Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine

Helene M Savignac, Giulia Corona, Henrietta Mills, Li Chen, Jeremy P E Spencer, George Tzortzis, Philip W J Burnet, Helene M Savignac, Giulia Corona, Henrietta Mills, Li Chen, Jeremy P E Spencer, George Tzortzis, Philip W J Burnet

Abstract

The influence of the gut microbiota on brain chemistry has been convincingly demonstrated in rodents. In the absence of gut bacteria, the central expression of brain derived neurotropic factor, (BDNF), and N-methyl-d-aspartate receptor (NMDAR) subunits are reduced, whereas, oral probiotics increase brain BDNF, and impart significant anxiolytic effects. We tested whether prebiotic compounds, which increase intrinsic enteric microbiota, also affected brain BDNF and NMDARs. In addition, we examined whether plasma from prebiotic treated rats released BDNF from human SH-SY5Y neuroblastoma cells, to provide an initial indication of mechanism of action. Rats were gavaged with fructo-oligosaccharides (FOS), galacto-oligosaccharides (GOS) or water for five weeks, prior to measurements of brain BDNF, NMDAR subunits and amino acids associated with glutamate neurotransmission (glutamate, glutamine, and serine and alanine enantiomers). Prebiotics increased hippocampal BDNF and NR1 subunit expression relative to controls. The intake of GOS also increased hippocampal NR2A subunits, and frontal cortex NR1 and d-serine. Prebiotics did not alter glutamate, glutamine, l-serine, l-alanine or d-alanine concentrations in the brain, though GOSfeeding raised plasma d-alanine. Elevated levels of plasma peptide YY (PYY) after GOS intake was observed. Plasma from GOS rats increased the release of BDNF from SH-SY5Y cells, but not in the presence of PYY antisera. The addition of synthetic PYY to SH-SY5Y cell cultures, also elevated BDNF secretion. We conclude that prebiotic-mediated proliferation of gut microbiota in rats, like probiotics, increases brain BDNF expression, possibly through the involvement of gut hormones. The effect of GOS on components of central NMDAR signalling was greater than FOS, and may reflect the proliferative potency of GOS on microbiota. Our data therefore, provide a sound basis to further investigate the utility of prebiotics in the maintenance of brain health and adjunctive treatment of neuropsychiatric disorders.

Keywords: Amino acids; Bifidobacteria; Dentate gyrus; Glutamate; HPLC; Western blot.

Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
The effect of an oral administration of water or prebiotic (FOS or GOS) on the levels of (A) BDNF and (B) NR1 subunits in the cortex and hippocampus of the rat. Representative Western blot images of NR1 and β-actin immunoreactivity in protein extracts from water (W), FOS (F) and GOS (G)-fed rats are shown in (B, inset). NR1 levels were expressed as a ratio of β-actin. ∗p < 0.05 (n = 8/group).
Fig. 2
Fig. 2
The effect of an oral administration of water or prebiotic (FOS or GOS) on the levels of (A) NR2A and (B) NR2B subunits in the cortex and hippocampus of the rat. Representative Western blot images of NR subunits and β-actin immunoreactivity in protein extracts from water (W), FOS (F) and GOS (G)-fed rats are shown (inset). NR2 subunit levels were expressed as a ratio of β-actin. ∗p < 0.05 (n = 8/group).
Fig. 3
Fig. 3
Representative autoradiographs of BDNF (A, C and E) and NR1 subunit (B, D and F) mRNA expression in the rat hippocampus following an oral administration of water (A and B), FOS (C and D) or GOS (E and F). Arrows delineate increased expression, and arrow head indicates reduced expression. DG = dentate gyrus, CA1 and CA3 = Cornu Ammons subfields of the hippocampus. Scale bar = 200 μM.
Fig. 4
Fig. 4
Prebiotics (FOS, GOS) differentially alter the abundance of mRNAs encoding BDNF (A), NR1 (B), NR2A (C), but not NR2B (D) subunits. DG = dentate gyrus, CA1 and CA3 = Cornu Ammons subfields of the hippocampus. ∗p < 0.05 (n = 8/group).
Fig. 5
Fig. 5
The effect of prebiotic-fed rat plasmas on BDNF release from SH-SY5Y cells, in the absence or presence of PYY (A) or GLP-1 (B) antisera. ∗p < 0.05, compared to cells exposed to plasma from water-fed rats; #p < 0.001, compared to cells exposed to plasma from water-fed rats containing PYY or GLP-1 antisera; +p < 0.05, compared to cells exposed to plasma from water-fed rats containing PYY or GLP-1 peptide (n = 8 plasmas/group).

References

    1. Anthony J.C., Merriman T.N., Heimbach J.T. 90-Day oral (gavage) study in rats with galacto-oligosaccharides syrup. Food Chem. Toxicol. 2006;44(6):819–826.
    1. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., Deng Y., Blennerhassett P., Macri J., McCoy K.D., Verdu E.F., Collins S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141:599–609.
    1. Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J., Huang X., Deng Y., Blennerhassett P.A., Fahnestock M., Moine D., Berger B., Huizinga J.D., Kunze W., McLean P.G., Bergonzelli G.E., Collins S.M., Verdu E.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 2011;23:1132–1139.
    1. Bode L., Kunz C., Muhly-Reinholz M., Mayer K., Seeger W., Rudloff S. Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb. Haemost. 2004;92:1402–1410.
    1. Boesmans W., Gomes P., Janssens J., Tack J., Vanden Berghe P. Brain-derived neurotrophic factor amplifies neurotransmitter responses and promotes synaptic communication in the enteric nervous system. Gut. 2008;57:314–322.
    1. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011;108(38):16050–16055.
    1. Burnet P.W., Anderson P.N., Chen L., Nikiforova N., Harrison P.J., Wood M.J. d-amino acid oxidase knockdown in the mouse cerebellum reduces NR2A mRNA. Mol. Cell. Neurosci. 2011;46:167–175.
    1. Burnet P.W. Gut bacteria and brain function: the challenges of a growing field. Proc. Natl. Acad. Sci. USA. 2012;109:E175.
    1. Chiaruttini C., Sonego M., Baj G., Simonato M., Tongiorgi E. BDNF mRNA splice variants display activity-dependent targeting to distinct hippocampal laminae. Mol. Cell. Neurosci. 2008;37:11–19.
    1. Coco M., Caggia S., Musumeci G., Perciavalle V., Graziano A.C., Pannuzzo G., Cardile V. Sodium l-lactate differently affects brain-derived neurotrophic factor, inducible nitric oxide synthase, and heat shock protein 70 kDa production in human astrocytes and SH-SY5Y cultures. J. Neurosci. Res. 2013;91(2):313–320.
    1. Collingridge G.L., Volianskis A., Bannister N., France G., Hanna L., Mercier M., Tidball P., Fang G., Irvine M.W., Costa B.M., Monaghan D.T., Bortolotto Z.A., Molnár E., Lodge D., Jane D.E. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology. 2013;64(1):13–26.
    1. Connor M., Yeo A., Henderson G. Neuropeptide Y Y2 receptor and somatostatin sst2 receptor coupling to mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells. Br. J. Pharmacol. 1997;120:455–463.
    1. Cryan J.F., Dinan T.G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012;13:701–712.
    1. Delmée E., Cani P.D., Gual G., Knauf C., Burcelin R., Maton N., Delzenne N.M. Relation between colonic proglucagon expression and metabolic response to oligofructose in high fat diet-fed mice. Life Sci. 2006;79:1007–1013.
    1. Drakoularakou A., Tzortzis G., Rastall R.A., Gibson G.R. A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers’ diarrhoea. Eur. J. Clin. Nutr. 2010;64:146–152.
    1. Eastwood S.L., McDonald B., Burnet P.W., Beckwith J.P., Kerwin R.W., Harrison P.J. Decreased expression of mRNAs encoding non-NMDA glutamate receptors GluR1 and GluR2 in medial temporal lobe neurons in schizophrenia. Brain Res. Mol. Brain Res. 1995;29:211–223.
    1. Eiwegger T., Stahl B., Haidl P., Schmitt J., Boehm G., Dehlink E., Urbanek R., Szépfalusi Z. Prebiotic oligosaccharides: in vitro evidence for gastrointestinal epithelial transfer and immunomodulatory properties. Pediatr. Allergy Immunol. 2010;21:1179–1188.
    1. Forsythe P., Kunze W.A. Voices from within: gut microbes and the CNS. Cell. Mol. Life Sci. 2012;70:55–69. PMID: .
    1. Grant S.L., Shulman Y., Tibbo P. Determination of d-serine and related neuroactive amino acids in human plasma by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006;844:278–282.
    1. Hernandez E.J., Whitcomb D.C., Vigna S.R., Taylor I.L. Saturable binding of circulating peptide YY in the dorsal vagal complex of rats. Am. J. Physiol. 1994;266:G511–G516.
    1. Jakobsdottir G., Jädert C., Holm L., Nyman M.E. Propionic and butyric acids, formed in the caecum of rats fed highly fermentable dietary fibre, are reflected in portal and aortic serum. Br. J. Nutr. 2013;26:1–8.
    1. Kato T., Funakoshi H., Kadoyama K., Noma S., Kanai M., Ohya-Shimada W., Mizuno S., Doe N., Taniguchi T., Nakamura T. Hepatocyte growth factor overexpression in the nervous system enhances learning and memory performance in mice. J. Neurosci. Res. 2012;90:1743–1755.
    1. Kerman I.A. New insights into BDNF signalling: relevance to major depression and antidepressant action. Am. J. Psychiatry. 2012;169:1137–1140.
    1. Ketabi A., Dieleman L.A., Gänzle M.G. Influence of isomalto-oligosaccharides on intestinal microbiota in rats. J. Appl. Microbiol. 2011;110:1297–1306.
    1. Kiss J.P., Szasz B.K., Fodor L., Mike A., Lenkey N., Kurkó D., Nagy J., Vizi E.S. GluN2B-containing NMDA receptors as possible targets for the neuroprotective and antidepressant effects of fluoxetine. Neurochem. Int. 2012;60(2):170–176.
    1. Konno R., Oowada T., Ozaki A., Iida T., Niwa A., Yasumura Y., Mizutani T. Origin of d-alanine present in urine of mutant mice lacking d-amino-acid oxidase activity. Am. J. Physiol. 1993;265:G699–G703.
    1. Li W., Dowd S.E., Scurlock B., Acosta-Martinez V., Lyte M. Memory and learning behavior in mice is temporally associated with diet-induced alterations in gut bacteria. Physiol. Behav. 2009;96:557–567.
    1. Liu L., Wong T.P., Pozza M.F., Lingenhoehl K., Wang Y., Sheng M., Auberson Y.P., Wang Y.T. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304:1021–1024.
    1. Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D., Nejdi A., Bisson J.F., Rougeot C., Pichelin M., Cazaubiel M., Cazaubiel J.M. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 2011;105(5):755–764.
    1. Messaoudi M., Violle N., Bisson J.F., Desor D., Javelot H., Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011;2(4):256–261.
    1. Morikawa A., Hamase K., Inoue T., Konno R., Niwa A., Zaitsu K. Determination of free d-aspartic acid, d-serine and d-alanine in the brain of mutant mice lacking d-amino acid oxidase activity. J. Chromatogr. B Biomed. Sci. Appl. 2001;757:119–125.
    1. Morikawa A., Hamase K., Inoue T., Konno R., Zaitsu K. Alterations in d-amino acid levels in the brains of mice and rats after the administration of d-amino acids. Amino Acids. 2007;32:13–20.
    1. Murphy M.C., Fox E.A. Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J. Comp. Neurol. 2010;518:2934–2951.
    1. Neufeld K.M., Kang N., Bienenstock J., Foster J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 2011;223(3):255–264.
    1. Nonaka N., Shioda S., Niehoff M.L., Banks W.A. Characterization of blood–brain barrier permeability to PYY3-36 in the mouse. J. Pharmacol. Exp. Ther. 2003;306:948–953.
    1. O’Sullivan E., Barrett E., Grenham S., Fitzgerald P., Stanton C., Ross R.P., Quigley E.M., Cryan J.F., Dinan T.G. BDNF expression in the hippocampus of maternally separated rats: does Bifidobacterium breve 6330 alter BDNF levels? Benef. Microbes. 2011;2(3):199–207.
    1. Overduin J., Schoterman M.H., Calame W., Schonewille A.J., Ten Bruggencate S.J. Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br. J. Nutr. 2013;31:1–11.
    1. Owczarek S., Hou J., Secher T., Kristiansen L.V. Phencyclidine treatment increases NR2A and NR2B N-methyl-d-aspartate receptor subunit expression in rats. Neuroreport. 2011;22:935–938.
    1. Paxinos G., Watson C. Academic Press Inc.; San Diego: 1986. The Rat Brain in Stereotaxic Coordinates.
    1. Rao A.V., Bested A.C., Beaulne T.M., Katzman M.A., Iorio C., Berardi J.M., Logan A.C. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009;1(1):6.
    1. Rosenberg D., Kartvelishvily E., Shleper M., Klinker C.M., Bowser M.T., Wolosker H. Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J. 2010;24:2951–2961.
    1. Sikka P., Walker R., Cockayne R., Wood M.J., Harrison P.J., Burnet P.W. d-Serine metabolism in C6 glioma cells: involvement of alanine-serine-cysteine transporter (ASCT2) and serine racemase (SRR) but not d-amino acid oxidase (DAO) J. Neurosci. Res. 2010;88:1829–1840.
    1. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X.N., Kubo C., Koga Y. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J. Physiol. 2004;558(Pt. 1):263–275.
    1. van Vlies N., Hogenkamp A., Thijssen S., Dingjan G.M., Knipping K., Garssen J., Knippels L.M. Effects of short-chain galacto- and long-chain fructo-oligosaccharides on systemic and local immune status during pregnancy. J. Reprod. Immunol. 2012;94(2):161–168.
    1. Vulevic J., Drakoularakou A., Yaqoob P., Tzortzis G., Gibson G.R. Modulation of the fecal microflora profile and immune function by a novel trans-galacto-oligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am. J. Clin. Nutr. 2008;88:1438–1446.
    1. Vulevic J., Juric A., Tzortzis G., Gibson G.R. A mixture of trans-galacto-oligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 2013;143(3):324–331.

Source: PubMed

3
구독하다