Effectiveness of a Pharmacogenetic Tool at Improving Treatment Efficacy in Major Depressive Disorder: A Meta-Analysis of Three Clinical Studies

Silvia Vilches, Miquel Tuson, Eduard Vieta, Enric Álvarez, Jordi Espadaler, Silvia Vilches, Miquel Tuson, Eduard Vieta, Enric Álvarez, Jordi Espadaler

Abstract

Several pharmacogenetic tests to support drug selection in psychiatric patients have recently become available. The current meta-analysis aimed to assess the clinical utility of a commercial pharmacogenetic-based tool for psychiatry (Neuropharmagen®) in the treatment management of depressive patients. Random-effects meta-analysis of clinical studies that had examined the effect of this tool on the improvement of depressive patients was performed. Effects were summarized as standardized differences between treatment groups. A total of 450 eligible subjects from three clinical studies were examined. The random effects model estimated a statistically significant effect size for the pharmacogenetic-guided prescription (d = 0.34, 95% CI = 0.11-0.56, p-value = 0.004), which corresponded to approximately a 1.8-fold increase in the odds of clinical response for pharmacogenetic-guided vs. unguided drug selection. After exclusion of patients with mild depression, the pooled estimated effect size increased to 0.42 (95% CI = 0.19-0.65, p-value = 0.004, n = 287), corresponding to an OR = 2.14 (95% CI = 1.40-3.27). These results support the clinical utility of this pharmacogenetic-based tool in the improvement of health outcomes in patients with depression, especially those with moderate-severe depression. Additional pragmatic RCTs are warranted to consolidate these findings in other patient populations.

Keywords: antidepressants; depression; genetic; pharmacogenetics; psychiatry; randomized controlled trials.

Conflict of interest statement

S.V. and M.T. are employees of AB-Biotics. J.E. is employee and minor stock shareholder in AB-Biotics. M.T. and J.E. participated in the study design, analysis, interpretation of data and writing the manuscripts of the main results of the GENEPSI and the AB-GEN studies. AB-Biotics partially funded the GENEPSI and the AB-GEN studies, and genotyped and provided the PGx report results in all three trials included. E.V. has received grants and served as consultant, advisor or CME speaker for the following entities: AB-Biotics, Abbott, Allergan, Angelini, Dainippon Sumitomo Pharma, Galenica, Janssen, Lundbeck, Novartis, Otsuka, Sage, Sanofi-Aventis, and Takeda. E.A. has received consulting and educational honoraria from Eli Lilly, Lundbeck, Otsuka, Pfizer, and Sanofi-Aventis. E.A. has participated as principal local investigator in clinical trials sponsored by AB-Biotics, Bristol-Myers Squibb, Eli Lilly, and Sanofi-Aventis, and has served as national coordinator of clinical trials sponsored by Servier and Lundbeck.

Figures

Figure 1
Figure 1
Individual and pooled effect sizes for clinical response based on CGI-S score change.
Figure 2
Figure 2
Individual and pooled effect sizes for clinical response based on HDRS-17 score change.

References

    1. WHO . Depression and Other Common Mental Disorders. WHO; Geneva, Switzerland: 2017.
    1. Steel Z., Marnane C., Iranpour C., Chey T., Jackson J.W., Patel V., Silove D. The global prevalence of common mental disorders: A systematic review and meta-analysis 1980–2013. Int. J. Epidemiol. 2014;43:476–493. doi: 10.1093/ije/dyu038.
    1. König H., König H.-H., Konnopka A. The excess costs of depression: A systematic review and meta-analysis. Epidemiol. Psychiatr. Sci. 2019:1–16. doi: 10.1017/S2045796019000180.
    1. Vos T., Abajobir A.A., Abate K.H., Abbafati C., Abbas K.M., Abd-Allah F., Abdulkader R.S., Abdulle A.M., Abebo T.A., Abera S.F., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390:1211–1259. doi: 10.1016/S0140-6736(17)32154-2.
    1. Rush A.J., Trivedi M.H., Wisniewski S.R., Nierenberg A.A., Stewart J.W., Warden D., Niederehe G., Thase M.E., Lavori P.W., Lebowitz B.D., et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. Am. J. Psychiatry. 2006;163:1905–1917. doi: 10.1176/ajp.2006.163.11.1905.
    1. Fournier J.C., DeRubeis R.J., Hollon S.D., Dimidjian S., Amsterdam J.D., Shelton R.C., Fawcett J. Antidepressant drug effects and depression severity: A patient-level meta-analysis. JAMA. 2010;303:47–53. doi: 10.1001/jama.2009.1943.
    1. Johnston K.M., Powell L.C., Anderson I.M., Szabo S., Cline S. The burden of treatment-resistant depression: A systematic review of the economic and quality of life literature. J. Affect. Disord. 2019;242:195–210. doi: 10.1016/j.jad.2018.06.045.
    1. Sheehan D.V., Keene M.S., Eaddy M., Krulewicz S., Kraus J.E., Carpenter D.J. Differences in medication adherence and healthcare resource utilization patterns: Older versus newer antidepressant agents in patients with depression and/or anxiety disorders. CNS Drugs. 2008;22:963–973. doi: 10.2165/00023210-200822110-00005.
    1. Warden D., Rush A.J., Trivedi M.H., Fava M., Wisniewski S.R. The STAR*D Project results: A comprehensive review of findings. Curr. Psychiatry Rep. 2007;9:449–459. doi: 10.1007/s11920-007-0061-3.
    1. Kelly K., Posternak M., Alpert J.E. Toward achieving optimal response: Understanding and managing antidepressant side effects. Dialogues Clin. Neurosci. 2008;10:409–418.
    1. Swen J.J., Nijenhuis M., de Boer A., Grandia L., Maitland-van der Zee A.H., Mulder H., Rongen G.A., van Schaik R.H., Schalekamp T., Touw D.J., et al. Pharmacogenetics: From bench to byte—An update of guidelines. Clin. Pharmacol. Ther. 2011;89:662–673. doi: 10.1038/clpt.2011.34.
    1. Leckband S.G., Kelsoe J.R., Dunnenberger H.M., George A.L., Jr., Tran E., Berger R., Muller D.J., Whirl-Carrillo M., Caudle K.E., Pirmohamed M. Clinical Pharmacogenetics Implementation Consortium Guidelines for HLA-B Genotype and Carbamazepine Dosing. Clin. Pharmacol. Ther. 2013;94:324–328. doi: 10.1038/clpt.2013.103.
    1. Caudle K.E., Rettie A.E., Whirl-Carrillo M., Smith L.H., Mintzer S., Lee M.T., Klein T.E., Callaghan J.T. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and HLA-B Genotypes and Phenytoin Dosing. Clin. Pharmacol. Ther. 2014;96:542–548. doi: 10.1038/clpt.2014.159.
    1. Hicks J.K., Sangkuhl K., Swen J.J., Ellingrod V.L., Muller D.J., Shimoda K., Bishop J.R., Kharasch E.D., Skaar T.C., Gaedigk A., et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants: 2016 update. Clin. Pharmacol. Ther. 2017;102:37–44. doi: 10.1002/cpt.597.
    1. Hicks J.K., Bishop J.R., Sangkuhl K., Muller D.J., Ji Y., Leckband S.G., Leeder J.S., Graham R.L., Chiulli D.L., LLerena A., et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 2015;98:127–134. doi: 10.1002/cpt.147.
    1. Caudle K.E., Keeling N.J., Klein T.E., Whirl-Carrillo M., Pratt V.M., Hoffman J.M. Standardization can accelerate the adoption of pharmacogenomics: Current status and the path forward. Pharmacogenomics. 2018;19:847–860. doi: 10.2217/pgs-2018-0028.
    1. Bank P.C.D., Caudle K.E., Swen J.J., Gammal R.S., Whirl-Carrillo M., Klein T.E., Relling M.V., Guchelaar H.J. Comparison of the Guidelines of the Clinical Pharmacogenetics Implementation Consortium and the Dutch Pharmacogenetics Working Group. Clin. Pharmacol. Ther. 2018 doi: 10.1002/cpt.762.
    1. Drozda K., Muller D.J., Bishop J.R. Pharmacogenomic testing for neuropsychiatric drugs: Current status of drug labeling, guidelines for using genetic information, and test options. Pharmacotherapy. 2014;34:166–184. doi: 10.1002/phar.1398.
    1. Ehmann F., Caneva L., Prasad K., Paulmichl M., Maliepaard M., Llerena A., Ingelman-Sundberg M., Papaluca-Amati M. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenom. J. 2015;15:201. doi: 10.1038/tpj.2014.86.
    1. Haddow J.E., Palomaki G.E. ACCE: A Model Process for Evaluating Data on Emerging Genetic Tests. In: Khoury M.J., Little J., Burke W., editors. Human Genome Epidemiology: A Scientific Foundation for Using Genetic Information to Improve Health and Prevent Disease. Oxford University Press; Oxford, UK: 2004. pp. 217–233.
    1. Bousman C.A., Hopwood M. Commercial pharmacogenetic-based decision-support tools in psychiatry. Lancet Psychiatry. 2016;3:585–590. doi: 10.1016/S2215-0366(16)00017-1.
    1. Wisniewski S.R., Rush A.J., Nierenberg A.A., Gaynes B.N., Warden D., Luther J.F., McGrath P.J., Lavori P.W., Thase M.E., Fava M., et al. Can phase III trial results of antidepressant medications be generalized to clinical practice? A STAR*D report. Am. J. Psychiatry. 2009;166:599–607. doi: 10.1176/appi.ajp.2008.08071027.
    1. Perez V., Salavert A., Espadaler J., Tuson M., Saiz-Ruiz J., Saez-Navarro C., Bobes J., Baca-Garcia E., Vieta E., Olivares J.M., et al. Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: Results of a randomized, double-blind clinical trial. BMC Psychiatry. 2017;17:250. doi: 10.1186/s12888-017-1412-1.
    1. Han C., Wang S.-M., Bahk W.-M., Lee S.-J., Patkar A.A., Masand P.S., Mandelli L., Pae C.-U., Serretti A. A Pharmacogenomic-based Antidepressant Treatment for Patients with Major Depressive Disorder: Results from an 8-week, Randomized, Single-blinded Clinical Trial. Clin. Psychopharmacol. Neurosci. 2018;16:469–480. doi: 10.9758/cpn.2018.16.4.469.
    1. Espadaler J., Tuson M., Lopez-Ibor J.M., Lopez-Ibor F., Lopez-Ibor M.I. Pharmacogenetic testing for the guidance of psychiatric treatment: A multicenter retrospective analysis. CNS Spectr. 2017;22:315–324. doi: 10.1017/S1092852915000711.
    1. Guy W. ECDEU Assessment Manual for Psychopharmacology: Revised. US Department of Health, Education and Welfare; Rockville, MD, USA: 1976. DHEW Publication No. ADM 76–338.
    1. Hamilton M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry. 1960;23:56. doi: 10.1136/jnnp.23.1.56.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C., Gotzsche P.C., Ioannidis J.P.A., Clarke M., Devereaux P.J., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ. 2009;339:b2700. doi: 10.1136/bmj.b2700.
    1. Porcelli S., Fabbri C., Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur. Neuropsychopharmacol. 2012;22:239–258. doi: 10.1016/j.euroneuro.2011.10.003.
    1. Niitsu T., Fabbri C., Bentini F., Serretti A. Pharmacogenetics in major depression: A comprehensive meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2013;45C:183–194. doi: 10.1016/j.pnpbp.2013.05.011.
    1. Breitenstein B., Scheuer S., Bruckl T.M., Meyer J., Ising M., Uhr M., Holsboer F. Association of ABCB1 gene variants, plasma antidepressant concentration, and treatment response: Results from a randomized clinical study. J. Psychiatr. Res. 2016;73:86–95. doi: 10.1016/j.jpsychires.2015.11.010.
    1. Uhr M., Tontsch A., Namendorf C., Ripke S., Lucae S., Ising M., Dose T., Ebinger M., Rosenhagen M., Kohli M., et al. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron. 2008;57:203–209. doi: 10.1016/j.neuron.2007.11.017.
    1. van der Weide K., van der Weide J. The influence of the CYP3A4*22 polymorphism on serum concentration of quetiapine in psychiatric patients. J. Clin. Psychopharmacol. 2014;34:256–260. doi: 10.1097/JCP.0000000000000070.
    1. Mas S., Gasso P., Ritter M.A., Malagelada C., Bernardo M., Lafuente A. Pharmacogenetic predictor of extrapyramidal symptoms induced by antipsychotics: Multilocus interaction in the mTOR pathway. Eur. Neuropsychopharmacol. 2015;25:51–59. doi: 10.1016/j.euroneuro.2014.11.011.
    1. Hedges L. V Distribution Theory for Glass’s Estimator of Effect size and Related Estimators. J. Educ. Behav. Stat. 1981;6:107–128. doi: 10.3102/10769986006002107.
    1. Schwarzer G., Carpenter J.R., Rücker G. Meta-Analysis with R. Springer; New York, NY, USA: 2015.
    1. Pishva E., Drukker M., Viechtbauer W., Decoster J., Collip D., van Winkel R., Wichers M., Jacobs N., Thiery E., Derom C., et al. Epigenetic genes and emotional reactivity to daily life events: A multi-step gene-environment interaction study. PLoS ONE. 2014;9:e100935. doi: 10.1371/journal.pone.0100935.
    1. RStudio Team . RStudio: Integrated Development for R. RStudio, Inc.; Boston, MA, USA: 2015.
    1. R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2015.
    1. Higgins J.P.T., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. doi: 10.1136/bmj.327.7414.557.
    1. Hasselblad V., Hedges L.V. Meta-Analysis of Screening and Diagnostic Tests. Psychol. Bull. 1995 doi: 10.1037/0033-2909.117.1.167.
    1. Chinn S. A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat. Med. 2000;19:3127–3131. doi: 10.1002/1097-0258(20001130)19:22<3127::AID-SIM784>;2-M.
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savovic J., Schulz K.F., Weeks L., Sterne J.A.C., et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Sterne J.A., Hernán M.A., Reeves B.C., Savović J., Berkman N.D., Viswanathan M., Henry D., Altman D.G., Ansari M.T., Boutron I., et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. doi: 10.1136/bmj.i4919.
    1. Gibertini M., Nations K.R., Whitaker J.A. Obtained effect size as a function of sample size in approved antidepressants. Int. Clin. Psychopharmacol. 2012;27:100–106. doi: 10.1097/YIC.0b013e32834f504f.
    1. Cipriani A., Furukawa T.A., Salanti G., Chaimani A., Atkinson L.Z., Ogawa Y., Leucht S., Ruhe H.G., Turner E.H., Higgins J.P.T., et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet. 2018;391:1357–1366. doi: 10.1016/S0140-6736(17)32802-7.
    1. Zimmerman M., Mattia J.I., Posternak M.A. Are Subjects in Pharmacological Treatment Trials of Depression Representative of Patients in Routine Clinical Practice? Am. J. Psychiatry. 2002;159:469–473. doi: 10.1176/appi.ajp.159.3.469.
    1. Zetin M., Hoepner C.T. Relevance of Exclusion Criteria in Antidepressant Clinical Trials. J. Clin. Psychopharmacol. 2007;27:295–301. doi: 10.1097/JCP.0b013e318058263f.
    1. Blanco C., Olfson M., Goodwin R.D., Ogburn E., Liebowitz M.R., Nunes E.V., Hasin D.S. Generalizability of clinical trial results for major depression to community samples: Results from the National Epidemiologic Survey on Alcohol and Related Conditions. J. Clin. Psychiatry. 2008 doi: 10.4088/JCP.v69n0810.
    1. Kessler R.C., Berglund P., Demler O., Jin R., Koretz D., Merikangas K.R., Rush A.J., Walters E.E., Wang P.S. National Comorbidity Survey Replication the Epidemiology of Major Depressive Disorder. JAMA. 2003;289:3095–3105. doi: 10.1001/jama.289.23.3095.
    1. Hasin D.S., Goodwin R.D., Stinson F.S., Grant B.F. Epidemiology of Major Depressive Disorder. Arch. Gen. Psychiatry. 2005;62:1097–1106. doi: 10.1001/archpsyc.62.10.1097.
    1. Zimmerman M., Chelminski I., McDermut W. Major depressive disorder and axis I diagnostic comorbidity. J. Clin. Psychiatry. 2002;63:187–193. doi: 10.4088/JCP.v63n0303.
    1. Melartin T.K., Rytsälä H.J., Leskelä U.S., Lestelä-Mielonen P.S., Sokero T.P., Isometsä E.T. Current comorbidity of psychiatric disorders among DSM-IV major depressive disorder patients in psychiatric care in the Vantaa Depression Study. J. Clin. Psychiatry. 2002;63:126–134. doi: 10.4088/JCP.v63n0207.
    1. Rush A.J. STAR*D: What Have We Learned? Am. J. Psychiatry. 2007;164:201–204. doi: 10.1176/ajp.2007.164.2.201.
    1. Romera I., Pérez V., Menchón J.M., Polavieja P., Gilaberte I. Optimal cutoff point of the Hamilton Rating Scale for Depression according to normal levels of social and occupational functioning. Psychiatry Res. 2011;186:133–137. doi: 10.1016/j.psychres.2010.06.023.
    1. Cameron I.M., Reid I.C., MacGillivray S.A. Efficacy and tolerability of antidepressants for sub-threshold depression and for mild major depressive disorder. J. Affect. Disord. 2014;166:48–58. doi: 10.1016/j.jad.2014.04.078.
    1. Singh A.B. Improved Antidepressant Remission in Major Depression via a Pharmacokinetic Pathway Polygene Pharmacogenetic Report. Clin. Psychopharmacol. Neurosci. 2015;13:150–156. doi: 10.9758/cpn.2015.13.2.150.
    1. Bradley P., Shiekh M., Mehra V., Vrbicky K., Layle S., Olson M.C., Maciel A., Cullors A., Garces J.A., Lukowiak A.A. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: A randomized clinical trial demonstrating clinical utility. J. Psychiatr. Res. 2018;96:100–107. doi: 10.1016/j.jpsychires.2017.09.024.
    1. Rush A.J., Fava M., Wisniewski S.R., Lavori P.W., Trivedi M.H., Sackeim H.A., Thase M.E., Nierenberg A.A., Quitkin F.M., Kashner T.M., et al. Sequenced treatment alternatives to relieve depression (STAR*D): Rationale and design. Control. Clin. Trials. 2004;25:119–142. doi: 10.1016/S0197-2456(03)00112-0.
    1. Menchon J.M., Espadaler J., Tuson M., Saiz-Ruiz J., Bobes J., Vieta E., Alvarez E., Perez V. Patient characteristics driving clinical utility in psychiatric pharmacogenetics: A reanalysis from the AB-GEN multicentric trial. J. Neural Transm. 2019 doi: 10.1007/s00702-018-1879-z.
    1. Bousman C.A., Arandjelovic K., Mancuso S.G., Eyre H.A., Dunlop B.W. Pharmacogenetic tests and depressive symptom remission: A meta-analysis of randomized controlled trials. Pharmacogenomics. 2019;20:37–47. doi: 10.2217/pgs-2018-0142.
    1. Rosenblat J.D., Lee Y., McIntyre R.S. The effect of pharmacogenomic testing on response and remission rates in the acute treatment of major depressive disorder: A meta-analysis. J. Affect. Disord. 2018;241:484–491. doi: 10.1016/j.jad.2018.08.056.
    1. Bousman C.A., Zierhut H., Müller D.J. Navigating the Labyrinth of Pharmacogenetic Testing: A Guide to Test Selection. Clin. Pharmacol. Ther. 2019 doi: 10.1002/cpt.1432.
    1. Bousman C.A., Dunlop B.W. Genotype, phenotype, and medication recommendation agreement among commercial pharmacogenetic-based decision support tools. Pharmacogenom. J. 2018;18:613–622. doi: 10.1038/s41397-018-0027-3.
    1. Zeier Z., Carpenter L.L., Kalin N.H., Rodriguez C.I., McDonald W.M., Widge A.S., Nemeroff C.B. Clinical Implementation of Pharmacogenetic Decision Support Tools for Antidepressant Drug Prescribing. Am. J. Psychiatry. 2018;175:873–886. doi: 10.1176/appi.ajp.2018.17111282.

Source: PubMed

3
구독하다