Regulation of renal blood flow by plasma chloride

C S Wilcox, C S Wilcox

Abstract

Micropuncture studies have shown that glomerular filtration rate (GFR) falls in response to a rise in Na(+) or Cl(-) concentrations in the loop of Henle, whereas studies in isolated kidneys have shown that GFR falls in response to osmotic diuresis. To define the separate effects of an acute increase in plasma sodium (P(Na)), chloride (P(Cl)) or osmolality (P(osmol)), changes in renal blood flow (RBF) and GFR were measured during intrarenal infusions of hypertonic NaCl, NaHCO(3), Na acetate, dextrose, NH(4)Cl or NH(4)acetate to denervated kidneys. The infusions raised P(osmol) at the experimental kidney by 30-45 mosmol. RBF increased abruptly by 10-30% with all hypertonic infusions indicating that an acute increase in plasma tonicity causes renal vasodilatation. Renal vasodilatation persisted or increased further during infusion of dextrose, NaHCO(3) and Na acetate, but GFR was unchanged. In contrast, during infusion of the two Cl-containing solutions, vasodilatation was reversed after 1-5 min and RBF and GFR decreased (P < 0.01) below preinfusion levels. Prior salt depletion doubled the vasoconstriction seen with hypertonic NaCl infusions. Overall, changes in RBF were unrelated to changes in P(Na) or fractional Na or fluid reabsorption but correlated with changes in P(Cl) (r = -0.91) and fractional Cl(-) reabsorption (r = 0.94). The intrafemoral arterial infusion of the two Cl-containing solutions did not increase femoral vascular resistance. In conclusion, hyperchloremia produces a progressive renal vasoconstriction and fall in GFR that is independent of the renal nerves, is potentiated by prior salt depletion and is related to tubular Cl(-) reabsorption. Chloride-induced vasoconstriction appears specific for the renal vessels.

References

    1. Circ Res. 1960 Jan;8:57-70
    1. Am J Physiol. 1964 Apr;206:687-93
    1. Pflugers Arch. 1976 Apr 6;362(3):229-40
    1. J Clin Invest. 1962 Jan;41:101-7
    1. J Physiol. 1978 Nov;284:203-17
    1. Kidney Int. 1977 Oct;12(4):253-67
    1. Pflugers Arch. 1979 Nov;382(3):217-23
    1. J Lab Clin Med. 1977 Aug;90(2):318-23
    1. Am J Physiol. 1970 Jan;218(1):20-6
    1. Pflugers Arch. 1981 Oct;391(4):296-300
    1. Circ Res. 1971 Mar;28(3):371-6
    1. Kidney Int. 1972 Dec;2(6):304-17
    1. Pflugers Arch. 1972;334(1):85-102
    1. Am J Physiol. 1966 Dec;211(6):1387-92
    1. Am J Physiol. 1973 Jun;224(6):1327-33
    1. Circulation. 1958 Apr;17(4, Part 2):746-9
    1. Am J Physiol. 1960 Jul;199:31-4
    1. Am J Physiol. 1973 Aug;225(2):380-4
    1. Pflugers Arch. 1974;346(4):263-77
    1. Pflugers Arch. 1973 Jan 22;338(2):93-144
    1. Circ Res. 1964 Aug;15:SUPPL:187-97
    1. J Physiol. 1976 Apr;256(3):731-45
    1. Am J Physiol. 1973 Nov;225(5):1003-8
    1. Am J Physiol. 1979 Dec;237(6):F441-6
    1. Am J Physiol. 1976 Apr;230(4):1148-58
    1. J Appl Physiol. 1967 Apr;22(4):772-81
    1. Am J Physiol. 1977 Sep;233(3):F217-24
    1. Am J Physiol. 1980 Apr;238(4):F256-60
    1. J Clin Invest. 1974 Jun;53(6):1695-708
    1. Pflugers Arch Gesamte Physiol Menschen Tiere. 1967;295(1):72-9
    1. J Clin Invest. 1978 Nov;62(5):993-1004
    1. Am J Med. 1964 May;36:698-719
    1. Am J Physiol. 1979 Jan;236(1):F40-7
    1. Am J Physiol. 1971 Feb;220(2):384-91
    1. Klin Wochenschr. 1965 Apr 15;43:410-3
    1. Kidney Int Suppl. 1982 Aug;12:S109-13
    1. Arch Int Physiol Biochim. 1981 Feb;89(1):35-40
    1. Am J Physiol. 1969 Oct;217(4):1216-23
    1. Kidney Int. 1981 Oct;20(4):462-8
    1. J Physiol. 1981 May;314:531-45
    1. Am J Physiol. 1977 Jul;233(1):F1-7
    1. Acta Physiol Scand. 1969 Mar;75(3):484-95
    1. Pflugers Arch. 1978 Apr 25;374(1):67-72
    1. Am J Physiol. 1978 Oct;235(4):F352-8
    1. J Physiol. 1976 Jan;254(1):183-202
    1. Pflugers Arch. 1970;318(2):147-75
    1. J Physiol. 1977 Feb;265(1):6P-7P

Source: PubMed

3
구독하다