenberg J. Sleep disturbances after non-cardiac surgery. Sleep Med Rev. 2001;5(2):129–137. doi:10.1053/smrv.2000.0121
    1. Gogenur I, Middleton B, Burgdorf S, et al. Impact of sleep and circadian disturbances in urinary 6-sulphatoxymelatonin levels, on cognitive function after major surgery. J Pineal Res. 2007;43(2):179–184. doi:10.1111/j.1600-079X.2007.00460.x
    1. Yin YQ, Luo AL, Guo XY, Li LH, Huang YG. Postoperative neuropsychological change and its underlying mechanism in patients undergoing coronary artery bypass grafting. Chin Med J (Engl). 2007;120(22):1951–1957. doi:10.1097/00029330-200711020-00003
    1. Moraes W, Piovezan R, Poyares D, et al. Effects of aging on sleep structure throughout adulthood: a population-based study. Sleep Med. 2014;15(4):401–409. doi:10.1016/j.sleep.2013.11.791
    1. Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344(6):395–402. doi:10.1056/NEJM200102083440601
    1. He J, Hsuchou H, He Y, et al. Sleep restriction impairs blood-brain barrier function. J Neurosci. 2014;34(44):14697–14706. doi:10.1523/JNEUROSCI.2111-14.2014
    1. Skvarc DR, Berk M, Byrne LK, et al. Post-operative cognitive dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci Biobehav Rev. 2018;84:116–133. doi:10.1016/j.neubiorev.2017.11.011
    1. Joo EY, Kim H, Suh S, Hong SB. Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep. 2014;37(7):1189–1198. doi:10.5665/sleep.3836
    1. Maingret N, Girardeau G, Todorova R, Goutierre M, Zugaro M. Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat Neurosci. 2016;19(7):959–964. doi:10.1038/nn.4304
    1. Grumbach P, Opel N, Martin S, et al. Sleep duration is associated with white matter microstructure and cognitive performance in healthy adults. Hum Brain Mapp. 2020;41(15):4397–4405. doi:10.1002/hbm.25132
    1. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–341. doi:10.1038/nature14432
    1. Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76(6):845–861. doi:10.1002/ana.24271
    1. Gakuba C, Gaberel T, Goursaud S, et al. General anesthesia inhibits the activity of the “glymphatic system”. Theranostics. 2018;8(3):710–722. doi:10.7150/thno.19154
    1. Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol Dis. 2016;93:215–225. doi:10.1016/j.nbd.2016.05.015
    1. Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology–a bidirectional relationship. Nat Rev Neurol. 2014;10(2):115–119. doi:10.1038/nrneurol.2013.269
    1. Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14(8):837–842. doi:10.1038/nm1782
    1. Xie Z, McAuliffe S, Swain CA, et al. Cerebrospinal fluid aβ to tau ratio and postoperative cognitive change. Ann Surg. 2013;258(2):364–369. doi:10.1097/SLA.0b013e318298b077
    1. Zhang J, Zhu S, Jin P, et al. Graphene oxide improves postoperative cognitive dysfunction by maximally alleviating amyloid beta burden in mice. Theranostics. 2020;10(26):11908–11920. doi:10.7150/thno.50616
    1. Vacas S, Degos V, Feng X, Maze M. The neuroinflammatory response of postoperative cognitive decline. Br Med Bull. 2013;106(1):161–178. doi:10.1093/bmb/ldt006
    1. Luo A, Yan J, Tang X, et al. Postoperative cognitive dysfunction in the aged: the collision of neuroinflammaging with perioperative neuroinflammation. Inflammopharmacology. 2019;27(1):27–37. doi:10.1007/s10787-018-00559-0
    1. Wadhwa M, Prabhakar A, Ray K, et al. Inhibiting the microglia activation improves the spatial memory and adult neurogenesis in rat hippocampus during 48 h of sleep deprivation. J Neuroinflammation. 2017;14(1):222. doi:10.1186/s12974-017-0998-z
    1. Huang CT, Chiang RP, Chen CL, Tsai YJ. Sleep deprivation aggravates median nerve injury-induced neuropathic pain and enhances microglial activation by suppressing melatonin secretion. Sleep. 2014;37(9):1513–1523. doi:10.5665/sleep.4002
    1. Pan XD, Zhu Y-G, Lin N, et al. Microglial phagocytosis induced by fibrillar beta-amyloid is attenuated by oligomeric beta-amyloid: implications for Alzheimer’s disease. Mol Neurodegener. 2011;6(1):45. doi:10.1186/1750-1326-6-45
    1. Qiu -L-L, Ji M-H, Zhang H, et al. NADPH oxidase 2-derived reactive oxygen species in the hippocampus might contribute to microglial activation in postoperative cognitive dysfunction in aged mice. Brain Behav Immun. 2016;51:109–118. doi:10.1016/j.bbi.2015.08.002
    1. Tuan LH, Lee LJ. Microglia-mediated synaptic pruning is impaired in sleep-deprived adolescent mice. Neurobiol Dis. 2019;130:104517. doi:10.1016/j.nbd.2019.104517
    1. Terrando N, Eriksson LI, Kyu Ryu J, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol. 2011;70(6):986–995. doi:10.1002/ana.22664
    1. Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010;68(3):360–368. doi:10.1002/ana.22082
    1. Hu J, Feng X, Valdearcos M, et al. Interleukin-6 is both necessary and sufficient to produce perioperative neurocognitive disorder in mice. Br J Anaesth. 2018;120(3):537–545. doi:10.1016/j.bja.2017.11.096
    1. Besedovsky L, Lange T, Haack M. The sleep-immune crosstalk in health and disease. Physiol Rev. 2019;99(3):1325–1380. doi:10.1152/physrev.00010.2018
    1. Kessler R, Knutson KL, Mokhlesi B, et al. Sleep and activity patterns in older patients discharged from the hospital. Sleep. 2019;42(11):zsz153. doi:10.1093/sleep/zsz153
    1. Stollings LM, Jia L-J, Tang P, et al. Immune modulation by volatile anesthetics. Anesthesiology. 2016;125(2):399–411. doi:10.1097/ALN.0000000000001195
    1. Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T. Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci. 2011;31(19):6956–6962. doi:10.1523/JNEUROSCI.5761-10.2011
    1. Lananna BV, McKee CA, King MW, et al. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med. 2020;12(574):eaax3519. doi:10.1126/scitranslmed.aax3519
    1. Liddelow SA, Guttenplan KA, Clarke LE, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi:10.1038/nature21029
    1. Havekes R, Park AJ, Tudor JC, et al. Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. Elife. 2016;5:e13424. doi:10.7554/eLife.13424
    1. Cao Y, Yang Y, Wu H, et al. Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation. J Ginseng Res. 2020;44(3):442–452. doi:10.1016/j.jgr.2019.01.009
    1. Xue R, Wan Y, Sun X, et al. Nicotinic mitigation of neuroinflammation and oxidative stress after chronic sleep deprivation. Front Immunol. 2019;10:2546. doi:10.3389/fimmu.2019.02546
    1. Fan J, Li L, Qu P, Diao Y, Sun Y. Kappaopioid receptor agonist U50488H attenuates postoperative cognitive dysfunction of cardiopulmonary bypass rats through the PI3K/AKT/Nrf2/HO1 pathway. Mol Med Rep. 2021;23(4):293. doi:10.3892/mmr.2021.11933
    1. Wang W, Yang L, Liu T, et al. Ellagic acid protects mice against sleep deprivation-induced memory impairment and anxiety by inhibiting TLR4 and activating Nrf2. Aging (Albany NY). 2020;12(11):10457–10472. doi:10.18632/aging.103270
    1. Nair D, Zhang SXL, Ramesh V, et al. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am J Respir Crit Care Med. 2011;184(11):1305–1312. doi:10.1164/rccm.201107-1173OC
    1. Egan MF, Kojima M, Callicott JH, et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112(2):257–269. doi:10.1016/s0092-8674(03)00035-7
    1. Fan T-T, Chen WH, Shi L, et al. Objective sleep duration is associated with cognitive deficits in primary insomnia: BDNF may play a role. Sleep. 2018;42:zsy192. doi:10.1093/sleep/zsy192
    1. Garner JM, Chambers J, Barnes AK, Datta S. Changes in brain-derived neurotrophic factor expression influence sleep-wake activity and homeostatic regulation of rapid eye movement sleep. Sleep. 2018;41(2):zsx194. doi:10.1093/sleep/zsx194
    1. Kumar D, Koyanagi I, Carrier-Ruiz A, et al. Sparse activity of hippocampal adult-born neurons during REM sleep is necessary for memory consolidation. Neuron. 2020;107(3):552–565 e510. doi:10.1016/j.neuron.2020.05.008
    1. Zielinski MR, Kim Y, Karpova SA, et al. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett. 2014;580:27–31. doi:10.1016/j.neulet.2014.07.043
    1. Guzman-Marin R, Ying Z, Suntsova N, et al. Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol. 2006;575(3):807–819. doi:10.1113/jphysiol.2006.115287
    1. Qiu LL, Pan W, Luo D, et al. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca(2+)/calpain might contribute to postoperative cognitive dysfunction in aging mice. J Neuroinflammation. 2020;17(1):23. doi:10.1186/s12974-019-1695-x
    1. Tian X-S, Tong Y-W, Li Z-Q, et al. Surgical stress induces brain-derived neurotrophic factor reduction and postoperative cognitive dysfunction via glucocorticoid receptor phosphorylation in aged mice. CNS Neurosci Ther. 2015;21(5):398–409. doi:10.1111/cns.12368
    1. Wyrobek J, LaFlam A, Max L, et al. Association of intraoperative changes in brain-derived neurotrophic factor and postoperative delirium in older adults. Br J Anaesth. 2017;119(2):324–332. doi:10.1093/bja/aex103
    1. Chang HM, Wu UI, Lan CT. Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res. 2009;47(3):211–220. doi:10.1111/j.1600-079X.2009.00704.x
    1. Yan J, Luo A, Gao J, et al. The role of SIRT1 in neuroinflammation and cognitive dysfunction in aged rats after anesthesia and surgery. Am J Transl Res. 2019;11:1555–1568.
    1. Shi J, Zou X, Jiang K, Wang F. SIRT1 mediates improvement of cardiac surgery-induced postoperative cognitive dysfunction via the TLR4/NF-κB pathway. World J Biol Psychiatry. 2019;21(10):757–765. doi:10.1080/15622975.2019.1656820
    1. Yan J, Luo A, Sun R, et al. Resveratrol mitigates hippocampal tau acetylation and cognitive deficit by activation SIRT1 in aged rats following anesthesia and surgery. Oxid Med Cell Longev. 2020;2020:4635163. doi:10.1155/2020/4635163
    1. Langa KM, Larson EB, Crimmins EM, et al. A comparison of the prevalence of dementia in the United States in 2000 and 2012. JAMA Intern Med. 2017;177(1):51–58. doi:10.1001/jamainternmed.2016.6807
    1. Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–2734. doi:10.1016/s0140-6736(17)31363-6
    1. Kisler K, Nelson AR, Montagne A, Zlokovic BV. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci. 2017;18(7):419–434. doi:10.1038/nrn.2017.48
    1. Lazarov O, Hollands C. Hippocampal neurogenesis: learning to remember. Prog Neurobiol. 2016;138–140:1–18. doi:10.1016/j.pneurobio.2015.12.006
    1. Petersen RC. Clinical practice. Mild cognitive impairment. N Engl J Med. 2011;364(23):2227–2234. doi:10.1056/NEJMcp0910237
    1. Small GW, Bookheimer SY, Thompson PM, et al. Current and future uses of neuroimaging for cognitively impaired patients. Lancet Neurol. 2008;7(2):161–172. doi:10.1016/S1474-4422(08)70019-X
    1. Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: a clinical review. JAMA. 2014;312(23):2551–2561. doi:10.1001/jama.2014.13806
    1. Shimada H, Makizako H, Doi T, et al. Effects of combined physical and cognitive exercises on cognition and mobility in patients with mild cognitive impairment: a randomized clinical trial. J Am Med Dir Assoc. 2018;19(7):584–591. doi:10.1016/j.jamda.2017.09.019
    1. American Psychiatric Pub. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). American Psychiatric Pub; 2013.
    1. Inouye SK, Westendorp RG, Saczynski JS. Delirium in elderly people. Lancet. 2014;383(9920):911–922. doi:10.1016/S0140-6736(13)60688-1
    1. Zhu C, Wang B, Yin J, et al. Risk factors for postoperative delirium after spinal surgery: a systematic review and meta-analysis. Aging Clin Exp Res. 2020;32(8):1417–1434. doi:10.1007/s40520-019-01319-y
    1. Xie Z, Swain CA, Ward SA, et al. Preoperative cerebrospinal fluid β-Amyloid/Tau ratio and postoperative delirium. Ann Clin Transl Neurol. 2014;1(5):319–328. doi:10.1002/acn3.58
    1. van Gool WA, van de Beek D, Eikelenboom P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 2010;375(9716):773–775. doi:10.1016/S0140-6736(09)61158-2
    1. Cerejeira J, Nogueira V, Luis P, Vaz-Serra A, Mukaetova-Ladinska EB. The cholinergic system and inflammation: common pathways in delirium pathophysiology. J Am Geriatr Soc. 2012;60(4):669–675. doi:10.1111/j.1532-5415.2011.03883.x
    1. Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry. 2013;21:1190–1222. doi:10.1016/j.jagp.2013.09.005
    1. Young J, Murthy L, Westby M, et al. Guidelines diagnosis, prevention, and management of delirium: summary of NICE guidance. Br Med J. 2010;341(jul28 2):c3704–c3704. doi:10.1136/bmj.c3704
    1. Marcantonio ER. Postoperative delirium: a 76-year-old woman with delirium following surgery. JAMA. 2012;308(1):73–81. doi:10.1001/jama.2012.6857
    1. Wang W, Li H-L, Wang D-X, et al. Haloperidol prophylaxis decreases delirium incidence in elderly patients after noncardiac surgery: a randomized controlled trial*. Crit Care Med. 2012;40(3):731–739. doi:10.1097/CCM.0b013e3182376e4f
    1. Deiner S, Silverstein JH. Postoperative delirium and cognitive dysfunction. Br J Anaesth. 2009;103(Suppl 1):i41–46. doi:10.1093/bja/aep291
    1. Litaker D, Locala J, Franco K, Bronson DL, Tannous Z. Preoperative risk factors for postoperative delirium. Gen Hosp Psychiatry. 2001;23(2):84–89. doi:10.1016/s0163-8343(01)00117-7
    1. Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of post-operative cognitive dysfunction. Lancet. 1998;351(9106):857–861. doi:10.1016/S0140-6736(97)07382-0
    1. Zywiel MG, Prabhu A, Perruccio AV, Gandhi R. The influence of anesthesia and pain management on cognitive dysfunction after joint arthroplasty: a systematic review. Clin Orthop Relat Res. 2014;472(5):1453–1466. doi:10.1007/s11999-013-3363-2
    1. Kim J, Shim JK, Song JW, Kim EK, Kwak YL. Postoperative cognitive dysfunction and the change of regional cerebral oxygen saturation in elderly patients undergoing spinal surgery. Anesth Analg. 2016;123(2):436–444. doi:10.1213/ANE.0000000000001352
    1. Liu Y-H, Wang D-X, Li L-H, et al. The effects of cardiopulmonary bypass on the number of cerebral microemboli and the incidence of cognitive dysfunction after coronary artery bypass graft surgery. Anesth Analg. 2009;109(4):1013–1022. doi:10.1213/ane.0b013e3181aed2bb
    1. Wan YJ, Xu J, Meng F, et al. Cognitive decline following major surgery is associated with gliosis, beta-amyloid accumulation, and tau phosphorylation in old mice. Crit Care Med. 2010;38(11):2190–2198. doi:10.1097/CCM.0b013e3181f17bcb
    1. Zhang X, Dong H, Li N, et al. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation. 2016;13(1):127. doi:10.1186/s12974-016-0592-9
    1. Rudolph JL, Schreiber KA, Culley DJ, et al. Measurement of post-operative cognitive dysfunction after cardiac surgery: a systematic review. Acta Anaesthesiol Scand. 2010;54(6):663–677. doi:10.1111/j.1399-6576.2010.02236.x
    1. Yildizeli B, Oğuzhan Özyurtkan M, Batırel HF, et al. Factors associated with postoperative delirium after thoracic surgery. Ann Thorac Surg. 2005;79(3):1004–1009. doi:10.1016/j.athoracsur.2004.06.022
    1. Fadayomi AB, Ibala R, Bilotta F, Westover MB, Akeju O. A systematic review and meta-analysis examining the impact of sleep disturbance on postoperative delirium. Crit Care Med. 2018;46(12):e1204–e1212. doi:10.1097/ccm.0000000000003400
    1. Cho MR, Song SK, Ryu CH. Sleep disturbance strongly related to the development of postoperative delirium in proximal femoral fracture patients aged 60 or older. Hip Pelvis. 2020;32(2):93–98. doi:10.5371/hp.2020.32.2.93
    1. Fan Y, Yuan L, Ji M, Yang J, Gao D. The effect of melatonin on early postoperative cognitive decline in elderly patients undergoing hip arthroplasty: a randomized controlled trial. J Clin Anesth. 2017;39:77–81. doi:10.1016/j.jclinane.2017.03.023
    1. Hansen MV, Madsen MT, Andersen LT, et al. Effect of melatonin on cognitive function and sleep in relation to breast cancer surgery: a randomized, double-blind, placebo-controlled trial. Int J Breast Cancer. 2014;2014:416531. doi:10.1155/2014/416531
    1. Wadhwa M, Prabhakar A, Anand JP, et al. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain Behav Immun. 2019;82:129–144. doi:10.1016/j.bbi.2019.08.004
    1. Vacas S, Degos V, Maze M. Fragmented sleep enhances postoperative neuroinflammation but not cognitive dysfunction. Anesth Analg. 2017;124(1):270–276. doi:10.1213/ANE.0000000000001675

Source: PubMed

3
구독하다