Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

Qinghua Huang, Fan Zhang, Xuelong Li, Qinghua Huang, Fan Zhang, Xuelong Li

Abstract

The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

Figures

Figure 1
Figure 1
The general flowchart of CAD system.
Figure 2
Figure 2
The equivalent ellipse (orange line) of a benign breast lesion.

References

    1. Drukker K., Giger M. L., Horsch K., Kupinski M. A., Vyborny C. J., Mendelson E. B. Computerized lesion detection on breast ultrasound. Medical Physics. 2002;29(7):1438–1446. doi: 10.1118/1.1485995.
    1. Sahiner B., Chan H.-P., Roubidoux M. A., et al. Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology. 2007;242(3):716–724. doi: 10.1148/radiol.2423051464.
    1. Chen C.-M., Chou Y.-H., Han K.-C., et al. Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology. 2003;226(2):504–514. doi: 10.1148/radiol.2262011843.
    1. Wang X., Seetohul V., Chen R., et al. Development of a mechanical scanning device with high-frequency ultrasound transducer for ultrasonic capsule endoscopy. IEEE Transactions on Medical Imaging. 2017;36(9):1922–1929. doi: 10.1109/TMI.2017.2699973.
    1. Qiu W., Wang X., Chen Y., et al. Modulated Excitation Imaging System for Intravascular Ultrasound. IEEE Transactions on Biomedical Engineering. 2017;64(8):1935–1942. doi: 10.1109/TBME.2016.2631224.
    1. Zhou G.-Q., Jiang W.-W., Lai K.-L., Zheng Y.-P. Automatic Measurement of Spine Curvature on 3-D Ultrasound Volume Projection Image with Phase Features. IEEE Transactions on Medical Imaging. 2017;36(6):1250–1262. doi: 10.1109/TMI.2017.2674681.
    1. Zhou G.-Q., Zheng Y.-P. Automatic Fascicle Length Estimation on Muscle Ultrasound Images With an Orientation-Sensitive Segmentation. IEEE Transactions on Biomedical Engineering. 2015;62(12):2828–2836. doi: 10.1109/TBME.2015.2445345.
    1. Zhou G.-Q., Chan P., Zheng Y.-P. Automatic measurement of pennation angle and fascicle length of gastrocnemius muscles using real-time ultrasound imaging. Ultrasonics. 2015;57(C):72–83. doi: 10.1016/j.ultras.2014.10.020.
    1. Takahashi R., Kajikawa Y. Computer-aided diagnosis: A survey with bibliometric analysis. International Journal of Medical Informatics. 2017;101:58–67. doi: 10.1016/j.ijmedinf.2017.02.004.
    1. Cheng H. D., Shan J., Ju W., Guo Y., Zhang L. Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recognition. 2010;43(1):299–317. doi: 10.1016/j.patcog.2009.05.012.
    1. Mansoor A., Bagci U., Foster B., et al. Segmentation and image analysis of abnormal lungs at CT: Current approaches, challenges, and future trends. RadioGraphics. 2015;35(4):1056–1076. doi: 10.1148/rg.2015140232.
    1. Jabarulla M. Y., Lee H.-N. Computer aided diagnostic system for ultrasound liver images: A systematic review. Optik - International Journal for Light and Electron Optics. 2017;140:1114–1126. doi: 10.1016/j.ijleo.2017.05.013.
    1. Huang Q., Luo Y., Zhang Q. Breast ultrasound image segmentation: a survey. International Journal for Computer Assisted Radiology and Surgery. 2017;12(3):493–507. doi: 10.1007/s11548-016-1513-1.
    1. Singh B. K., Verma K., Thoke A. S. Fuzzy cluster based neural network classifier for classifying breast tumors in ultrasound images. Expert Systems with Applications. 2016;66:114–123. doi: 10.1016/j.eswa.2016.09.006.
    1. Prabusankarlal K. M., Thirumoorthy P., Manavalan R. Assessment of combined textural and morphological features for diagnosis of breast masses in ultrasound. Human-centric Computing and Information Sciences. 2015;5(1) doi: 10.1186/s13673-015-0029-y.
    1. Han S., Kang H. K., Jeong J. Y., et al. A deep learning framework for supporting the classification of breast lesions in ultrasound images. Medicine & Biology. 2017
    1. Zhang Q., Xiao Y., Dai W., et al. Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics. 2016;72:150–157. doi: 10.1016/j.ultras.2016.08.004.
    1. Cheng J.-Z., Ni D., Chou Y.-H., et al. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific Reports. 2016;6 doi: 10.1038/srep24454.24454
    1. Shi J., Zhou S., Liu X., Zhang Q., Lu M., Wang T. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing. 2016;194:87–94. doi: 10.1016/j.neucom.2016.01.074.
    1. Acharya U. R., Fujita H., Sudarshan V. K., et al. An integrated index for identification of fatty liver disease using radon transform and discrete cosine transform features in ultrasound images. Information Fusion. 2016;31:43–53. doi: 10.1016/j.inffus.2015.12.007.
    1. Virmani J., Kumar V., Kalra N., Khandelwal N. SVM-based characterization of liver ultrasound images using wavelet packet texture descriptors. Journal of Digital Imaging. 2013;26(3):530–543. doi: 10.1007/s10278-012-9537-8.
    1. Hassan T. M., Elmogy M., Sallam E.-S. Diagnosis of Focal Liver Diseases Based on Deep Learning Technique for Ultrasound Images. Arabian Journal for Science and Engineering. 2017;42(8):3127–3140. doi: 10.1007/s13369-016-2387-9.
    1. Meng D., Zhang L., Cao G., Cao W., Zhang G., Hu B. Liver Fibrosis Classification Based on Transfer Learning and FCNet for Ultrasound Images. IEEE Access. 2017;5:5804–5810. doi: 10.1109/ACCESS.2017.2689058.
    1. Liu X., Song J., Hong Wang S., Zhao J., Chen Y. Learning to diagnose cirrhosis with liver capsule guided ultrasound image classification. Sensors. 2017;17(1, article no. 149) doi: 10.3390/s17010149.
    1. Acharya U. R., Chowriappa P., Fujita H., et al. Thyroid lesion classification in 242 patient population using Gabor transform features from high resolution ultrasound images. Knowledge-Based Systems. 2016;107:235–245. doi: 10.1016/j.knosys.2016.06.010.
    1. Acharya U. R., Faust O., Sree S. V., Molinari F., Suri J. S. ThyroScreen system: High resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Computer Methods and Programs in Biomedicine. 2012;107(2):233–241. doi: 10.1016/j.cmpb.2011.10.001.
    1. Chi J., Walia E., Babyn P., Wang J., Groot G., Eramian M. Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network. Journal of Digital Imaging. 2017;30(4):477–486. doi: 10.1007/s10278-017-9997-y.
    1. Ma J., Wu F., Jiang T., Zhu J., Kong D. Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images. Medical Physics. 2017;44(5):1678–1691. doi: 10.1002/mp.12134.
    1. Ravindraiah R., Tejaswini K. A survey of image segmentation algorithms based on fuzzy clustering. International Journal of Computer Science and Mobile Computing. 2013;2(7):200–206.
    1. Cherkassky V., Mulier F. Learning from Data: Concepts, Theory, and Methods: Second Edition. Learning from Data: Concepts, Theory, and Methods: Second Edition. 2006:1–538. doi: 10.1002/9780470140529.
    1. Laws K. I. Image Understanding Workshop. 1979. Texture Energy Measures; pp. 47–51.
    1. Gómez W., Pereira W. C. A., Infantosi A. F. C. Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound. IEEE Transactions on Medical Imaging. 2012;31(10):1889–1899. doi: 10.1109/tmi.2012.2206398.
    1. Zhang Q., Li C., Han H., et al. Spatio-Temporal Quantification of Carotid Plaque Neovascularization on Contrast Enhanced Ultrasound: Correlation with Visual Grading and Histopathology. European Journal of Vascular and Endovascular Surgery. 2015;50(3):289–296. doi: 10.1016/j.ejvs.2015.06.077.
    1. Abdel-Nasser M., Melendez J., Moreno A., Omer O. A., Puig D. Breast tumor classification in ultrasound images using texture analysis and super-resolution methods. Engineering Applications of Artificial Intelligence. 2017;59:84–92. doi: 10.1016/j.engappai.2016.12.019.
    1. Joo S., Yang Y. S., Moon W. K., Kim H. C. Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Transactions on Medical Imaging. 2004;23(10):1292–1300. doi: 10.1109/tmi.2004.834617.
    1. Horsch K., Giger M. L., Venta L. A., Vyborny C. J. Computerized diagnosis of breast lesions on ultrasound. Medical Physics. 2002;29(2):157–164. doi: 10.1118/1.1429239.
    1. Shankar P. M., Dumane V. A., Reid J. M., et al. Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 2001;48(2):569–580. doi: 10.1109/58.911740.
    1. Takemura A., Shimizu A., Hamamoto K. Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the adaboost algorithm with feature selection. IEEE Transactions on Medical Imaging. 2010;29(3):598–609. doi: 10.1109/TMI.2009.2022630.
    1. Costantini M., Belli P., Lombardi R., Franceschini G., Mulè A., Bonomo L. Characterization of solid breast masses: Use of the sonographic breast imaging reporting and data system lexicon. Journal of Ultrasound in Medicine. 2006;25(5):649–659. doi: 10.7863/jum.2006.25.5.649.
    1. Huberty C. J. Discriminant Analysis. Review of Educational Research. 1975;45(4):543–598. doi: 10.3102/00346543045004543.
    1. Rice J. C. Logistic regression: An introduction. Advances in social science methodology. 1994;3:191–245.
    1. Caixinha M., Santos M., Santos J. Automatic Cataract Hardness Classification Ex Vivo by Ultrasound Techniques. Ultrasound in Medicine & Biology. 2016;42(4):989–998. doi: 10.1016/j.ultrasmedbio.2015.11.021.
    1. Milutinovic S., Radunovic G., Veljkovic K., et al. Development of ultrasound enthesitis score to identify patients with enthesitis having spondyloarthritis: Prospective, double-blinded, controlled study. Clinical and Experimental Rheumatology. 2015;33(6):812–817.
    1. Zhang Q., Li C., Han H., Yang L., Wang Y., Wang W. Computer-aided quantification of contrast agent spatial distribution within atherosclerotic plaque in contrast-enhanced ultrasound image sequences. Biomedical Signal Processing and Control. 2014;13(1):50–61. doi: 10.1016/j.bspc.2014.03.005.
    1. Ding J., Cheng H. D., Huang J., Liu J., Zhang Y. Breast ultrasound image classification based on multiple-instance learning. Journal of Digital Imaging. 2012;25(5):620–627. doi: 10.1007/s10278-012-9499-x.
    1. Cristianini N., Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge,UK: Cambridge University Press; 2000.
    1. Cai L., Wang X., Wang Y., Guo Y., Yu J., Wang Y. Robust phase-based texture descriptor for classification of breast ultrasound images. Biomedical Engineering Online. 2015;14(1, article no. 26):p. 1. doi: 10.1186/s12938-015-0022-8.
    1. Yen P.-L., Wu H.-K., Tseng H.-S., et al. Vascular morphologic information of three-dimensional power Doppler ultrasound is valuable in the classification of breast lesions. Clinical Imaging. 2012;36(4):267–271. doi: 10.1016/j.clinimag.2011.11.012.
    1. Zhang Q., Suo J., Chang W., Shi J., Chen M. Dual-modal computer-assisted evaluation of axillary lymph node metastasis in breast cancer patients on both real-time elastography and B-mode ultrasound. European Journal of Radiology. 2017;95:66–74. doi: 10.1016/j.ejrad.2017.07.027.
    1. Acharya U. R., Sree S. V., Rama Krishnan M. M., et al. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images from a Polish population. Journal of Ultrasound in Medicine. 2014;33(2):245–253. doi: 10.7863/ultra.33.2.245.
    1. Subba Rao T. Classification, parameter estimation and state estimation - an engineering approach using MATLAB. Journal of Time Series Analysis. 2011;32(2):194. doi: 10.1111/j.1467-9892.2010.00665.x.
    1. Hirose Y., Yamashita K., Hijiya S. Back-propagation algorithm which varies the number of hidden units. Neural Networks. 1991;4(1):61–66. doi: 10.1016/0893-6080(91)90032-Z.
    1. Moon W. K., Choi J. W., Cho N., et al. Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses. American Journal of Roentgenology. 2010;195(6):1460–1465. doi: 10.2214/AJR.09.3140.
    1. Diao X.-F., Zhang X.-Y., Wang T.-F., Chen S.-P., Yang Y., Zhong L. Highly sensitive computer aided diagnosis system for breast tumor based on color Doppler flow images. Journal of Medical Systems. 2011;35(5):801–809. doi: 10.1007/s10916-010-9461-8.
    1. Huang Y.-H., Chen J.-H., Chang Y.-C., et al. Diagnosis of solid breast tumors using vessel analysis in three-dimensional power Doppler ultrasound images. Journal of Digital Imaging. 2013;26(4):731–739. doi: 10.1007/s10278-012-9556-5.
    1. Hinton G. E., Salakhutdinov R. R. Reducing the dimensionality of data with neural networks. American Association for the Advancement of Science: Science. 2006;313(5786):504–507. doi: 10.1126/science.1127647.
    1. Huang Q., Yang F., Liu L., Li X. Automatic segmentation of breast lesions for interaction in ultrasonic computer-aided diagnosis. Information Sciences. 2015;314:293–310. doi: 10.1016/j.ins.2014.08.021.
    1. Feng X., Guo X., Huang Q. Systematic evaluation on speckle suppression methods in examination of ultrasound breast images. Applied Sciences. 2017;7(1):p. 37. doi: 10.3390/app7010037.
    1. Chen H., Dou Q., Ni D., et al. Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface. 2015;9349:507–514. doi: 10.1007/978-3-319-24553-9_62.
    1. Wu L., Cheng J.-Z., Li S., Lei B., Wang T., Ni D. FUIQA: Fetal ultrasound image quality assessment with deep convolutional networks. IEEE Transactions on Cybernetics. 2017;47(5):1336–1349. doi: 10.1109/TCYB.2017.2671898.
    1. Yu Z., Tan E.-L., Ni D., et al. A Deep Convolutional Neural Network Based Framework for Automatic Fetal Facial Standard Plane Recognition. IEEE Journal of Biomedical & Health Informatics. 2017;99(1)
    1. Chen H., Wu L., Dou Q., et al. Ultrasound Standard Plane Detection Using a Composite Neural Network Framework. IEEE Transactions on Cybernetics. 2017;47(6):1576–1586. doi: 10.1109/TCYB.2017.2685080.
    1. Yaqub M., Kelly B., Papageorghiou A. T., Noble J. A. A Deep Learning Solution for Automatic Fetal Neurosonographic Diagnostic Plane Verification Using Clinical Standard Constraints. Ultrasound in Medicine & Biology. 2017 doi: 10.1016/j.ultrasmedbio.2017.07.013.
    1. Jia Y., Shelhamer E., Donahue J., et al. Caffe: convolutional architecture for fast feature embedding. Proceedings of the ACM International Conference on Multimedia; November 2014; Orlando, Fla, USA. ACM; pp. 675–678.
    1. Menchón-Lara R.-M., Sancho-Gómez J.-L., Bueno-Crespo A. Early-stage atherosclerosis detection using deep learning over carotid ultrasound images. Applied Soft Computing. 2016;49:616–628. doi: 10.1016/j.asoc.2016.08.055.
    1. Lekadir K., Galimzianova A., Betriu A., et al. A Convolutional Neural Network for Automatic Characterization of Plaque Composition in Carotid Ultrasound. IEEE Journal of Biomedical and Health Informatics. 2017;21(1):48–55. doi: 10.1109/JBHI.2016.2631401.
    1. Burlina P., Billings S., Joshi N., Albayda J. Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods. PLoS ONE. 2017;12(8) doi: 10.1371/journal.pone.0184059.e0184059
    1. Hetherington J., Lessoway V., Gunka V., Abolmaesumi P., Rohling R. SLIDE: automatic spine level identification system using a deep convolutional neural network. International Journal for Computer Assisted Radiology and Surgery. 2017;2(7):1–10. doi: 10.1007/s11548-017-1575-8.
    1. Cheng P. M., Malhi H. S. Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images. Journal of Digital Imaging. 2017;30(2):234–243. doi: 10.1007/s10278-016-9929-2.

Source: PubMed

3
구독하다