Joint Microbiota Activity and Dietary Assessment through Urinary Biomarkers by LC-MS/MS

Victoria Ramos-Garcia, Isabel Ten-Doménech, Alba Moreno-Giménez, Laura Campos-Berga, Anna Parra-Llorca, María Gormaz, Máximo Vento, Melina Karipidou, Dimitrios Poulimeneas, Eirini Mamalaki, Eirini Bathrellou, Julia Kuligowski, Victoria Ramos-Garcia, Isabel Ten-Doménech, Alba Moreno-Giménez, Laura Campos-Berga, Anna Parra-Llorca, María Gormaz, Máximo Vento, Melina Karipidou, Dimitrios Poulimeneas, Eirini Mamalaki, Eirini Bathrellou, Julia Kuligowski

Abstract

Accurate dietary assessment in nutritional research is a huge challenge, but essential. Due to the subjective nature of self-reporting methods, the development of analytical methods for food intake and microbiota biomarkers determination is needed. This work presents an ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) method for the quantification and semi quantification of 20 and 201 food intake biomarkers (BFIs), respectively, as well as 7 microbiota biomarkers applied to 208 urine samples from lactating mothers (M) (N = 59). Dietary intake was assessed through a 24 h dietary recall (R24h). BFI analysis identified three distinct clusters among samples: samples from clusters 1 and 3 presented higher concentrations of most biomarkers than those from cluster 2, with dairy products and milk biomarkers being more concentrated in cluster 1, and seeds, garlic and onion in cluster 3. Significant correlations were observed between three BFIs (fruits, meat, and fish) and R24h data (r > 0.2, p-values < 0.01, Spearman correlation). Microbiota activity biomarkers were simultaneously evaluated and the subgroup patterns detected were compared to clusters from dietary assessment. These results evidence the feasibility, usefulness, and complementary nature of the determination of BFIs, R24h, and microbiota activity biomarkers in observational nutrition cohort studies.

Keywords: dietary assessment; food-intake; lactating mothers; microbiota biomarkers; nutrition biomarkers; urine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
R24h food groups intake in lactating mothers. Note: Horizontal black line represents recommended intake according to the World Health Organization diet guidelines for lactating mothers. (Red dot = median; blue circle (open) = standard outlier (1.5 - 3.0 × IQR); blue circle (closed) = extreme outlier (≥ 3.0 × IQR)).
Figure 2
Figure 2
Significant paired correlations among BFIs (Pearson’s correlation, p-value < 0.05).
Figure 3
Figure 3
Number of metabolites and detection frequencies of the semi-quantitative analysis. Note: (*) Potato, cocoa, mushrooms, legumes and nuts.
Figure 4
Figure 4
BFIs patterns in mothers’ urine samples. Top: Hierarchical clustering analysis revealing three sub-groups within the study samples (left) and PCA scores plot (right). Bottom: loadings plot (left) and PCA scores plot with Simpson’s Index of Diversity classes (right).
Figure 5
Figure 5
Mean R24h food group values for clusters 1 to 3.
Figure 6
Figure 6
Significant correlations among BFIs and R24h food groups (Spearman’s correlation, p-value < 0.05). Note: (*) p-value < 0.001.

References

    1. Brennan L. 7—Metabotyping: Moving towards personalised nutrition. In: Sébédio J.-L., Brennan L., editors. Metabolomics as a Tool in Nutrition Research. Woodhead Publishing; Sawston, UK: 2015. pp. 137–144. (Woodhead Publishing Series in Food Science, Technology and Nutrition).
    1. García-Muñoz Rodrigo F., Díez Recinos A.L., García-Alix Pérez A., Figueras Aloy J., Vento Torres M. Changes in perinatal care and outcomes in newborns at the limit of viability in Spain: The EPI-SEN Study. Neonatology. 2015;107:120–129. doi: 10.1159/000368881.
    1. Vohr B.R., Poindexter B.B., Dusick A.M., McKinley L.T., Higgins R.D., Langer J.C., Poole W.K., National Institute of Child Health and Human Development National Research Network Persistent beneficial effects of breast milk ingested in the neonatal intensive care unit on outcomes of extremely low birth weight infants at 30 months of age. Pediatrics. 2007;120:e953–e959. doi: 10.1542/peds.2006-3227.
    1. Ballard O., Morrow A.L. Human Milk Composition: Nutrients and Bioactive Factors. Pediatr. Clin. N. Am. 2013;60:49–74. doi: 10.1016/j.pcl.2012.10.002.
    1. Innis S.M. Human milk and formula fatty acids. J. Pediatr. 1992;120:S56–S61. doi: 10.1016/S0022-3476(05)81237-5.
    1. Brenna J.T., Varamini B., Jensen R.G., Diersen-Schade D.A., Boettcher J.A., Arterburn L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007;85:1457–1464. doi: 10.1093/ajcn/85.6.1457.
    1. Neuhouser M.L., Tinker L., Shaw P.A., Schoeller D., Bingham S.A., Horn L.V., Beresford S.A.A., Caan B., Thomson C., Satterfield S., et al. Use of recovery biomarkers to calibrate nutrient consumption self-reports in the Women’s Health Initiative. Am. J. Epidemiol. 2008;167:1247–1259. doi: 10.1093/aje/kwn026.
    1. Lafay L., Mennen L., Basdevant A., Charles M.A., Borys J.M., Eschwège E., Romon M. Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Santé (FLVS) study. Int. J. Obes. Relat. Metab. Disord. 2000;24:1500–1506. doi: 10.1038/sj.ijo.0801392.
    1. Jenab M., Slimani N., Bictash M., Ferrari P., Bingham S.A. Biomarkers in nutritional epidemiology: Applications, needs and new horizons. Hum. Genet. 2009;125:507–525. doi: 10.1007/s00439-009-0662-5.
    1. Scalbert A., Brennan L., Manach C., Andres-Lacueva C., Dragsted L.O., Draper J., Rappaport S.M., van der Hooft J.J.J., Wishart D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014;99:1286–1308. doi: 10.3945/ajcn.113.076133.
    1. Maruvada P., Lampe J.W., Wishart D.S., Barupal D., Chester D.N., Dodd D., Djoumbou-Feunang Y., Dorrestein P.C., Dragsted L.O., Draper J., et al. Perspective: Dietary Biomarkers of Intake and Exposure—Exploration with Omics Approaches. Adv. Nutr. 2019;11:200–215. doi: 10.1093/advances/nmz075.
    1. Ulaszewska M.M., Weinert C.H., Trimigno A., Portmann R., Andres Lacueva C., Badertscher R., Brennan L., Brunius C., Bub A., Capozzi F., et al. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Mol. Nutr. Food Res. 2019;63:1800384. doi: 10.1002/mnfr.201800384.
    1. González-Domínguez R., editor. Mass Spectrometry for Metabolomics. Volume 2571. Springer US; New York, NY, USA: 2023. Methods in Molecular Biology.
    1. Clarke E.D., Rollo M.E., Pezdirc K., Collins C.E., Haslam R.L. Urinary biomarkers of dietary intake: A review. Nutr. Rev. 2020;78:364–381. doi: 10.1093/nutrit/nuz048.
    1. Bar N., Korem T., Weissbrod O., Zeevi D., Rothschild D., Leviatan S., Kosower N., Lotan-Pompan M., Weinberger A., Le Roy C.I., et al. A reference map of potential determinants for the human serum metabolome. Nature. 2020;588:135–140. doi: 10.1038/s41586-020-2896-2.
    1. Chen L., Zhernakova D.V., Kurilshikov A., Andreu-Sánchez S., Wang D., Augustijn H.E., Vich Vila A., Lifelines Cohort Study. Weersma R.K., Medema M.H., et al. Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome. Nat. Med. 2022;28:2333–2343. doi: 10.1038/s41591-022-02014-8.
    1. Hedrick V.E., Dietrich A.M., Estabrooks P.A., Savla J., Serrano E., Davy B.M. Dietary biomarkers: Advances, limitations and future directions. Nutr. J. 2012;11:109. doi: 10.1186/1475-2891-11-109.
    1. Playdon M.C., Sampson J.N., Cross A.J., Sinha R., Guertin K.A., Moy K.A., Rothman N., Irwin M.L., Mayne S.T., Stolzenberg-Solomon R., et al. Comparing metabolite profiles of habitual diet in serum and urine. Am. J. Clin. Nutr. 2016;104:776–789. doi: 10.3945/ajcn.116.135301.
    1. Sébédio J.-L. Advances in Food and Nutrition Research. Volume 82. Elsevier; Amsterdam, The Netherlands: 2017. Metabolomics, Nutrition, and Potential Biomarkers of Food Quality, Intake, and Health Status; pp. 83–116.
    1. Brouwer-Brolsma E.M., Brennan L., Drevon C.A., van Kranen H., Manach C., Dragsted L.O., Roche H.M., Andres-Lacueva C., Bakker S.J.L., Bouwman J., et al. Combining traditional dietary assessment methods with novel metabolomics techniques: Nutrition-Society Summer Meeting/Conference on New Technology in Nutrition Research and Practice / Symposium 2 on Use of Biomarkers in Dietary Assessment and Dietary Exposure. Proc. Nutr. Soc. 2017;76:619–627. doi: 10.1017/S0029665117003949.
    1. Gu L., Laly M., Chang H.C., Prior R.L., Fang N., Ronis M.J.J., Badger T.M. Isoflavone conjugates are underestimated in tissues using enzymatic hydrolysis. J. Agric. Food Chem. 2005;53:6858–6863. doi: 10.1021/jf050802j.
    1. Quifer-Rada P., Martínez-Huélamo M., Lamuela-Raventos R.M. Is enzymatic hydrolysis a reliable analytical strategy to quantify glucuronidated and sulfated polyphenol metabolites in human fluids? Food Funct. 2017;8:2419–2424. doi: 10.1039/C7FO00558J.
    1. González-Domínguez R., Urpi-Sarda M., Jáuregui O., Needs P.W., Kroon P.A., Andrés-Lacueva C. Quantitative Dietary Fingerprinting (QDF)—A Novel Tool for Comprehensive Dietary Assessment Based on Urinary Nutrimetabolomics. J. Agric. Food Chem. 2019;68:1851–1861. doi: 10.1021/acs.jafc.8b07023.
    1. Feliciano R.P., Mecha E., Bronze M.R., Rodriguez-Mateos A. Development and validation of a high-throughput micro solid-phase extraction method coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapid identification and quantification of phenolic metabolites in human plasma and urine. J. Chromatogr. A. 2016;1464:21–31. doi: 10.1016/j.chroma.2016.08.027.
    1. Spencer J.P.E., Abd El Mohsen M.M., Minihane A.-M., Mathers J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2008;99:12–22. doi: 10.1017/S0007114507798938.
    1. Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.-Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science. 2011;334:105–108. doi: 10.1126/science.1208344.
    1. Redondo-Useros N., Nova E., González-Zancada N., Díaz L.E., Gómez-Martínez S., Marcos A. Microbiota and Lifestyle: A Special Focus on Diet. Nutrients. 2020;12:1776. doi: 10.3390/nu12061776.
    1. Moles L., Otaegui D. The Impact of Diet on Microbiota Evolution and Human Health. Is Diet an Adequate Tool for Microbiota Modulation? Nutrients. 2020;12:1654. doi: 10.3390/nu12061654.
    1. Berding K., Vlckova K., Marx W., Schellekens H., Stanton C., Clarke G., Jacka F., Dinan T.G., Cryan J.F. Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Adv. Nutr. 2021;12:1239–1285. doi: 10.1093/advances/nmaa181.
    1. Dahl W.J., Rivero Mendoza D., Lambert J.M. Diet, nutrients and the microbiome. Prog. Mol. Biol. Transl. Sci. 2020;171:237–263. doi: 10.1016/bs.pmbts.2020.04.006.
    1. Bibbò S., Ianiro G., Giorgio V., Scaldaferri F., Masucci L., Gasbarrini A., Cammarota G. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 2016;20:4742–4749.
    1. Kolodziejczyk A.A., Zheng D., Elinav E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 2019;17:742–753. doi: 10.1038/s41579-019-0256-8.
    1. Chassaing B., Gewirtz A.T. Physiology of the Gastrointestinal Tract. Elsevier; Amsterdam, The Netherlands: 2018. Gut Microbiome and Metabolism; pp. 775–793.
    1. Ramos-Garcia V., Ten-Doménech I., Moreno-Giménez A., Campos-Berga L., Parra-Llorca A., Ramón A., Vaya M.J., Mohareb F., Molitor C., Refinetti P., et al. Fact-based nutrition for infants and lactating mothers—The Nutrishield study. Front. Pediatr. 2023. Accepted for publication .
    1. Hinojosa Nogueira D.J., Romero Molina D., Giménez Asensio M.J., González Alzaga B., López Flores I., Pastoriza de la Cueva S., Rufián Henares J.Á., Hernández Jérez A.F., Lacasaña M. Validity and Reproducibility of a Food Frequency Questionnaire to Assess Nutrients Intake of Pregnant Women in the South-East of Spain. Nutrients. 2021;13:3032. doi: 10.3390/nu13093032.
    1. Conway J.M., Ingwersen L.A., Moshfegh A.J. Accuracy of dietary recall using the USDA five-step multiple-pass method in men: An observational validation study. J. Am. Diet. Assoc. 2004;104:595–603. doi: 10.1016/j.jada.2004.01.007.
    1. Panagiotakos D.B., Pitsavos C., Stefanadis C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006;16:559–568. doi: 10.1016/j.numecd.2005.08.006.
    1. FDA . Guidance for Industry: Bioanalytical Method Validation. Volume 44 Food and Drug Administration, Center for Drug Evaluation and Research, Center for Veterinary Medicine; Rockville, MD, USA: 2018.
    1. Healthy Eating during Pregnancy and Breastfeeding—Booklet for Mothers. World Health Organization; Geneva, Switzerland: 2021.
    1. Lloyd A.J., Beckmann M., Favé G., Mathers J.C., Draper J. Proline betaine and its biotransformation products in fasting urine samples are potential biomarkers of habitual citrus fruit consumption. Br. J. Nutr. 2011;106:812–824. doi: 10.1017/S0007114511001164.
    1. Cheung W., Keski-Rahkonen P., Assi N., Ferrari P., Freisling H., Rinaldi S., Slimani N., Zamora-Ros R., Rundle M., Frost G., et al. A metabolomic study of biomarkers of meat and fish intake. Am. J. Clin. Nutr. 2017;105:600–608. doi: 10.3945/ajcn.116.146639.
    1. Krogholm K.S., Bredsdorff L., Alinia S., Christensen T., Rasmussen S.E., Dragsted L.O. Free fruit at workplace intervention increases total fruit intake: A validation study using 24 h dietary recall and urinary flavonoid excretion. Eur. J. Clin. Nutr. 2010;64:1222–1228. doi: 10.1038/ejcn.2010.130.
    1. Gibbons H., McNulty B.A., Nugent A.P., Walton J., Flynn A., Gibney M.J., Brennan L. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake. Am. J. Clin. Nutr. 2015;101:471–477. doi: 10.3945/ajcn.114.095604.
    1. Cross A.J., Major J.M., Sinha R. Urinary biomarkers of meat consumption. Cancer Epidemiol. Biomark. Prev. 2011;20:1107–1111. doi: 10.1158/1055-9965.EPI-11-0048.
    1. Rasmussen L.G., Winning H., Savorani F., Toft H., Larsen T.M., Dragsted L.O., Astrup A., Engelsen S.B. Assessment of the Effect of High or Low Protein Diet on the Human Urine Metabolome as Measured by NMR. Nutrients. 2012;4:112–131. doi: 10.3390/nu4020112.
    1. Jacobsen J.G., Smith L.H. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 1968;48:424–511. doi: 10.1152/physrev.1968.48.2.424.
    1. Garcia-Aloy M., Rabassa M., Casas-Agustench P., Hidalgo-Liberona N., Llorach R., Andres-Lacueva C. Novel strategies for improving dietary exposure assessment: Multiple-data fusion is a more accurate measure than the traditional single-biomarker approach. Trends Food Sci. Technol. 2017;69:220–229. doi: 10.1016/j.tifs.2017.04.013.
    1. Brennan L. Metabolomics: A tool to aid dietary assessment in nutrition. Curr. Opin. Food Sci. 2017;16:96–99. doi: 10.1016/j.cofs.2017.09.003.
    1. Praticò G., Gao Q., Scalbert A., Vergères G., Kolehmainen M., Manach C., Brennan L., Pedapati S.H., Afman L.A., Wishart D.S., et al. Guidelines for Biomarker of Food Intake Reviews (BFIRev): How to conduct an extensive literature search for biomarker of food intake discovery. Genes Nutr. 2018;13:3. doi: 10.1186/s12263-018-0592-8.
    1. Moore S.C., Matthews C.E., Sampson J.N., Stolzenberg-Solomon R.Z., Zheng W., Cai Q., Tan Y.T., Chow W.-H., Ji B.-T., Liu D.K., et al. Human metabolic correlates of body mass index. Metabolomics. 2014;10:259–269. doi: 10.1007/s11306-013-0574-1.
    1. Schutte B.A.M., van den Akker E.B., Deelen J., van de Rest O., van Heemst D., Feskens E.J.M., Beekman M., Slagboom P.E. The effect of standardized food intake on the association between BMI and 1H-NMR metabolites. Sci. Rep. 2016;6:38980. doi: 10.1038/srep38980.
    1. Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci. Transl. Med. 2009;1:6ra14. doi: 10.1126/scitranslmed.3000322.

Source: PubMed

3
구독하다