Clinical review: neuromonitoring - an update

Nino Stocchetti, Peter Le Roux, Paul Vespa, Mauro Oddo, Giuseppe Citerio, Peter J Andrews, Robert D Stevens, Tarek Sharshar, Fabio S Taccone, Jean-Louis Vincent, Nino Stocchetti, Peter Le Roux, Paul Vespa, Mauro Oddo, Giuseppe Citerio, Peter J Andrews, Robert D Stevens, Tarek Sharshar, Fabio S Taccone, Jean-Louis Vincent

Abstract

Critically ill patients are frequently at risk of neurological dysfunction as a result of primary neurological conditions or secondary insults. Determining which aspects of brain function are affected and how best to manage the neurological dysfunction can often be difficult and is complicated by the limited information that can be gained from clinical examination in such patients and the effects of therapies, notably sedation, on neurological function. Methods to measure and monitor brain function have evolved considerably in recent years and now play an important role in the evaluation and management of patients with brain injury. Importantly, no single technique is ideal for all patients and different variables will need to be monitored in different patients; in many patients, a combination of monitoring techniques will be needed. Although clinical studies support the physiologic feasibility and biologic plausibility of management based on information from various monitors, data supporting this concept from randomized trials are still required.

Figures

Figure 1
Figure 1
Some of the pathological cascades contributing to aggravate neuronal injury after acute brain injury. Initial mechanisms, such as excitotoxicity and mitochondrial dysfunction, initiate damage in the very early minutes/hours; other factors, such as energy dysfunction, edema, and inflammation come into play later in the process. CBF, cerebral blood flow.
Figure 2
Figure 2
Intracranial pressure curve in conditions of normal and reduced compliance. Valuable information on intracranial buffering mechanisms can be extracted from the shape of the curves: when all normal components (peaks) of the intracranial pressure (ICP) curve are clearly evident (left panel), the intracranial system is behaving normally and small increases in volume can still be compensated for. However, when a P2-predominant pattern is displayed (right panel), the intracranial system is less compliant and compensatory abilities are reduced.
Figure 3
Figure 3
Intracranial pressure (ICP), mean arterial pressure (MAP), and cerebral perfusion pressure (CPP) in a patient with traumatic brain injury undergoing bronchoscopy under general anesthesia with myorelaxants. ICP increased to 45 mmHg and CPP decreased concomitantly to 40 mmHg. Broncoscopy was stopped, further sedation given and manual hyperventilation administered briefly. ICP and CPP returned to normal levels.
Figure 4
Figure 4
Transformation of raw electroencephalogram (EEG) into quantitative EEG (qEEG). The center top panel shows a 10 second segment of raw EEG. This EEG segment can be transformed using mathematical processing to separate the waves into major frequency bins with the height of each bin indicating the relative percentage (that is, power) of that frequency during the 10 second epoch (lower left panel). Each bandwidth can be trended on a minute by minute basis to create a variability histogram for that bandwidth for each channel (lower right panel). The alpha bandwidth variability trend is shown (lower center panel).
Figure 5
Figure 5
Lack of variability over time of the percent alpha trend (PAV) is associated with poor clinical outcomes. The daily PAV scores are graphed for those brain injured patients who eventually had a good outcome (top panel) and those that had a poor outcome (bottom panel). The PAV scores tend to remain good or improve day by day in those patients with a good outcome, whereas they remain poor or worsen day by day in those patients with a bad outcome.

References

    1. Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, Hovda DA, Bergsneider M, Hillered L, Martin NA. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab. 2003;17:1239–1250.
    1. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;17:763–774. doi: 10.1038/sj.jcbfm.9600073.
    1. Pellerin L, Bouzier-Sore AK, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;17:1251–1262. doi: 10.1002/glia.20528.
    1. Bouzier-Sore AK, Voisin P, Canioni P, Magistretti PJ, Pellerin L. Lactate is a preferential oxidative energy substrate over glucose for neurons in culture. J Cereb Blood Flow Metab. 2003;17:1298–1306.
    1. Oddo M, Levine JM, Frangos S, Maloney-Wilensky E, Carrera E, Daniel RT, Levivier M, Magistretti PJ, LeRoux PD. Brain lactate metabolism in humans with subarachnoid hemorrhage. Stroke. 2012;17:1418–1421. doi: 10.1161/STROKEAHA.111.648568.
    1. Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, Downey SP, Williams GB, Aigbirhio F, Hutchinson PJ, Rice K, Carpenter TA, Clark JC, Pickard JD, Menon DK. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;17:202–211.
    1. Czosnyka M, Smielewski P, Piechnik S, Steiner LA, Pickard JD. Cerebral autoregulation following head injury. J Neurosurg. 2001;17:756–763. doi: 10.3171/jns.2001.95.5.0756.
    1. Coles JP, Steiner LA, Johnston AJ, Fryer TD, Coleman MR, Smieleweski P, Chatfield DA, Aigbirhio F, Williams GB, Boniface S, Rice K, Clark JC, Pickard JD, Menon DK. Does induced hypertension reduce cerebral ischaemia within the traumatized human brain? Brain. 2004;17:2479–2490. doi: 10.1093/brain/awh268.
    1. Rosenthal G, Hemphill JC, Sorani M, Martin C, Morabito D, Obrist WD, Manley GT. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;17:1917–1924. doi: 10.1097/CCM.0b013e3181743d77.
    1. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;17:1384–1390. doi: 10.1097/01.CCM.0000127777.16609.08.
    1. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;17:81–84.
    1. Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: The FOUR score. Ann Neurol. 2005;17:585–593. doi: 10.1002/ana.20611.
    1. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, Speroff T, Gautam S, Bernard GR, Inouye SK. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) Crit Care Med. 2001;17:1370–1379. doi: 10.1097/00003246-200107000-00012.
    1. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intensive Care Med. 2001;17:859–864. doi: 10.1007/s001340100909.
    1. Marmarou A, Anderson RL, Ward JD, Choi SC, Young HF, Eisenberg HM, Foulkes MA, Marshall LF, Jane JA. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg Special Suppl. 1991;17:S59–S66.
    1. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007. pp. S37–S44.
    1. Bederson JB, Connolly ES Jr, Batjer HH, Dacey RG, Dion JE, Diringer MN, Duldner JE Jr, Harbaugh RE, Patel AB, Rosenwasser RH. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association. Stroke. 2009;17:994–1025. doi: 10.1161/STROKEAHA.108.191395.
    1. Morgenstern LB, Hemphill JC, Anderson C, Becker K, Broderick JP, Connolly ES Jr, Greenberg SM, Huang JN, MacDonald RL, Messe SR, Mitchell PH, Selim M, Tamargo RJ. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2010;17:2108–2129. doi: 10.1161/STR.0b013e3181ec611b.
    1. Pickard JD, Czosnyka M. Management of raised intracranial pressure. J Neurol Neurosurg Psychiatry. 1993;17:845–858. doi: 10.1136/jnnp.56.8.845.
    1. Bouzat P, Francony G, Fauvage B, Payen JF. Transcranial Doppler pulsatility index for initial management of brain-injured patients. Neurosurgery. 2010;17:E1863–E1864.
    1. Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;17:506–515. doi: 10.1007/s12028-011-9606-8.
    1. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. VII. Intracranial pressure monitoring technology. J Neurotrauma. 2007. pp. S45–S54.
    1. Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;17:265–274. doi: 10.3171/jns.2000.93.2.0265.
    1. Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, Quintel M, Schmiedek P, Vajkoczy P. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;17:1844–1851. doi: 10.1097/01.CCM.0000275392.08410.DD.
    1. Rosenthal G, Sanchez-Mejia RO, Phan N, Hemphill JC, Martin C, Manley GT. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg. 2011;17:62–70. doi: 10.3171/2010.6.JNS091360.
    1. Washington CW, Zipfel GJ. Detection and monitoring of vasospasm and delayed cerebral ischemia: a review and assessment of the literature. Neurocrit Care. 2011;17:312–317. doi: 10.1007/s12028-011-9594-8.
    1. de Riva N, Budohoski KP, Smielewski P, Kasprowicz M, Zweifel C, Steiner LA, Reinhard M, Fabregas N, Pickard JD, Czosnyka M. Transcranial Doppler Pulsatility Index: what it is and what it isn't. Neurocrit Care. 2012;17:58–66. doi: 10.1007/s12028-012-9672-6.
    1. Steiner LA, Coles JP, Johnston AJ, Chatfield DA, Smielewski P, Fryer TD, Aigbirhio FI, Clark JC, Pickard JD, Menon DK, Czosnyka M. Assessment of cerebrovascular autoregulation in head-injured patients: a validation study. Stroke. 2003;17:2404–2409. doi: 10.1161/01.STR.0000089014.59668.04.
    1. Chieregato A, Sabia G, Tanfani A, Compagnone C, Tagliaferri F, Targa L. Xenon-CT and transcranial Doppler in poor-grade or complicated aneurysmatic subarachnoid hemorrhage patients undergoing aggressive management of intracranial hypertension. Intensive Care Med. 2006;17:1143–1150. doi: 10.1007/s00134-006-0226-2.
    1. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA, Pozzan T, Carmignoto G. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci. 2003;17:43–50. doi: 10.1038/nn980.
    1. Panerai RB. Assessment of cerebral pressure autoregulation in humans-a review of measurement methods. Physiol Meas. 1998;17:305–338. doi: 10.1088/0967-3334/19/3/001.
    1. De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;17:1813–1825. doi: 10.1007/s00134-010-2005-3.
    1. De Backer D, Donadello K, Taccone FS, Ospina-Tascon G, Salgado D, Vincent JL. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011;17:27. doi: 10.1186/2110-5820-1-27.
    1. Perez-Barcena J, Goedhart P, Ibanez J, Brell M, Garcia R, Llinas P, Jimenez C, Ince C. Direct observation of human microcirculation during decompressive craniectomy after stroke. Crit Care Med. 2011;17:1126–1129. doi: 10.1097/CCM.0b013e31820ead5e.
    1. Pennings FA, Albrecht KW, Muizelaar JP, Schuurman PR, Bouma GJ. Abnormal responses of the human cerebral microcirculation to papaverin during aneurysm surgery. Stroke. 2009;17:317–320. doi: 10.1161/STROKEAHA.108.522375.
    1. Chieregato A, Calzolari F, Trasforini G, Targa L, Latronico N. Normal jugular bulb oxygen saturation. J Neurol Neurosurg Psychiatry. 2003;17:784–786. doi: 10.1136/jnnp.74.6.784.
    1. Verweij BH, Muizelaar JP, Vinas FC. Hyperacute measurement of intracranial pressure, cerebral perfusion pressure, jugular venous oxygen saturation, and laser Doppler flowmetry, before and during removal of traumatic acute subdural hematoma. J Neurosurg. 2001;17:569–572. doi: 10.3171/jns.2001.95.4.0569.
    1. Gopinath SP, Robertson CS, Contant CF, Hayes C, Feldman Z, Narayan RK, Grossman RG. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;17:717–723. doi: 10.1136/jnnp.57.6.717.
    1. Shenkin HA, Harmel MH, Kety SS. Dynamic anatomy of the cerebral circulation. Arch Neurol Psychiatry. 1948;17:240–252. doi: 10.1001/archneurpsyc.1948.02310030021002.
    1. Coles JP, Fryer TD, Coleman MR, Smielewski P, Gupta AK, Minhas PS, Aigbirhio F, Chatfield DA, Williams GB, Boniface S, Carpenter TA, Clark JC, Pickard JD, Menon DK. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;17:568–578. doi: 10.1097/01.CCM.0000254066.37187.88.
    1. Stocchetti N, Paparella A, Bridelli F, Bacchi M, Piazza P, Zuccoli P. Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery. 1994;17:38–43. doi: 10.1227/00006123-199401000-00007.
    1. Ponce LL, Pillai S, Cruz J, Li X, Julia H, Gopinath S, Robertson CS. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury. Neurosurgery. 2012;17:1492–1503. doi: 10.1227/NEU.0b013e31824ce933.
    1. Scheufler KM, Lehnert A, Rohrborn HJ, Nadstawek J, Thees C. Individual value of brain tissue oxygen pressure, microvascular oxygen saturation, cytochrome redox level, and energy metabolites in detecting critically reduced cerebral energy state during acute changes in global cerebral perfusion. J Neurosurg Anesthesiol. 2004;17:210–219. doi: 10.1097/00008506-200407000-00005.
    1. Chang JJ, Youn TS, Benson D, Mattick H, Andrade N, Harper CR, Moore CB, Madden CJ, Diaz-Arrastia RR. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;17:283–290. doi: 10.1097/CCM.0b013e318192fbd7.
    1. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;17:894–906. doi: 10.1089/0897715041526195.
    1. Dings J, Meixensberger J, Jager A, Roosen K. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery. 1998;17:1082–1095. doi: 10.1097/00006123-199811000-00045.
    1. van den Brink WA, van Santbrink H, Steyerberg EW, Avezaat CJ, Suazo JA, Hogesteeger C, Jansen WJ, Kloos LM, Vermeulen J, Maas AI. Brain oxygen tension in severe head injury. Neurosurgery. 2000;17:868–876.
    1. Oddo M, Levine JM, Mackenzie L, Frangos S, Feihl F, Kasner SE, Katsnelson M, Pukenas B, MacMurtrie E, Maloney-Wilensky E, Kofke WA, LeRoux PD. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;17:1037–1045.
    1. Longhi L, Valeriani V, Rossi S, De Marchi M, Egidi M, Stocchetti N. Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir Suppl. 2002;17:315–317.
    1. Nangunoori R, Maloney-Wilensky E, Stiefel M, Park S, Andrew KW, Levine JM, Yang W, Le Roux PD. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: A systematic literature review. Neurocrit Care. 2012;17:131–138. doi: 10.1007/s12028-011-9621-9.
    1. Leal-Noval SR, Cayuela A, rellano-Orden V, Marin-Caballos A, Padilla V, Ferrandiz-Millon C, Corcia Y, Garcia-Alfaro C, maya-Villar R, Murillo-Cabezas F. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med. 2010;17:1309–1317. doi: 10.1007/s00134-010-1920-7.
    1. Naidech AM, Bendok BR, Ault ML, Bleck TP. Monitoring with the Somanetics INVOS 5100C after aneurysmal subarachnoid hemorrhage. Neurocrit Care. 2008;17:326–331. doi: 10.1007/s12028-008-9077-8.
    1. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;17:3–41. doi: 10.1089/neu.2005.22.3.
    1. Andrews PJ, Citerio G, Longhi L, Polderman K, Sahuquillo J, Vajkoczy P. NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med. 2008;17:1362–1370. doi: 10.1007/s00134-008-1103-y.
    1. Bellander BM, Cantais E, Enblad P, Hutchinson P, Nordstrom CH, Robertson C, Sahuquillo J, Smith M, Stocchetti N, Ungerstedt U, Unterberg A, Olsen NV. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;17:2166–2169. doi: 10.1007/s00134-004-2461-8.
    1. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, Unterberg A. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke. 2003;17:1382–1388. doi: 10.1161/01.STR.0000074036.97859.02.
    1. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, Ostapkovich ND, Levine JM, Le Roux P, Mayer SA. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;17:3233–3238. doi: 10.1097/CCM.0b013e31818f4026.
    1. Ko SB, Choi HA, Parikh G, Helbok R, Schmidt JM, Lee K, Badjatia N, Claassen J, Connolly ES, Mayer SA. Multimodality monitoring for cerebral perfusion pressure optimization in comatose patients with intracerebral hemorrhage. Stroke. 2011;17:3087–3092. doi: 10.1161/STROKEAHA.111.623165.
    1. Schmidt JM, Ko SB, Helbok R, Kurtz P, Stuart RM, Presciutti M, Fernandez L, Lee K, Badjatia N, Connolly ES, Claassen J, Mayer SA. Cerebral perfusion pressure thresholds for brain tissue hypoxia and metabolic crisis after poor-grade subarachnoid hemorrhage. Stroke. 2011;17:1351–1356. doi: 10.1161/STROKEAHA.110.596874.
    1. Oddo M, Milby A, Chen I, Frangos S, MacMurtrie E, Maloney-Wilensky E, Stiefel M, Kofke WA, Levine JM, Le Roux PD. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;17:1275–1281. doi: 10.1161/STROKEAHA.108.527911.
    1. Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke. 2009;17:77–85. doi: 10.1161/STROKEAHA.108.516377.
    1. Turck N, Vutskits L, Sanchez-Pena P, Robin X, Hainard A, Gex-Fabry M, Fouda C, Bassem H, Mueller M, Lisacek F, Puybasset L, Sanchez JC. A multiparameter panel method for outcome prediction following aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2010;17:107–115. doi: 10.1007/s00134-009-1641-y.
    1. Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, van Geel W, de Reus H, Biert J, Verbeek MM. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;17:1303–1310. doi: 10.1212/01.WNL.0000120550.00643.DC.
    1. Korfias S, Stranjalis G, Boviatsis E, Psachoulia C, Jullien G, Gregson B, Mendelow AD, Sakas DE. Serum S-100B protein monitoring in patients with severe traumatic brain injury. Intensive Care Med. 2007;17:255–260. doi: 10.1007/s00134-006-0463-4.
    1. Zandbergen EG, Hijdra A, Koelman JH, Hart AA, Vos PE, Verbeek MM, de Haan RJ. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;17:62–68. doi: 10.1212/01.wnl.0000191308.22233.88.
    1. Sanchez-Pena P, Pereira AR, Sourour NA, Biondi A, Lejean L, Colonne C, Boch AL, Al Hawari M, Abdennour L, Puybasset L. S100B as an additional prognostic marker in subarachnoid aneurysmal hemorrhage. Crit Care Med. 2008;17:2267–2273. doi: 10.1097/CCM.0b013e3181809750.
    1. Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;17:1373–1380. doi: 10.1002/jnr.21211.
    1. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, Edwards M, Rosmalen CF, Vissers JL. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;17:1786–1793. doi: 10.1212/WNL.0b013e3181fd62d2.
    1. Herrmann M, Vos P, Wunderlich MT, de Bruijn CH, Lamers KJ. Release of glial tissue-specific proteins after acute stroke: A comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke. 2000;17:2670–2677. doi: 10.1161/01.STR.31.11.2670.
    1. Vos PE, van Gils M, Beems T, Zimmerman C, Verbeek MM. Increased GFAP and S100beta but not NSE serum levels after subarachnoid haemorrhage are associated with clinical severity. Eur J Neurol. 2006;17:632–638. doi: 10.1111/j.1468-1331.2006.01332.x.
    1. Kaneko T, Kasaoka S, Miyauchi T, Fujita M, Oda Y, Tsuruta R, Maekawa T. Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation. 2009;17:790–794. doi: 10.1016/j.resuscitation.2009.04.003.
    1. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;17:1553–1561. doi: 10.1089/neu.2004.21.1553.
    1. Cronberg T, Rundgren M, Westhall E, Englund E, Siemund R, Rosen I, Widner H, Friberg H. Neuron-specific enolase correlates with other prognostic markers after cardiac arrest. Neurology. 2011;17:623–630. doi: 10.1212/WNL.0b013e31822a276d.
    1. Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, Nellgard P, Rosengren L, Blennow K, Nellgard B. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;17:1600–1604. doi: 10.1212/01.wnl.0000242732.06714.0f.
    1. Magnoni S, Esparza TJ, Conte V, Carbonara M, Carrabba G, Holtzman DM, Zipfel GJ, Stocchetti N, Brody DL. Tau elevations in the brain extracellular space correlate with reduced amyloid-beta levels and predict adverse clinical outcomes after severe traumatic brain injury. Brain. 2012;17:1268–1280. doi: 10.1093/brain/awr286.
    1. Kay A, Petzold A, Kerr M, Keir G, Thompson E, Nicoll J. Temporal alterations in cerebrospinal fluid amyloid beta-protein and apolipoprotein E after subarachnoid hemorrhage. Stroke. 2003;17:e240–e243. doi: 10.1161/01.STR.0000100157.88508.2F.
    1. Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H, Deisenhammer F. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology. 2003;17:1457–1461. doi: 10.1212/01.WNL.0000063313.57292.00.
    1. Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N, Zipfel GJ, Holtzman DM. Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science. 2008;17:1221–1224. doi: 10.1126/science.1161591.
    1. Petzold A, Tisdall MM, Girbes AR, Martinian L, Thom M, Kitchen N, Smith M. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain. 2011;17:464–483. doi: 10.1093/brain/awq360.
    1. Petzold A, Keir G, Kay A, Kerr M, Thompson EJ. Axonal damage and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2006;17:753–759. doi: 10.1136/jnnp.2005.085175.
    1. Petzold A, Rejdak K, Belli A, Sen J, Keir G, Kitchen N, Smith M, Thompson EJ. Axonal pathology in subarachnoid and intracerebral hemorrhage. J Neurotrauma. 2005;17:407–414. doi: 10.1089/neu.2005.22.407.
    1. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KK. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;17:138–144. doi: 10.1097/CCM.0b013e3181b788ab.
    1. Mondello S, Papa L, Buki A, Bullock MR, Czeiter E, Tortella FC, Wang KK, Hayes RL. Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit Care. 2011;17:R156. doi: 10.1186/cc10286.
    1. Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM, Akle V, Brophy GM, Tepas JJ, Wang KK, Robertson CS, Hayes RL. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. 2007;17:354–366. doi: 10.1089/neu.2006.003789.
    1. Berger RP, Hayes RL, Richichi R, Beers SR, Wang KK. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and alphaII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma. 2012;17:162–167. doi: 10.1089/neu.2011.1989.
    1. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, Glenn TC, Martin N, Hovda D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;17:2830–2836. doi: 10.1097/01.CCM.0000295667.66853.BC.
    1. Pandian JD, Cascino GD, So EL, Manno E, Fulgham JR. Digital video-electroencephalographic monitoring in the neurological-neurosurgical intensive care unit: clinical features and outcome. Arch Neurol. 2004;17:1090–1094. doi: 10.1001/archneur.61.7.1090.
    1. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;17:1743–1748. doi: 10.1212/01.WNL.0000125184.88797.62.
    1. Vespa PM, Nuwer MR, Juhasz C, Alexander M, Nenov V, Martin N, Becker DP. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;17:607–615. doi: 10.1016/S0013-4694(97)00071-0.
    1. Rathakrishnan R, Gotman J, Dubeau F, Angle M. Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage. Neurocrit Care. 2011;17:152–161. doi: 10.1007/s12028-010-9495-2.
    1. Klopman MA, Sebel PS. Cost-effectiveness of bispectral index monitoring. Curr Opin Anaesthesiol. 2011;17:177–181. doi: 10.1097/ACO.0b013e328343eb19.
    1. Boccagni C, Bagnato S, Sant AA, Prestandrea C, Galardi G. Usefulness of standard EEG in predicting the outcome of patients with disorders of consciousness after anoxic coma. J Clin Neurophysiol. 2011;17:489–492.
    1. Vespa PM, Boscardin WJ, Hovda DA, McArthur DL, Nuwer MR, Martin NA, Nenov V, Glenn TC, Bergsneider M, Kelly DF, Becker DP. Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury. J Neurosurg. 2002;17:84–92. doi: 10.3171/jns.2002.97.1.0084.
    1. Hebb MO, McArthur DL, Alger J, Etchepare M, Glenn TC, Bergsneider M, Martin N, Vespa PM. Impaired percent alpha variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after human traumatic brain injury. J Neurotrauma. 2007;17:579–590. doi: 10.1089/neu.2006.0146.
    1. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;17:439–447. doi: 10.1038/nm.2333.
    1. Feuerstein D, Manning A, Hashemi P, Bhatia R, Fabricius M, Tolias C, Pahl C, Ervine M, Strong AJ, Boutelle MG. Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab. 2010;17:1343–1355. doi: 10.1038/jcbfm.2010.17.
    1. Hartings JA, Watanabe T, Bullock MR, Okonkwo DO, Fabricius M, Woitzik J, Dreier JP, Puccio A, Shutter LA, Pahl C, Strong AJ. Spreading depolarizations have prolonged direct current shifts and are associated with poor outcome in brain trauma. Brain. 2011;17:1529–1540. doi: 10.1093/brain/awr048.
    1. Woitzik J, Dreier JP, Hecht N, Fiss I, Sandow N, Major S, Winkler M, Dahlem YA, Manville J, Diepers M, Muench E, Kasuya H, Schmiedek P, Vajkoczy P. Delayed cerebral ischemia and spreading depolarization in absence of angiographic vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2012;17:203–212. doi: 10.1038/jcbfm.2011.169.
    1. Drenckhahn C, Winkler MK, Major S, Scheel M, Kang EJ, Pinczolits A, Grozea C, Hartings JA, Woitzik J, Dreier JP. Correlates of spreading depolarization in human scalp electroencephalography. Brain. 2012;17:853–868. doi: 10.1093/brain/aws010.
    1. Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;17:960–967. doi: 10.1097/01.CCM.0000053643.21751.3B.
    1. Oddo M, Rossetti AO. Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care. 2011;17:254–259. doi: 10.1097/MCC.0b013e328344f2ae.
    1. Hakimi K, Kinney G, Kraft G, Micklesen P, Robinson L. Reliability in interpretation of median somatosensory evoked potentials in the setting of coma: factors and implications. Neurocrit Care. 2009;17:353–361. doi: 10.1007/s12028-009-9251-7.
    1. Zandbergen EG, Koelman JH, de Haan RJ, Hijdra A. SSEPs and prognosis in postanoxic coma: only short or also long latency responses? Neurology. 2006;17:583–586. doi: 10.1212/01.wnl.0000230162.35249.7f.
    1. Marshall LF, Marshall SB, Klauber MR, van Berkum Clark M, Eisenberg HM, Jane JA, Luerssen TG, Marmarou A, Foulkes MA. A new classification of head injury based on computerized tomography. J Neurosurg. 1991;17:S14–S20.
    1. Maas AI, Hukkelhoven CW, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery. 2005;17:1173–1182.
    1. Wijman CA, Mlynash M, Caulfield AF, Hsia AW, Eyngorn I, Bammer R, Fischbein N, Albers GW, Moseley M. Prognostic value of brain diffusion-weighted imaging after cardiac arrest. Ann Neurol. 2009;17:394–402. doi: 10.1002/ana.21632.
    1. Sidaros A, Engberg AW, Sidaros K, Liptrot MG, Herning M, Petersen P, Paulson OB, Jernigan TL, Rostrup E. Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain. 2008;17:559–572. doi: 10.1093/brain/awm294.
    1. Tollard E, Galanaud D, Perlbarg V, Sanchez-Pena P, Le Fur Y, Abdennour L, Cozzone P, Lehericy S, Chiras J, Puybasset L. Experience of diffusion tensor imaging and 1H spectroscopy for outcome prediction in severe traumatic brain injury: Preliminary results. Crit Care Med. 2009;17:1448–1455. doi: 10.1097/CCM.0b013e31819cf050.
    1. Tong KA, Ashwal S, Holshouser BA, Nickerson JP, Wall CJ, Shutter LA, Osterdock RJ, Haacke EM, Kido D. Diffuse axonal injury in children: clinical correlation with hemorrhagic lesions. Ann Neurol. 2004;17:36–50. doi: 10.1002/ana.20123.
    1. Kasahara M, Menon DK, Salmond CH, Outtrim JG, Taylor Tavares JV, Carpenter TA, Pickard JD, Sahakian BJ, Stamatakis EA. Altered functional connectivity in the motor network after traumatic brain injury. Neurology. 2010;17:168–176. doi: 10.1212/WNL.0b013e3181e7ca58.
    1. Karakis I, Montouris GD, Otis JA, Douglass LM, Jonas R, Velez-Ruiz N, Wilford K, Espinosa PS. A quick and reliable EEG montage for the detection of seizures in the critical care setting. J Clin Neurophysiol. 2010;17:100–105. doi: 10.1097/WNP.0b013e3181d649e4.
    1. Piper I, Chambers I, Citerio G, Enblad P, Gregson B, Howells T, Kiening K, Mattern J, Nilsson P, Ragauskas A, Sahuquillo J, Donald R, Sinnott R, Stell A. The brain monitoring with Information Technology (BrainIT) collaborative network: EC feasibility study results and future direction. Acta Neurochir (Wien) 2010;17:1859–1871. doi: 10.1007/s00701-010-0719-1.
    1. Sorani MD, Hemphill JC, Morabito D, Rosenthal G, Manley GT. New approaches to physiological informatics in neurocritical care. Neurocrit Care. 2007;17:45–52. doi: 10.1007/s12028-007-0043-7.
    1. Maas AI, Menon DK, Lingsma HF, Pineda JA, Sandel ME, Manley GT. Reorientation of clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness research. J Neurotrauma. 2012;17:32–46. doi: 10.1089/neu.2010.1599.

Source: PubMed

3
구독하다