Reduced Hippocampal GABA+ Is Associated With Poorer Episodic Memory in Healthy Older Women: A Pilot Study

Joan Jiménez-Balado, Alexandra Ycaza Herrera, Kay Igwe, Lynda Klem, Korhan Buyukturkoglu, Andrei Irimia, Liu Chen, Jia Guo, Adam M Brickman, Teal S Eich, Joan Jiménez-Balado, Alexandra Ycaza Herrera, Kay Igwe, Lynda Klem, Korhan Buyukturkoglu, Andrei Irimia, Liu Chen, Jia Guo, Adam M Brickman, Teal S Eich

Abstract

Background: The current pilot study was designed to examine the association between hippocampal γ-aminobutyric acid (GABA) concentration and episodic memory in older individuals, as well as the impact of two major risk factors for Alzheimer's disease (AD)-female sex and Apolipoprotein ε4 (ApoE ε4) genotype-on this relationship. Methods: Twenty healthy, community-dwelling individuals aged 50-71 (11 women) took part in the study. Episodic memory was evaluated using a Directed Forgetting task, and GABA+ was measured in the right hippocampus using a Mescher-Garwood point-resolved magnetic resonance spectroscopy (MRS) sequence. Multiple linear regression models were used to quantify the relationship between episodic memory, GABA+, ApoE ɛ4, and sex, controlling for age and education. Results: While GABA+ did not interact with ApoE ɛ4 carrier status to influence episodic memory (p = 0.757), the relationship between GABA+ and episodic memory was moderated by sex: lower GABA+ predicted worse memory in women such that, for each standard deviation decrease in GABA+ concentration, memory scores were reduced by 11% (p = 0.001). Conclusions: This pilot study suggests that sex, but not ApoE ɛ4 genotype, moderates the relationship between hippocampal GABA+ and episodic memory, such that women with lower GABA+ concentration show worse memory performance. These findings, which must be interpreted with caution given the small sample size, may serve as a starting point for larger studies using multimodal neuroimaging to understand the contributions of GABA metabolism to age-related memory decline.

Keywords: Alzheimer’s disease; GABA; apolipoprotein ε4; episodic memory; sex; γ-aminobutyric acid.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Jiménez-Balado, Ycaza Herrera, Igwe, Klem, Buyukturkoglu, Irimia, Liu, Guo, Brickman and Eich.

Figures

Figure 1
Figure 1
Localized images and representative MR spectra from a 2 × 2 × 4 cm3 voxel manually placed in the right hippocampus of a subject. (A) Axial and sagittal planes showing the hippocampal voxel, outlined in aqua, from one study participant’s MPRAGE T1-weighted image. (B) Loadings for the GABA edited difference spectrum. (C) Representative model fitting showing Glx (a combination of glutamate and glutamine) and GABA spectrum peaks, representing the GABA signal, from the same subject. The blue line represents the actual edited spectrum, whereas the overlaid pink line is the model of best fit. The residual is shown in the black curve below the modeling plot.
Figure 2
Figure 2
Association between episodic memory and GABA+ concentration by sex. GABA+ concentration was standardized into z-scores. Lines show the relation between GABA+ levels and episodic memory performance by (A) ApoE ε4 and (B) Sex. Linear regression models were constructed using the proportion of the TBR words (those words that participants were instructed to remember) as the dependent variable, and while accounting for the interactions of ApoE ε4 × GABA+ level and of sex × GABA+ level in separate models. Values represent regression coefficients β, their 95% confidence intervals (CIs), and the p-values of the standardized GABA main effects.
Figure 3
Figure 3
Quantile regression plot of GABA+ statistical effect on memory performance at each decile of TBR accuracy, by sex. The variation of GABA+ regression β coefficients (y axis) obtained from quantile regression models is represented at each decile (x axis). Colors represent males (black) and females (red). The red dashed line is set at 0, and thus error bars not crossing the red dashed line represent statistically significant associations.

References

    1. Ambrad Giovannetti E., Fuhrmann M. (2019). Unsupervised excitation: GABAergic dysfunctions in Alzheimer’s disease. Brain Res. 15, 216–226. 10.1016/j.brainres.2018.11.042
    1. Bacigalupo I., Mayer F., Lacorte E., Di Pucchio A., Marzolini F., Canevelli M., et al. . (2018). A systematic review and meta-analysis on the prevalence of dementia in europe: estimates from the highest-quality studies adopting the DSM IV diagnostic criteria. J. Alzheimers Dis. 66, 1471–1481. 10.3233/JAD-180416
    1. Bakker A., Albert M. S., Krauss G., Speck C. L., Gallagher M. (2015). Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. Neuroimage Clin. 7, 688–698. 10.1016/j.nicl.2015.02.009
    1. Bakker A., Krauss G. L., Albert M. S., Speck C. L., Jones L. R., Stark C. E., et al. . (2012). Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron 74, 467–474. 10.1016/j.neuron.2012.03.023
    1. Bondi M. W., Houston W. S., Eyler L. T., Brown G. G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64, 501–508. 10.1212/01.WNL.0000150885.00929.7E
    1. Cacabelos R. (2003). The application of functional genomics to Alzheimer’s disease. Pharmacogenomics 4, 597–621. 10.1517/phgs.4.5.597.23795
    1. Carroll J. C., Rosario E. R., Kreimer S., Villamagna A., Gentzschein E., Stanczyk F. Z., et al. . (2010). Sex differences in β-amyloid accumulation in 3xTg-AD mice: role of neonatal sex steroid hormone exposure. Brain Res. 17, 233–245. 10.1016/j.brainres.2010.10.009
    1. Corder E. H., Saunders A. M., Strittmatter W. J., Schmechel D. E., Gaskell P. C., Small G. W., et al. . (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923. 10.1126/science.8346443
    1. Cummings J., Lee G., Ritter A., Sabbagh M., Zhong K. (2020). Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement. 6:e12050. 10.1002/trc2.12050
    1. Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., et al. . (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31, 968–980. 10.1016/j.neuroimage.2006.01.021
    1. Dickerson B. C., Salat D. H., Greve D. N., Chua E. F., Rand-Giovannetti E., Rentz D. M., et al. . (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology 65, 404–411. 10.1212/01.wnl.0000171450.97464.49
    1. Dubal D. B. (2020). Sex difference in Alzheimer’s disease: an updated, balanced and emerging perspective on differing vulnerabilities. Handb. Clin. Neurol. 175, 261–273. 10.1016/B978-0-444-64123-6.00018-7
    1. Fee C., Banasr M., Sibille E. (2017). Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression: cortical microcircuit and therapeutic perspectives. Biol. Psychiatry 82, 549–559. 10.1016/j.biopsych.2017.05.024
    1. Filippini N., MacIntosh B. J., Hough M. G., Goodwin G. M., Frisoni G. B., Smith S. M., et al. . (2009). Distinct patterns of brain activity in young carriers of the APOE-ɛ4 allele. Proc. Natl. Acad. Sci. U S A 106, 7209–7214. 10.1073/pnas.0811879106
    1. Findley C. A., Bartke A., Hascup K. N., Hascup E. R. (2019). Amyloid beta-related alterations to glutamate signaling dynamics during Alzheimer’s disease progression. ASN Neuro 11:1759091419855541. 10.1177/1759091419855541
    1. Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. . (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355. 10.1016/s0896-6273(02)00569-x
    1. Flores-Ramos M., Salinas M., Carvajal-Lohr A., Rodríguez-Bores L. (2017). [The role of gamma-aminobutyric acid in female depression]. Gac. Med. Mex. 153, 486–495. 10.24875/GMM.17002544
    1. Gao F., Edden R. A., Li M., Puts N. A., Wang G., Liu C., et al. . (2013). Edited magnetic resonance spectroscopy detects an age-related decline in brain GABA levels. NeuroImage 78, 75–82. 10.1016/j.neuroimage.2013.04.012
    1. Hämäläinen A., Pihlajamäki M., Tanila H., Hänninen T., Niskanen E., Tervo S., et al. . (2007). Increased fMRI responses during encoding in mild cognitive impairment. Neurobiol. Aging 28, 1889–1903. 10.1055/a-1272-9653
    1. Hampel H., Mesulam M.-M., Cuello A. C., Farlow M. R., Giacobini E., Grossberg G. T., et al. . (2018). The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141, 1917–1933. 10.1093/brain/awy132
    1. Hardy J. A., Higgins G. A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185. 10.1126/science.1566067
    1. Herbison A. E., Fénelon V. S. (1995). Estrogen regulation of GABAA receptor subunit mRNA expression in preoptic area and bed nucleus of the stria terminalis of female rat brain. J. Neurosci. 15, 2328–2337. 10.1523/JNEUROSCI.15-03-02328.1995
    1. Herbison A. E., Heavens R. P., Dyer R. G. (1990). Oestrogen modulation of excitatory A1 noradrenergic input to rat medial preoptic gamma aminobutyric acid neurones demonstrated by microdialysis. Neuroendocrinology 52, 161–168. 10.1159/000125568
    1. Jain S., Yoon S. Y., Leung L., Knoferle J., Huang Y. (2013). Cellular source-specific effects of apolipoprotein (Apo) E4 on dendrite arborization and dendritic spine development. PLoS One 8:e59478. 10.1371/journal.pone.0059478
    1. Jiménez-Balado J., Eich T. S. (2021). GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Semin. Cell Dev. Biol. [Epub ahead of print]. 10.1016/j.semcdb.2021.01.005
    1. Kessler R. C. (2003). Epidemiology of women and depression. J. Affect. Disord. 74, 5–13. 10.1016/s0165-0327(02)00426-3
    1. Knoferle J., Yoon S. Y., Walker D., Leung L., Gillespie A. K., Tong L. M., et al. . (2014). Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice. J. Neurosci. 34, 14069–14078. 10.1523/JNEUROSCI.2281-14.2014
    1. Li Y., Zhu K., Li N., Wang X., Xiao X., Li L., et al. . (2021). Reversible GABAergic dysfunction involved in hippocampal hyperactivity predicts early-stage Alzheimer disease in a mouse model. Alzheimers Res. Ther. 13:114. 10.1186/s13195-021-00859-8
    1. Lucas E. K., Clem R. L. (2018). GABAergic interneurons: the orchestra or the conductor in fear learning and memory? Brain Res. Bull. 141, 13–19. 10.1016/j.brainresbull.2017.11.016
    1. Luo J., Beam C. R., Karlsson I. K., Pike C. J., Reynolds C. A., Gatz M. (2020). Dementia risk in women higher in same-sex than opposite-sex twins. Alzheimers Dement. 12:e12049. 10.1002/dad2.12049
    1. MacLeod C. M. (2012). “Directed forgetting,” in Encyclopedia of the Sciences of Learning, ed. Seel N. M. (Boston, MA: Springer US; ), 993–995.
    1. Maddock R. J., Buonocore M. H. (2012). MR spectroscopic studies of the brain in psychiatric disorders. Curr. Top. Behav. Neurosci. 11, 199–251. 10.1007/7854_2011_197
    1. Marenco S., Meyer C., van der Veen J. W., Zhang Y., Kelly R., Shen J., et al. . (2018). Role of gamma-amino-butyric acid in the dorsal anterior cingulate in age-associated changes in cognition. Neuropsychopharmacology 43, 2285–2291. 10.1038/s41386-018-0134-5
    1. Mattis S. (1988). Dementia Rating Scale Professional Manual. Odessa, FL: Psychological Assessment Resources.
    1. Miech R. A., Breitner J. C., Zandi P. P., Khachaturian A. S., Anthony J. C., Mayer L. (2002). Incidence of AD may decline in the early 90s for men, later for women: the Cache County study. Neurology 58, 209–218. 10.1212/wnl.58.2.209
    1. Mielke M. M. (2018). Sex and gender differences in Alzheimer’s disease dementia. Psychiatr. Times 35, 14–17.
    1. Mikkelsen M., Loo R. S., Puts N. A. J., Edden R. A. E., Harris A. D. (2018). Designing GABA-edited magnetic resonance spectroscopy studies: considerations of scan duration, signal-to-noise ratio and sample size. J. Neurosci. Methods 303, 86–94. 10.1016/j.jneumeth.2018.02.012
    1. Mullins P. G., McGonigle D. J., O’Gorman R. L., Puts N. A., Vidyasagar R., Evans C. J. (2014). Current practice in the use of MEGA-PRESS spectroscopy for the detection of GABA. NeuroImage 86, 43–52. 10.1016/j.neuroimage.2012.12.004
    1. Murphy D. D., Cole N. B., Greenberger V., Segal M. (1998). Estradiol increases dendritic spine density by reducing GABA neurotransmission in hippocampal neurons. J. Neurosci. 18, 2550–2559. 10.1523/JNEUROSCI.18-07-02550.1998
    1. Najm R., Jones E. A., Huang Y. (2019). Apolipoprotein E4, inhibitory network dysfunction, and Alzheimer’s disease. Mol. Neurodegener. 14:24. 10.1186/s13024-019-0324-6
    1. Nobis L., Manohar S. G., Smith S. M., Alfaro-Almagro F., Jenkinson M., Mackay C. E., et al. . (2019). Hippocampal volume across age: nomograms derived from over 19,700 people in UK Biobank. Neuroimage Clin. 23:101904. 10.1016/j.nicl.2019.101904
    1. Nyberg L., McIntosh A. R., Houle S., Nilsson L. G., Tulving E. (1996). Activation of medial temporal structures during episodic memory retrieval. Nature 380, 715–717. 10.1038/380715a0
    1. Ownby R. L., Crocco E., Acevedo A., John V., Loewenstein D. (2006). Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch. Gen. Psychiatry 63, 530–538. 10.1001/archpsyc.63.5.530
    1. Pandya M., Palpagama T. H., Turner C., Waldvogel H. J., Faull R. L., Kwakowsky A. (2019). Sex- and age-related changes in GABA signaling components in the human cortex. Biol. Sex Differ. 10:5. 10.1186/s13293-018-0214-6
    1. Paulsen O., Moser E. I. (1998). A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci. 21, 273–278. 10.1016/s0166-2236(97)01205-8
    1. Pehrson A. L., Sanchez C. (2015). Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther. 9, 603–624. 10.2147/DDDT.S62912
    1. Pike C. J. (2017). Sex and the development of Alzheimer’s disease. J. Neurosci. Res. 95, 671–680. 10.1002/jnr.23827
    1. Pike C. J., Cotman C. W. (1993). Cultured GABA-immunoreactive neurons are resistant to toxicity induced by beta-amyloid. Neuroscience 56, 269–274. 10.1016/0306-4522(93)90331-9
    1. Piras F., Piras F., Banaj N., Ciullo V., Vecchio D., Edden R. A. E., et al. . (2019). Cerebellar GABAergic correlates of cognition-mediated verbal fluency in physiology and schizophrenia. Acta Psychiatr. Scand. 139, 582–594. 10.1111/acps.13027
    1. Piras F., Vecchio D., Assogna F., Pellicano C., Ciullo V., Banaj N., et al. . (2020). Cerebellar GABA levels and cognitive interference in Parkinson’s disease and healthy comparators. J. Pers. Med. 11:16. 10.3390/jpm11010016
    1. Porges E. C., Woods A. J., Edden R. A., Puts N. A., Harris A. D., Chen H., et al. . (2017). Frontal gamma-aminobutyric acid concentrations are associated with cognitive performance in older adults. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2, 38–44. 10.1016/j.bpsc.2016.06.004
    1. Protopopescu X., Butler T., Pan H., Root J., Altemus M., Polanecsky M., et al. . (2008). Hippocampal structural changes across the menstrual cycle. Hippocampus 18, 985–988. 10.1002/hipo.20468
    1. Putcha D., Brickhouse M., O’Keefe K., Sullivan C., Rentz D., Marshall G., et al. . (2011). Hippocampal hyperactivation associated with cortical thinning in Alzheimer’s disease signature regions in non-demented elderly adults. J. Neurosci. 31, 17680–17688. 10.1523/JNEUROSCI.4740-11.2011
    1. Riese F., Gietl A., Zölch N., Henning A., O’Gorman R., Kälin A. M., et al. . (2015). Posterior cingulate γ-aminobutyric acid and glutamate/glutamine are reduced in amnestic mild cognitive impairment and are unrelated to amyloid deposition and apolipoprotein E genotype. Neurobiol. Aging 36, 53–59. 10.1016/j.neurobiolaging.2014.07.030
    1. Rothman D. L., Behar K. L., Prichard J. W., Petroff O. A. (1997). Homocarnosine and the measurement of neuronal pH in patients with epilepsy. Magn. Reson. Med. 38, 924–929. 10.1002/mrm.1910380611
    1. Schacter D. L., Alpert N. M., Savage C. R., Rauch S. L., Albert M. S. (1996). Conscious recollection and the human hippocampal formation: evidence from positron emission tomography. Proc. Natl. Acad. Sci. U S A 93, 321–325. 10.1073/pnas.93.1.321
    1. Schmitz T. W., Correia M. M., Ferreira C. S., Prescot A. P., Anderson M. C. (2017). Hippocampal GABA enables inhibitory control over unwanted thoughts. Nat. Commun. 8:1311. 10.1038/s41467-017-00956-z
    1. Schweizer-Schubert S., Gordon J. L., Eisenlohr-Moul T. A., Meltzer-Brody S., Schmalenberger K. M., Slopien R., et al. . (2021). Steroid hormone sensitivity in reproductive mood disorders: on the role of the GABAA receptor complex and stress during hormonal transitions. Front. Med. 7:479646. 10.3389/fmed.2020.479646
    1. Simmonite M., Carp J., Foerster B. R., Ossher L., Petrou M., Weissman D. H., et al. . (2019). Age-related declines in occipital gaba are associated with reduced fluid processing ability. Acad Radiol. 26, 1053–1061. 10.1016/j.acra.2018.07.024
    1. Soares C. N., Zitek B. (2008). Reproductive hormone sensitivity and risk for depression across the female life cycle: a continuum of vulnerability? Psychiatry Neurosci. 33, 331–343.
    1. Sperling R. A., Dickerson B. C., Pihlajamaki M., Vannini P., LaViolette P. S., Vitolo O. V., et al. . (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med. 12, 27–43. 10.1007/s12017-009-8109-7
    1. Stern Y., Habeck C., Steffener J., Barulli D., Gazes Y., Razlighi Q., et al. . (2014). The reference ability neural network study: motivation, design, and initial feasibility analyses. NeuroImage 103, 139–151. 10.1016/j.neuroimage.2014.09.029
    1. Tierney M. C., Szalai J. P., Snow W. G., Fisher R. H., Nores A., Nadon G., et al. . (1996). Prediction of probable Alzheimer’s disease in memory-impaired patients: a prospective longitudinal study. Neurology 46, 661–665. 10.1212/wnl.46.3.661
    1. Wang D., Wang X., Luo M.-T., Wang H., Li Y.-H. (2019). Gamma-aminobutyric acid levels in the anterior cingulate cortex of perimenopausal women with depression: a magnetic resonance spectroscopy study. Front. Neurosci. 13:785. 10.3389/fnins.2019.00785
    1. Woolley C. S., Gould E., Frankfurt M., McEwen B. S. (1990). Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 10, 4035–4039. 10.1523/JNEUROSCI.10-12-04035.1990
    1. Yassa M. A., Stark S. M., Bakker A., Albert M. S., Gallagher M., Stark C. E. (2010). High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic mild cognitive impairment. NeuroImage 51, 1242–1252. 10.1016/j.neuroimage.2010.03.040

Source: PubMed

3
구독하다