Fact-based nutrition for infants and lactating mothers-The NUTRISHIELD study

Victoria Ramos-Garcia, Isabel Ten-Doménech, Alba Moreno-Giménez, Laura Campos-Berga, Anna Parra-Llorca, Amparo Ramón-Beltrán, María J Vaya, Fady Mohareb, Corentin Molitor, Paulo Refinetti, Andrei Silva, Luis A Rodrigues, Serge Rezzi, Andrew C C Hodgson, Stéphane Canarelli, Eirini Bathrellou, Eirini Mamalaki, Melina Karipidou, Dimitrios Poulimeneas, Mary Yannakoulia, Christopher K Akhgar, Andreas Schwaighofer, Bernhard Lendl, Jennifer Karrer, Davide Migliorelli, Silvia Generelli, María Gormaz, Miltiadis Vasileiadis, Julia Kuligowski, Máximo Vento, Victoria Ramos-Garcia, Isabel Ten-Doménech, Alba Moreno-Giménez, Laura Campos-Berga, Anna Parra-Llorca, Amparo Ramón-Beltrán, María J Vaya, Fady Mohareb, Corentin Molitor, Paulo Refinetti, Andrei Silva, Luis A Rodrigues, Serge Rezzi, Andrew C C Hodgson, Stéphane Canarelli, Eirini Bathrellou, Eirini Mamalaki, Melina Karipidou, Dimitrios Poulimeneas, Mary Yannakoulia, Christopher K Akhgar, Andreas Schwaighofer, Bernhard Lendl, Jennifer Karrer, Davide Migliorelli, Silvia Generelli, María Gormaz, Miltiadis Vasileiadis, Julia Kuligowski, Máximo Vento

Abstract

Background: Human milk (HM) is the ideal source of nutrients for infants. Its composition is highly variable according to the infant's needs. When not enough own mother's milk (OMM) is available, the administration of pasteurized donor human milk (DHM) is considered a suitable alternative for preterm infants. This study protocol describes the NUTRISHIELD clinical study. The main objective of this study is to compare the % weight gain/month in preterm and term infants exclusively receiving either OMM or DHM. Other secondary aims comprise the evaluation of the influence of diet, lifestyle habits, psychological stress, and pasteurization on the milk composition, and how it modulates infant's growth, health, and development.

Methods and design: NUTRISHIELD is a prospective mother-infant birth cohort in the Spanish-Mediterranean area including three groups: preterm infants <32 weeks of gestation (i) exclusively receiving (i.e., >80% of total intake) OMM, and (ii) exclusively receiving DHM, and (iii) term infants exclusively receiving OMM, as well as their mothers. Biological samples and nutritional, clinical, and anthropometric characteristics are collected at six time points covering the period from birth and until six months of infant's age. The genotype, metabolome, and microbiota as well as the HM composition are characterized. Portable sensor prototypes for the analysis of HM and urine are benchmarked. Additionally, maternal psychosocial status is measured at the beginning of the study and at month six. Mother-infant postpartum bonding and parental stress are also examined. At six months, infant neurodevelopment scales are applied. Mother's concerns and attitudes to breastfeeding are registered through a specific questionnaire.

Discussion: NUTRISHIELD provides an in-depth longitudinal study of the mother-infant-microbiota triad combining multiple biological matrices, newly developed analytical methods, and ad-hoc designed sensor prototypes with a wide range of clinical outcome measures. Data obtained from this study will be used to train a machine-learning algorithm for providing dietary advice to lactating mothers and will be implemented in a user-friendly platform based on a combination of user-provided information and biomarker analysis. A better understanding of the factors affecting milk's composition, together with the health implications for infants plays an important role in developing improved strategies of nutraceutical management in infant care.

Clinical trial registration: https://register.clinicaltrials.gov, identifier: NCT05646940.

Keywords: breastfeeding; donor human milk; human milk; lactation; nutrition; preterm infants.

Conflict of interest statement

PR, ASi and LR are employed by REM Analytics S.A.; author JKa was employed by Quantared Technologies GmbH; and MVa is employed by ALPES Lasers. S.A. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

© 2023 Ramos-Garcia, Ten-Doménech, Moreno-Giménez, Campos-Berga, Parra-Llorca, Ramón-Beltrán, Vaya, Mohareb, Molitor, Refinetti, Silva, Rodrigues, Rezzi, Hodgson, Canarelli, Bathrellou, Mamalaki, Karipidou, Poulimeneas, Yannakoulia, Akhgar, Schwaighofer, Lendl, Karrer, Migliorelli, Generelli, Gormaz, Vasileiadis, Kuligowski and Vento.

Figures

Figure 1
Figure 1
Design of the NUTRISHIELD study. PI, preterm infant; TI, term infant; M, mother; I, infant; OMM, own mother's milk; DHM, donor human milk; CEN, complete enteral nutrition (150 ml/kg/day); RBW, recovery of birth weight; HM, human milk; FFQ, food frequency questionnaire.
Figure 2
Figure 2
Infants’ urine sample collection procedure. Sterile cotton pads are placed in the diaper (left); cotton pads soaked with urine are collected using sterile tweezers (middle); cotton pads are squeezed with a sterile syringe to collect the urine sample (right).
Figure 3
Figure 3
Data flow and functionalities of the Clinical Trial App (CTA).
Figure 4
Figure 4
Prospective flow chart of the NUTRISHIELD study. PI, preterm infant; TI, term infant; CEN, complete enteral nutrition (150 ml/kg/day); RBW, recovery of birth weight; OMM, own mother's milk; DHM, donor human milk.

References

    1. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. (2016) 387(10017):475–90. 10.1016/S0140-6736(15)01024-7
    1. Kramer MS, Kakuma R. Optimal duration of exclusive breastfeeding. Cochrane Database Syst Rev. (2012) 2012(8):CD003517. 10.1002/14651858.CD003517.pub2
    1. Meek JY, Noble L. Section on breastfeeding. Policy statement: breastfeeding and the use of human milk. Pediatrics. (2022) 150(1):e2022057988. 10.1542/peds.2022-057988
    1. Boland M. Exclusive breastfeeding should continue to six months. Paediatr Child Health. (2005) 10(3):148. 10.1093/pch/10.3.148
    1. Toscano M, De Grandi R, Grossi E, Drago L. Role of the human breast milk-associated microbiota on the newborns’ immune system: a mini review. Front Microbiol. (2017) 8:2100. 10.3389/fmicb.2017.02100
    1. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. (2015) 91(11):629–35. 10.1016/j.earlhumdev.2015.08.013
    1. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J Pediatr Gastroenterol Nutr. (2010) 50(1):85–91. 10.1097/MPG.0b013e3181adaee0
    1. Lönnerdal B, Erdmann P, Thakkar SK, Sauser J, Destaillats F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: a developmental perspective. J Nutr Biochem. (2017) 41:1–11. 10.1016/j.jnutbio.2016.06.001
    1. Koletzko B, Rodriguez-Palmero M, Demmelmair H, Fidler N, Jensen R, Sauerwald T. Physiological aspects of human milk lipids. Early Hum Dev. (2001) 65:S3–18. 10.1016/S0378-3782(01)00204-3
    1. Drago L, Toscano M, De Grandi R, Grossi E, Padovani EM, Peroni DG. Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: italy versus Burundi. ISME J. (2017) 11(4):875–84. 10.1038/ismej.2016.183
    1. García-Muñoz RF, Díez Recinos AL, García-Alix PA, Figueras AJ, Vento TM. Changes in perinatal care and outcomes in newborns at the limit of viability in Spain: the EPI-SEN study. Neonatology. (2015) 107(2):120–9. 10.1159/000368881
    1. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the sustainable development goals. Lancet. (2016) 388(10063):3027–35. 10.1016/S0140-6736(16)31593-8
    1. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Higgins RD, Langer JC, et al. Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics. (2007) 120(4):e953–959. 10.1542/peds.2006-3227
    1. Schanler R, Shulman R, Lau C. Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics. (1999) 103:1150–7. 10.1542/peds.103.6.1150
    1. Sisk PM, Lovelady CA, Dillard RG, Gruber KJ, O’Shea TM. Early human milk feeding is associated with a lower risk of necrotizing enterocolitis in very low birth weight infants. J Perinatol. (2007) 27(7):428–33. 10.1038/sj.jp.7211758
    1. Meinzen-Derr J, Poindexter B, Wrage L, Morrow AL, Stoll B, Donovan EF. Role of human milk in extremely low birth weight infants’ risk of necrotizing enterocolitis or death. J Perinatol. (2009) 29(1):57–62. 10.1038/jp.2008.117
    1. Maayan-Metzger A, Avivi S, Schushan-Eisen I, Kuint J. Human milk versus formula feeding among preterm infants: short-term outcomes. Am J Perinatol. (2012) 29(2):121–6. 10.1055/s-0031-1295652
    1. Vohr BR, Poindexter BB, Dusick AM, McKinley LT, Wright LL, Langer JC, et al. Beneficial effects of breast milk in the neonatal intensive care unit on the developmental outcome of extremely low birth weight infants at 18 months of age. Pediatrics. (2006) 118(1):e115–123. 10.1542/peds.2005-2382
    1. Isaacs EB, Fischl BR, Quinn BT, Chong WK, Gadian DG, Lucas A. Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatr Res. (2010) 67(4):357–62. 10.1203/PDR.0b013e3181d026da
    1. Okamoto T, Shirai M, Kokubo M, Takahashi S, Kajino M, Takase M, et al. Human milk reduces the risk of retinal detachment in extremely low-birthweight infants. Pediatr Int. (2007) 49(6):894–7. 10.1111/j.1442-200X.2007.02483.x
    1. Belfort MB, Rifas-Shiman SL, Sullivan T, Collins CT, McPhee AJ, Ryan P, et al. Infant growth before and after term: effects on neurodevelopment in preterm infants. Pediatrics. (2011) 128(4):e899–906. 10.1542/peds.2011-0282
    1. Meier PP, Patel AL, Esquerra-Zwiers A. Donor human milk update: evidence, mechanisms and priorities for research and practice. J Pediatr. (2017) 180:15–21. 10.1016/j.jpeds.2016.09.027
    1. Calvo J, García Lara NR, Gormaz M, Peña M, Martínez Lorenzo MJ, Ortiz Murillo P, et al. Recomendaciones para la creación y el funcionamiento de los bancos de leche materna en españa. An Pediatr (Barc). (2018) 89(1):65.e1–6. 10.1016/j.anpedi.2018.01.010
    1. Schanler RJ, Lau C, Hurst NM, Smith EO. Randomized trial of donor human milk versus preterm formula as substitutes for mothers’ own milk in the feeding of extremely premature infants. Pediatrics. (2005) 116(2):400–6. 10.1542/peds.2004-1974
    1. Quigley M, Embleton ND, McGuire W. Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database Syst Rev. (2019) 2019(7):CD002971. 10.1002/14651858.CD002971.pub5
    1. Bitman J, Wood L, Hamosh M, Hamosh P, Mehta NR. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am J Clin Nutr. (1983) 38(2):300–12. 10.1093/ajcn/38.2.300
    1. Velonà T, Abbiati L, Beretta B, Gaiaschi A, Flaúto U, Tagliabue P, et al. Protein profiles in breast milk from mothers delivering term and preterm babies. Pediatr Res. (1999) 45(5):658–63. 10.1203/00006450-199905010-00008
    1. Zhang Z, Adelman AS, Rai D, Boettcher J, Lőnnerdal B. Amino acid profiles in term and preterm human milk through lactation: a systematic review. Nutrients. (2013) 5(12):4800–21. 10.3390/nu5124800
    1. Austin S, De Castro CA, Sprenger N, Binia A, Affolter M, Garcia-Rodenas CL, et al. Human milk oligosaccharides in the milk of mothers delivering term versus preterm infants. Nutrients. (2019) 11(6):1282. 10.3390/nu11061282
    1. Underwood MA. Human milk for the premature infant. Pediatr Clin North Am. (2013) 60(1):189–207. 10.1016/j.pcl.2012.09.008
    1. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am. (2013) 60(1):49–74. 10.1016/j.pcl.2012.10.002
    1. Innis SM. Human milk and formula fatty acids. J Pediatr. (1992) 120(4 Pt 2):S56–61. 10.1016/S0022-3476(05)81237-5
    1. Butts CA, Hedderley DI, Herath TD, Paturi G, Glyn-Jones S, Wiens F, et al. Human milk composition and dietary intakes of breastfeeding women of different ethnicity from the manawatu-wanganui region of New Zealand. Nutrients. (2018) 10(9):1231. 10.3390/nu10091231
    1. Brenna JT, Varamini B, Jensen RG, Diersen-Schade DA, Boettcher JA, Arterburn LM. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am J Clin Nutr. (2007) 85(6):1457–64. 10.1093/ajcn/85.6.1457
    1. Xi Q, Liu W, Zeng T, Chen X, Luo T, Deng Z. Effect of different dietary patterns on macronutrient composition in human breast milk: a systematic review and meta-analysis. Nutrients. (2023) 15(3):485. 10.3390/nu15030485
    1. Keikha M, Bahreynian M, Saleki M, Kelishadi R. Macro- and micronutrients of human milk composition: are they related to maternal diet? A comprehensive systematic review. Breastfeed Med. (2017) 12(9):517–27. 10.1089/bfm.2017.0048
    1. Bravi F, Wiens F, Decarli A, Dal Pont A, Agostoni C, Ferraroni M. Impact of maternal nutrition on breast-milk composition: a systematic review. Am J Clin Nutr. (2016) 104(3):646–62. 10.3945/ajcn.115.120881
    1. Donovan S, Dewey K, Novotny R, Stang J, Taveras E, Kleinman R, et al. Dietary patterns during lactation and human milk composition and quantity: A systematic review. Alexandria (VA): USDA Nutrition Evidence Systematic Review; (2020). Available at: (Cited March 1, 2023).
    1. Bode L. Researchers discover a unique human milk oligosaccharide. Kinderkrankenschwester. (2012) 31(5):214. PMID:
    1. Chu DM, Meyer KM, Prince AL, Aagaard KM. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes. (2016) 7(6):459–70. 10.1080/19490976.2016.1241357
    1. Meyer KM, Mohammad M, Ma J, Chu D, Haymond M, Aagaard K. 66: maternal diet alters the breast milk microbiome and microbial gene content. Am J Obstet Gynecol. (2016) 214(1):S47–8. 10.1016/j.ajog.2015.10.084
    1. Parra-Llorca A, Gormaz M, Sánchez-Illana Á, Piñeiro-Ramos JD, Collado MC, Serna E, et al. Does pasteurized donor human milk efficiently protect preterm infants against oxidative stress? Antioxid Redox Signaling. (2019) 31(11):791–9. 10.1089/ars.2019.7821
    1. Conway JM, Ingwersen LA, Moshfegh AJ. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: an observational validation study. J Am Diet Assoc. (2004) 104(4):595–603. 10.1016/j.jada.2004.01.007
    1. Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: a Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis. (2006) 16(8):559–68. 10.1016/j.numecd.2005.08.006
    1. Zimet GD, Dahlem NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. J Pers Assess. (1988) 52(1):30–41. 10.1207/s15327752jpa5201_2
    1. Olsen D, Portner J, Lavee Y. Family adaptability and cohesion evaluation scales (FACES-II). Minneapolis: University of Minnesota; (1985). Vol. 32, No. 2, p. 10–22.
    1. Lee EH. Review of the psychometric evidence of the perceived stress scale. Asian Nurs Res (Korean Soc Nurs Sci). (2012) 6(4):121–7. 10.1016/j.anr.2012.08.004
    1. Spielberger C, Gorsuch R, Lushene R, Vagg P, Jacobs G. Manual for the state-trait anxiety inventory (form Y1–Y2). Palo Alto, CA: Consulting Psychologists Press; (1983). Vol. IV.
    1. Cox JL, Holden JM, Sagovsky R. Detection of postnatal depression. Development of the 10-item Edinburgh postnatal depression scale. Br J Psychiatry. (1987) 150:782–6. 10.1192/bjp.150.6.782
    1. Beck AT, Rial WY, Rickels K. Short form of depression inventory: cross-validation. Psychol Rep. (1974) 34(3):1184–6. 10.1177/003329417403403s01
    1. Davidson J, Smith R. Traumatic experiences in psychiatric outpatients. J Trauma Stress. (1990) 3(3):459–75. 10.1002/jts.2490030314
    1. Bobes J, Calcedo-Barba A, García M, François M, Rico-Villademoros F, González MP, et al. Evaluation of the psychometric properties of the spanish version of 5 questionnaires for the evaluation of post-traumatic stress syndrome. Actas Esp Psiquiatr. (2000) 28(4):207–18. PMID:
    1. Brockington IF, Fraser C, Wilson D. The postpartum bonding questionnaire: a validation. Arch Womens Ment Health. (2006) 9(5):233–42. 10.1007/s00737-006-0132-1
    1. Rivas GR, Arruabarrena I, Paúl JD. Parenting stress index-short form: psychometric properties of the spanish version in mothers of children aged 0 to 8 years. Psychosoc Interv. (2020) 30(1):27–34. 10.5093/pi2020a14
    1. Squires J, Twombly E, Bricker D, Potter L. Technical report. ASQ-3™ user’s guide. Baltimore: Brookes Publishing; (2009).
    1. Putnam SP, Helbig AL, Gartstein MA, Rothbart MK, Leerkes E. Development and assessment of short and very short forms of the infant behavior questionnaire-revised. J Pers Assess. (2014) 96(4):445–58. 10.1080/00223891.2013.841171
    1. Roid GH, Sampers JL. Merrill-Palmer-Revised scales of development (MPR) [Database record]. Illinois: APA PsycTests; (2004).
    1. Jácome Á, Jiménez R. Validation of the Iowa infant feeding attitude scale. Pediatria (Bucur). (2014) 47(4):77–82. 10.1016/S0120-4912(15)30143-9
    1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. (2007) 81(3):559–75. 10.1086/519795
    1. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK biobank resource with deep phenotyping and genomic data. Nature. (2018) 562(7726):203–9. 10.1038/s41586-018-0579-z
    1. Kouhounde S, Adéoti K, Mounir M, Giusti A, Refinetti P, Otu A, et al. Applications of probiotic-based multi-components to human, animal and ecosystem health: concepts, methodologies, and action mechanisms. Microorganisms. (2022) 10(9):1700. 10.3390/microorganisms10091700
    1. Ekstrøm PO, Warren DJ, Thilly WG. Separation principles of cycling temperature capillary electrophoresis. Electrophoresis. (2012) 33(7):1162–8. 10.1002/elps.201100550
    1. Ramos-Garcia V, Ten-Doménech I, Moreno-Giménez A, Campos-Berga L, Parra-Llorca A, Solaz-García Á, et al. GC-MS analysis of short chain fatty acids and branched chain amino acids in urine and faeces samples from newborns and lactating mothers. Clin Chim Acta. (2022) 532:172–80. 10.1016/j.cca.2022.05.005
    1. Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics. (2013) 9(4):818–27. 10.1007/s11306-013-0500-6
    1. Sarafian MH, Lewis MR, Pechlivanis A, Ralphs S, McPhail MJW, Patel VC, et al. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal Chem. (2015) 87(19):9662–70. 10.1021/acs.analchem.5b01556
    1. González-Domínguez R, Urpi-Sarda M, Jáuregui O, Needs PW, Kroon PA, Andrés-Lacueva C. Quantitative dietary fingerprinting (QDF)—a novel tool for comprehensive dietary assessment based on urinary nutrimetabolomics. J Agric Food Chem. (2019) 68(7):1851–61. 10.1021/acs.jafc.8b07023
    1. Ramos-Garcia V, Moreno-Giménez A, Campos-Berga L, Parra-Llorca A, Gormaz M, Vento M, et al. Joint microbiota activity and dietary assessment through urinary biomarkers by LC-MS/MS. (Under revision).
    1. Ten-Doménech I, Martínez-Sena T, Moreno-Torres M, Sanjuan-Herráez JD, Castell JV, Parra-Llorca A, et al. Comparing targeted vs. Untargeted MS2 data-dependent acquisition for peak annotation in LC–MS metabolomics. Metabolites. (2020) 10(4):126. 10.3390/metabo10040126
    1. Miris. “HMA User Manual”. Available at: (Cited June 27, 2022).
    1. Cruz-Hernandez C, Goeuriot S, Giuffrida F, Thakkar SK, Destaillats F. Direct quantification of fatty acids in human milk by gas chromatography. J Chromatogr, A. (2013) 1284:174–9. 10.1016/j.chroma.2013.01.094
    1. Ten-Doménech I, Ramos-Garcia V, Moreno-Torres M, Parra-Llorca A, Gormaz M, Vento M, et al. The effect of holder pasteurization on the lipid and metabolite composition of human milk. Food Chem. (2022) 384:132581. 10.1016/j.foodchem.2022.132581
    1. Lu J, Frank EL. Rapid HPLC measurement of thiamine and its phosphate esters in whole blood. Clin Chem. (2008) 54(5):901–6. 10.1373/clinchem.2007.099077
    1. Yang J, Cleland GE, Organtini KL. Determination of vitamin D and previtamin D in food products. Waters Appl Note. (2017).
    1. Oberson JM, Bénet S, Redeuil K, Campos-Giménez E. Quantitative analysis of vitamin D and its main metabolites in human milk by supercritical fluid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem. (2020) 412(2):365–75. 10.1007/s00216-019-02248-5
    1. Levêques A, Oberson JM, Tissot EA, Redeuil K, Thakkar SK, Campos-Giménez E. Quantification of vitamins A, E, and K and carotenoids in submilliliter volumes of human milk. J AOAC Int. (2019) 102(4):1059–68. 10.5740/jaoacint.19-0016
    1. Manoury E, Jourdon K, Boyaval P, Fourcassié P. Quantitative measurement of vitamin K2 (menaquinones) in various fermented dairy products using a reliable high-performance liquid chromatography method. J Dairy Sci. (2013) 96(3):1335–46. 10.3168/jds.2012-5494
    1. Xue Y, Campos-Giménez E, Redeuil KM, Lévèques A, Actis-Goretta L, Vinyes-Pares G, et al. Concentrations of carotenoids and tocopherols in breast milk from urban Chinese mothers and their associations with maternal characteristics: a cross-sectional study. Nutrients. (2017) 9(11):1229. 10.3390/nu9111229
    1. Remoroza CA, Mak TD, De Leoz MLA, Mirokhin YA, Stein SE. Creating a mass spectral reference library for oligosaccharides in human milk. Anal Chem. (2018) 90(15):8977–88. 10.1021/acs.analchem.8b01176
    1. Navarro-Esteve V, Cascant-Vilaplana MM, Zöchner A, Ramos-Garcia V, Roca M, Parra-Llorca A, et al. A Hybrid Liquid Chromatography—Mass Spectrometry method for comprehensive Human Milk Oligosaccharide Screening. (Under revision).
    1. Son HH, Yun WS, Cho S-H. Development and validation of an LC-MS/MS method for profiling 39 urinary steroids (estrogens, androgens, corticoids, and progestins). Biomed Chromatogr. (2020) 34:e4723–39. 10.1002/bmc.4723
    1. Gomez-Gomez A, Miranda J, Feixas G, Arranz Betegon A, Crispi F, Gratacós E, et al. Determination of the steroid profile in alternative matrices by liquid chromatography tandem mass spectrometry. J Steroid Biochem Mol Biol. (2020) 197:105520. 10.1016/j.jsbmb.2019.105520
    1. Akhgar CK, Ramer G, Żbik M, Trajnerowicz A, Pawluczyk J, Schwaighofer A, et al. The next generation of IR spectroscopy: EC-QCL-based mid-IR transmission spectroscopy of proteins with balanced detection. Anal Chem. (2020) 92(14):9901–7. 10.1021/acs.analchem.0c01406
    1. Schwaighofer A, Akhgar CK, Lendl B. Broadband laser-based mid-IR spectroscopy for analysis of proteins and monitoring of enzyme activity. Spectrochim Acta, Part A. (2021) 253:119563. 10.1016/j.saa.2021.119563
    1. Akhgar CK, Nürnberger V, Nadvornik M, Ramos-Garcia V, Ten-Doménech I, Kuligowski J, et al. Fatty acid determination in human milk using attenuated total reflection infrared spectroscopy and solvent-free lipid separation. Appl Spectrosc. (2022) 76(6):730–6. 10.1177/00037028211065502
    1. Akhgar CK, Ramos-Garcia V, Nürnberger V, Moreno-Giménez A, Kuligowski J, Rosenberg E, et al. Solvent-Free lipid separation and attenuated total reflectance infrared spectroscopy for fast and green fatty acid profiling of human milk. Foods. (2022) 11(23):3906. 10.3390/foods11233906
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B(1995) 57(1):289–300. 10.1111/j.2517-6161.1995.tb02031.x

Source: PubMed

3
구독하다