Effects of Online Bodyweight High-Intensity Interval Training Intervention and Health Education on the Mental Health and Cognition of Sedentary Young Females

Yao Zhang, Beier Zhang, Liaoyan Gan, Limei Ke, Yingyao Fu, Qian Di, Xindong Ma, Yao Zhang, Beier Zhang, Liaoyan Gan, Limei Ke, Yingyao Fu, Qian Di, Xindong Ma

Abstract

This study aimed to assess the effectiveness of an online high-intensity interval training (HIIT) intervention and health education on the behaviors, mental health, and cognitive function of sedentary young females. A single-blinded, six-week, randomized controlled pilot trial involving 70 sedentary young Chinese females, aged 18-30 years, was conducted. An intervention group (IG) (n = 33) underwent a HIIT intervention and health education, while a waitlist group (WG) (n = 37) only received health education. In pre-, mid-, and post-tests, both groups filled out questionnaires about physical activity, sedentary behavior, and mental health. Cognitive functions were assessed at the pre- and post-tests by computer-administered cognitive tests. A mixed-effect model with repeated measures was used to analyze outcomes of interest. The retention rate of the IG and WG was 100% and 78.38%, respectively. The IG were found to have significantly increased rates of moderate-to-vigorous physical activity (MVPA) (Mdiff = 940.61, p < 0.001, 95% confidence interval (95% CI): 576.67, 1304.55) from pre-test to post-test, while the WG demonstrated a more marked reduction in sedentary time (Mdiff = -73.02, p = 0.038, 95% CI: -141.90, -4.14) compared with the IG in the post-test. Moreover, anxiety and stress levels were shown to significantly reduce in the IG over the six-week period (Mdiff = -4.73, p = 0.002, 95% CI: -7.30, -2.15 and Mdiff = -5.09, p = 0.001, 95% CI: -8.29, -1.89, respectively). In addition, we observed a significant improvement in verbal ability (p = 0.008, ηp2 = 0.19) following the HIIT intervention and effects of the interaction with time on processing speed (p = 0.050, ηp2 = 0.10) and episodic memory (p = 0.048, ηp2 = 0.11). Moreover, the IG had better global cognitive performance than the WG in the post-test (Mdiff = 8.28, p = 0.003, 95% CI: 3.06, 13.50). In summary, both an online bodyweight HIIT intervention combined with health education, or health education alone, can effectively improve health-related behaviors, but the behavioral consequences may differ based on the emphasis of different intervention modalities. Furthermore, the "bodyweight HIIT plus health education" modality might be a more promising online intervention strategy to mitigate against negative emotions and improve cognitive function.

Keywords: HIIT; cognitive function; health education; mental health; online physical activity intervention; sedentary young females.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Time axis diagram describing the process of the project.
Figure 2
Figure 2
Flowchart showing the study design.
Figure 3
Figure 3
Effects of the treatment, time, and treatment x time interaction on cognitive function a,b Note: The subgroup of (AF) indicates changes of two groups in processing speed, working memory, episodic memory, visual-spatial ability, verbal ability and global cognitive functions from pre-test to post-test. IG, intervention group, receiving HIIT and health education; WG, waitlist group, receiving health education only; T1, pre-test; T3, post-test. The score for each cognitive function test was converted into a norm of 0–19 points. The score for global cognitive function was the sum of five cognitive tasks, ranging from 0 to 95. * indicates a significant treatment, time and treatment × time interaction effect on a specific domain or global cognitive function. # represents a significant change from pre-test to post-test for each group or a significant difference between two groups in the post-test. a Mixed-effect models with repeated measures and analysis of variance F tests. b The degrees of freedom for between-participant, within-participant, and interaction-effect analyses were (1,34). The first degree of freedom in parentheses refers to the main or interactive effect and the second refers to the error term.

References

    1. Thivel D. Physical Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in Occupational Health. Front. Public Health. 2018;6:1–5. doi: 10.3389/fpubh.2018.00288.
    1. Caspersen C.J., Powell K.E., Christenson G.M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research. Public Health Rep. 1985;100:126–131.
    1. Chodzko-Zajko W.J., Proctor D.N., Fiatarone Singh M.A., Minson C.T., Nigg C.R., Salem G.J., Skinner J.S. Exercise and Physical Activity for Older Adults. Med. Sci. Sports Exerc. 2009;41:1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c.
    1. Warburton D.E.R. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006;174:801–809. doi: 10.1503/cmaj.051351.
    1. Pascoe M., Bailey A.P., Craike M., Carter T., Patten R., Stepto N., Parker A. Physical activity and exercise in youth mental health promotion: A scoping review. BMJ Open Sport Exerc. Med. 2020;6:e000677. doi: 10.1136/bmjsem-2019-000677.
    1. Erickson K.I., Weinstein A.M., Lopez O.L. Physical Activity, Brain Plasticity, and Alzheimer’s Disease. Arch. Med. Res. 2012;43:615–621. doi: 10.1016/j.arcmed.2012.09.008.
    1. Bansal R., Hellerstein D.J., Peterson B.S. Evidence for neuroplastic compensation in the cerebral cortex of persons with depressive illness. Mol. Psychiatry. 2018;23:375–383. doi: 10.1038/mp.2017.34.
    1. Burdette J.H., Laurienti P.J., Espeland M.A., Morgan A., Telesford Q., Vechlekar C.D., Hayasaka S., Jennings J.M., Katula J.A., Kraft R.A., et al. Using network science to evaluate exercise-associated brain changes in older adults. Front. Aging Neurosci. 2010 doi: 10.3389/fnagi.2010.00023.
    1. Coelho F.G.d.M., Gobbi S., Andreatto C.A.A., Corazza D.I., Pedroso R.V., Santos-Galduróz R.F. Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): A systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 2013;56:10–15. doi: 10.1016/j.archger.2012.06.003.
    1. Tremblay M.S. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017;14:75. doi: 10.1186/s12966-017-0525-8.
    1. Hamer M., Stamatakis E. Prospective Study of Sedentary Behavior, Risk of Depression, and Cognitive Impairment. Med. Sci. Sports Exerc. 2014;46:718–723. doi: 10.1249/MSS.0000000000000156.
    1. Falck R.S., Davis J.C., Liu-Ambrose T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 2017;51:800–811. doi: 10.1136/bjsports-2015-095551.
    1. Bull F.C., Bauman A.E. Physical Inactivity: The “Cinderella” Risk Factor for Noncommunicable Disease Prevention. J. Health Commun. 2011;16:13–26. doi: 10.1080/10810730.2011.601226.
    1. Hallal P.C., Andersen L.B., Bull F.C., Guthold R., Haskell W., Ekelund U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet. 2012;380:247–257. doi: 10.1016/S0140-6736(12)60646-1.
    1. Guthold R., Stevens G.A., Riley L.M., Bull F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob. Health. 2018;6:e1077–e1086. doi: 10.1016/S2214-109X(18)30357-7.
    1. Edwards M.K., Loprinzi P.D. Experimentally increasing sedentary behavior results in increased anxiety in an active young adult population. J. Affect. Disord. 2016;204:166–173. doi: 10.1016/j.jad.2016.06.045.
    1. Falck R.S., Landry G.J., Best J.R., Davis J.C., Chiu B.K., Liu-Ambrose T. Cross-Sectional Relationships of Physical Activity and Sedentary Behavior with Cognitive Function in Older Adults with Probable Mild Cognitive Impairment. Phys. Ther. 2017;97:975–984. doi: 10.1093/ptj/pzx074.
    1. Segar M., Jayaratne T., Hanlon J., Richardson C.R. Fitting fitness into women’s lives: Effects of a gender-tailored physical activity intervention. Womens Health Issues. 2002;12:338–347. doi: 10.1016/S1049-3867(02)00156-1.
    1. Budde H., Schwarz R., Velasques B., Ribeiro P., Holzweg M., Machado S., Brazaitis M., Staack F., Wegner M. The Need for Differentiating between Exercise, Physical Activity, and Training. Autoimmun. Rev. 2016;15:110–111. doi: 10.1016/j.autrev.2015.09.004.
    1. Filion A.J., Darlington G., Chaput J.-P., Ybarra M., Haines J. Examining the Influence of a Text Message-Based Sleep and Physical Activity Intervention among Young Adult Smokers in the United States. BMC Public Health. 2015;15:671. doi: 10.1186/s12889-015-2045-2.
    1. Peyman N., Rezai-Rad M., Tehrani H., Gholian-Aval M., Vahedian-Shahroodi M., Heidarian Miri H. Digital Media-Based Health Intervention on the Promotion of Women’s Physical Activity: A Quasi-Experimental Study. BMC Public Health. 2018;18:134. doi: 10.1186/s12889-018-5025-5.
    1. Zhang J., Jemmott J.B., III Mobile App-Based Small-Group Physical Activity Intervention for Young African American Women: A Pilot Randomized Controlled Trial. Prev. Sci. 2019;20:863–872. doi: 10.1007/s11121-019-01006-4.
    1. The AIBL research group. Brown B.M., Peiffer J.J., Sohrabi H.R., Mondal A., Gupta V.B., Rainey-Smith S.R., Taddei K., Burnham S., Ellis K.A., et al. Intense Physical Activity Is Associated with Cognitive Performance in the Elderly. Transl. Psychiatry. 2012;2:e191. doi: 10.1038/tp.2012.118.
    1. Calverley T.A., Ogoh S., Marley C.J., Steggall M., Marchi N., Brassard P., Lucas S.J.E., Cotter J.D., Roig M., Ainslie P.N., et al. HIITing the Brain with Exercise: Mechanisms, Consequences and Practical Recommendations. J. Physiol. 2020;598:2513–2530. doi: 10.1113/JP275021.
    1. Schaun G.Z., Pinto S.S., Silva M.R., Dolinski D.B., Alberton C.L. Whole-Body High-Intensity Interval Training Induce Similar Cardiorespiratory Adaptations Compared with Traditional High-Intensity Interval Training and Moderate-Intensity Continuous Training in Healthy Men. J. Strength Cond. Res. 2018;32:2730–2742. doi: 10.1519/JSC.0000000000002594.
    1. Gillen J.B., Gibala M.J. Is High-Intensity Interval Training a Time-Efficient Exercise Strategy to Improve Health and Fitness? Appl. Physiol. Nutr. Metab. 2014;39:409–412. doi: 10.1139/apnm-2013-0187.
    1. Cao M., Quan M., Zhuang J. Effect of High-Intensity Interval Training versus Moderate-Intensity Continuous Training on Cardiorespiratory Fitness in Children and Adolescents: A Meta-Analysis. Int. J. Environ. Res. Public Health. 2019;16:1533. doi: 10.3390/ijerph16091533.
    1. Costigan S.A., Eather N., Plotnikoff R.C., Hillman C.H., Lubans D.R. High-Intensity Interval Training for Cognitive and Mental Health in Adolescents. Med. Sci. Sports Exerc. 2016;48:1985–1993. doi: 10.1249/MSS.0000000000000993.
    1. Aamot I.-L., Forbord S.H., Karlsen T., Støylen A. Does Rating of Perceived Exertion Result in Target Exercise Intensity during Interval Training in Cardiac Rehabilitation? A Study of the Borg Scale versus a Heart Rate Monitor. J. Sci. Med. Sport. 2014;17:541–545. doi: 10.1016/j.jsams.2013.07.019.
    1. Eather N., Riley N., Miller A., Smith V., Poole A., Vincze L., Morgan P.J., Lubans D.R. Efficacy and Feasibility of HIIT Training for University Students: The Uni-HIIT RCT. J. Sci. Med. Sport. 2019;22:596–601. doi: 10.1016/j.jsams.2018.11.016.
    1. Zamunér A.R., Moreno M.A., Camargo T.M., Graetz J.P., Tamburús N.Y. Assessment of Subjective Perceived Exertion at the Anaerobic Threshold with the Borg CR-10 Scale. J. Sports Sci. Med. 2011;10:130–136.
    1. Haddad M., Stylianides G., Djaoui L., Dellal A., Chamari K. Session-RPE Method for Training Load Monitoring: Validity, Ecological Usefulness, and Influencing Factors. Front. Neurosci. 2017;11:612. doi: 10.3389/fnins.2017.00612.
    1. Craig C.L., Marshall A.L., Sjöström M., Bauman A.E., Booth M.L., Ainsworth B.E., Pratt M., Ekelund U., Yngve A., Sallis J.F., et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003;35:1381–1395. doi: 10.1249/01.MSS.0000078924.61453.FB.
    1. Lee P.H., Macfarlane D.J., Lam T., Stewart S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2011;8:115. doi: 10.1186/1479-5868-8-115.
    1. Macfarlane D.J., Lee C.C.Y., Ho E.Y.K., Chan K.L., Chan D.T.S. Reliability and Validity of the Chinese Version of IPAQ (Short, Last 7 Days) J. Sci. Med. Sport. 2007;10:45–51. doi: 10.1016/j.jsams.2006.05.003.
    1. Ainsworth B.E., Haskell W.L., Whitt M.C., Irwin M.L., Swartz A.M., Strath S.J., O’Brien W.L., Bassett D.R., Schmitz K.H., Emplaincourt P.O., et al. Compendium of Physical Activities: An Update of Activity Codes and MET Intensities. Med. Sci. Sports Exerc. 2000;32:S498–S516. doi: 10.1097/00005768-200009001-00009.
    1. Zsido A.N., Teleki S.A., Csokasi K., Rozsa S., Bandi S.A. Development of the Short Version of the Spielberger State—Trait Anxiety Inventory. Psychiatry Res. 2020;291:113223. doi: 10.1016/j.psychres.2020.113223.
    1. Ma W.-F., Liu Y.-C., Chen Y.-F., Lane H.-Y., Lai T.-J., Huang L.-C. Evaluation of Psychometric Properties of the Chinese Mandarin Version State-Trait Anxiety Inventory Y Form in Taiwanese Outpatients with Anxiety Disorders: CMSTAI-Y for Patients with Anxiety Disorders. J. Psychiatr. Ment. Health Nurs. 2013;20:499–507. doi: 10.1111/j.1365-2850.2012.01945.x.
    1. Wang Z., Chen J., Boyd J.E., Zhang H., Jia X., Qiu J., Xiao Z. Psychometric Properties of the Chinese Version of the Perceived Stress Scale in Policewomen. PLoS ONE. 2011;6:e28610. doi: 10.1371/journal.pone.0028610.
    1. Lu W., Bian Q., Wang W., Wu X., Wang Z., Zhao M. Chinese Version of the Perceived Stress Scale-10: A Psychometric Study in Chinese University Students. PLoS ONE. 2017;12:e0189543. doi: 10.1371/journal.pone.0189543.
    1. Lakens D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013;4:863. doi: 10.3389/fpsyg.2013.00863.
    1. Levine T.R., Hullett C.R. Eta Squared, Partial Eta Squared, and Misreporting of Effect Size in Communication Research. Hum. Commun. Res. 2002;28:612–625. doi: 10.1111/j.1468-2958.2002.tb00828.x.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A Novel Coronavirus Outbreak of Global Health Concern. Lancet. 2020;395:470–473. doi: 10.1016/S0140-6736(20)30185-9.
    1. Shah K., Kamrai D., Mekala H., Mann B., Desai K., Patel R.S. Focus on Mental Health During the Coronavirus (COVID-19) Pandemic: Applying Learnings from the Past Outbreaks. Cureus. 2020;12 doi: 10.7759/cureus.7405.
    1. Barranco-Ruiz Y., Villa-González E. Health-Related Physical Fitness Benefits in Sedentary Women Employees after an Exercise Intervention with Zumba Fitness®. Int. J. Environ. Res. Public Health. 2020;17:2632. doi: 10.3390/ijerph17082632.
    1. Ornes L., Ransdell L.B. Web-Based Physical Activity Intervention for College-Aged Women. Int. Electron. J. Health Educ. 2007;10:126–137.
    1. Prince S.A., Saunders T.J., Gresty K., Reid R.D. A Comparison of the Effectiveness of Physical Activity and Sedentary Behaviour Interventions in Reducing Sedentary Time in Adults: A Systematic Review and Meta-analysis of Controlled Trials. Obes. Rev. 2014;15:905–919. doi: 10.1111/obr.12215.
    1. O’Dougherty M., Hearst M.O., Syed M., Kurzer M.S., Schmitz K.H. Life Events, Perceived Stress and Depressive Symptoms in a Physical Activity Intervention with Young Adult Women. Ment. Health Phys. Act. 2012;5:148–154. doi: 10.1016/j.mhpa.2012.05.001.
    1. Gerber M., Brand S., Herrmann C., Colledge F., Holsboer-Trachsler E., Pühse U. Increased Objectively Assessed Vigorous-Intensity Exercise Is Associated with Reduced Stress, Increased Mental Health and Good Objective and Subjective Sleep in Young Adults. Physiol. Behav. 2014;135:17–24. doi: 10.1016/j.physbeh.2014.05.047.
    1. Kramer A.F., Erickson K.I., Colcombe S.J. Exercise, Cognition, and the Aging Brain. J. Appl. Physiol. 2006;101:1237–1242. doi: 10.1152/japplphysiol.00500.2006.
    1. Hwang J., Brothers R.M., Castelli D.M., Glowacki E.M., Chen Y.T., Salinas M.M., Kim J., Jung Y., Calvert H.G. Acute High-Intensity Exercise-Induced Cognitive Enhancement and Brain-Derived Neurotrophic Factor in Young, Healthy Adults. Neurosci. Lett. 2016;630:247–253. doi: 10.1016/j.neulet.2016.07.033.
    1. Maddock R.J., Casazza G.A., Fernandez D.H., Maddock M.I. Acute Modulation of Cortical Glutamate and GABA Content by Physical Activity. J. Neurosci. 2016;36:2449–2457. doi: 10.1523/JNEUROSCI.3455-15.2016.
    1. Cassilhas R.C. Physical Exercise, Neuroplasticity, Spatial Learning and Memory. Cell Mol. Life Sci. 2016;73:975–985. doi: 10.1007/s00018-015-2102-0.
    1. Stillman C.M., Cohen J., Lehman M.E., Erickson K.I. Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis. Front. Hum. Neurosci. 2016;10:1–17. doi: 10.3389/fnhum.2016.00626.
    1. Gomez-Pinilla F., Hillman C. The Influence of Exercise on Cognitive Abilities. Front. Psychol. 2013;3:403–428.
    1. Leavitt V.M., Cirnigliaro C., Cohen A., Farag A., Brooks M., Wecht J.M., Wylie G.R., Chiaravalloti N.D., DeLuca J., Sumowski J.F. Aerobic Exercise Increases Hippocampal Volume and Improves Memory in Multiple Sclerosis: Preliminary Findings. Neurocase. 2014;20:695–697. doi: 10.1080/13554794.2013.841951.
    1. Van Praag H., Christie B.R., Sejnowski T.J., Gage F.H. Running Enhances Neurogenesis, Learning, and Long-Term Potentiation in Mice. Proc. Natl. Acad. Sci. USA. 1999;96:13427–13431. doi: 10.1073/pnas.96.23.13427.
    1. Voss M.W., Prakash R.S., Erickson K.I., Basak C., Chaddock L., Kim J.S., Alves H., Heo S., Szabo A., White S.M., et al. Plasticity of Brain Networks in a Randomized Intervention Trial of Exercise Training in Older Adults. Front. Aging Neurosci. 2010;2:32. doi: 10.3389/fnagi.2010.00032.
    1. Sink K.M., Espeland M.A., Castro C.M., Church T., Cohen R., Dodson J.A., Guralnik J., Hendrie H.C., Jennings J., Katula J., et al. Effect of a 24-Month Physical Activity Intervention vs Health Education on Cognitive Outcomes in Sedentary Older Adults: The LIFE Randomized Trial. JAMA. 2015;314:781. doi: 10.1001/jama.2015.9617.
    1. Pahor M., Guralnik J.M., Ambrosius W.T., Blair S., Bonds D.E., Church T.S., Espeland M.A., Fielding R.A., Gill T.M., Groessl E.J., et al. Effect of Structured Physical Activity on Prevention of Major Mobility Disability in Older Adults: The LIFE Study Randomized Clinical Trial. JAMA. 2014;311:2387. doi: 10.1001/jama.2014.5616.
    1. Herold F., Müller P., Gronwald T., Müller N.G. Dose–Response Matters!—A Perspective on the Exercise Prescription in Exercise–Cognition Research. Front. Psychol. 2019;10:2338. doi: 10.3389/fpsyg.2019.02338.
    1. Herold F., Törpel A., Hamacher D., Budde H., Gronwald T. A Discussion on Different Approaches for Prescribing Physical Interventions—Four Roads Lead to Rome, but Which One Should We Choose? J. Pers. Med. 2020;10:55. doi: 10.3390/jpm10030055.
    1. Lautenschlager N.T., Cox K.L., Flicker L., Foster J.K., van Bockxmeer F.M., Xiao J., Greenop K.R., Almeida O.P. Effect of Physical Activity on Cognitive Function in Older Adults at Risk for Alzheimer Disease: A Randomized Trial. JAMA. 2008;300:1027. doi: 10.1001/jama.300.9.1027.
    1. Zhang Y., Zhang H., Ma X., Di Q. Mental Health Problems during the COVID-19 Pandemics and the Mitigation Effects of Exercise: A Longitudinal Study of College Students in China. Int. J. Environ. Res. Public Health. 2020;17:3722. doi: 10.3390/ijerph17103722.

Source: PubMed

3
구독하다