Oxidative Stress in Patients Undergoing Peritoneal Dialysis: A Current Review of the Literature

Vassilios Liakopoulos, Stefanos Roumeliotis, Xenia Gorny, Theodoros Eleftheriadis, Peter R Mertens, Vassilios Liakopoulos, Stefanos Roumeliotis, Xenia Gorny, Theodoros Eleftheriadis, Peter R Mertens

Abstract

Peritoneal dialysis (PD) patients manifest excessive oxidative stress (OS) compared to the general population and predialysis chronic kidney disease patients, mainly due to the composition of the PD solution (high-glucose content, low pH, elevated osmolality, increased lactate concentration and glucose degradation products). However, PD could be considered a more biocompatible form of dialysis compared to hemodialysis (HD), since several studies showed that the latter results in an excess accumulation of oxidative products and loss of antioxidants. OS in PD is tightly linked with chronic inflammation, atherogenesis, peritoneal fibrosis, and loss of residual renal function. Although exogenous supplementation of antioxidants, such as vitamins E and C, N-acetylcysteine, and carotenoids, in some cases showed potential beneficial effects in PD patients, relevant recommendations have not been yet adopted in everyday clinical practice.

References

    1. Hasselwander O., Young I. S. Oxidative stress in chronic renal failure. Free Radical Research. 1998;29(1):1–11. doi: 10.1080/10715769800300011.
    1. Locatelli F., Canaud B., Eckardt K. U., Stenvinkel P., Wanner C., Zoccali C. Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrology Dialysis Transplantation. 2003;18(7):1272–1280. doi: 10.1093/ndt/gfg074.
    1. Frenkel K., Zhong Z., Wei H., et al. Quantitative high-performance liquid chromatography analysis of DNA oxidized in vitro and in vivo. Analytical Biochemistry. 1991;196(1):126–136. doi: 10.1016/0003-2697(91)90128-G.
    1. Himmelfarb J. Innovation in the treatment of uremia: proceedings from the cleveland clinic workshop: uremic toxicity, oxidative stress, and hemodialysis as renal replacement therapy. Seminars in Dialysis. 2009;22(6):636–643. doi: 10.1111/j.1525-139X.2009.00659.x.
    1. Stigant C. E., Bargman J. M. What’s new in peritoneal dialysis: biocompatibility and continuous flow peritoneal dialysis. Current Opinion in Nephrology and Hypertension. 2002;11(6):597–602. doi: 10.1097/00041552-200211000-00005.
    1. Kuo H. T., Chen H. W., Hsiao H. H., Chen H. C. Heat shock response protects human peritoneal mesothelial cells from dialysate-induced oxidative stress and mitochondrial injury. Nephrology Dialysis Transplantation. 2009;24(6):1799–1809. doi: 10.1093/ndt/gfn718.
    1. Breborowicz A. Free radicals in peritoneal dialysis: agents of damage? Peritoneal Dialysis International. 1992;12(2):194–198.
    1. Huh J. Y., Seo E. Y., Lee H. B., Ha H. Glucose-based peritoneal dialysis solution suppresses adiponectin synthesis through oxidative stress in an experimental model of peritoneal dialysis. Peritoneal Dialysis International. 2012;32(1):20–28. doi: 10.3747/pdi.2009.00228.
    1. Vostalova J., Galandakova A., Strebl P., Zadrazil J. Oxidative stress in patients on regular hemodialysis and peritoneal dialysis. Vnitřní Lékařství. 2012;58(6):466–472.
    1. Wang A. Y., Wang M., Woo J., et al. Inflammation, residual kidney function, and cardiac hypertrophy are interrelated and combine adversely to enhance mortality and cardiovascular death risk of peritoneal dialysis patients. Journal of the American Society of Nephrology. 2004;15(8):2186–2194. doi: 10.1097/01.ASN.0000135053.98172.D6.
    1. Witowski J., Topley N., Jorres A., Liberek T., Coles G. A., Williams J. D. Effect of lactate-buffered peritoneal dialysis fluids on human peritoneal mesothelial cell interleukin-6 and prostaglandin synthesis. Kidney International. 1995;47(1):282–293. doi: 10.1038/ki.1995.36.
    1. Serre A. F., Marie C., Beaujon G., Betail G., Cavaillon J. M., Deteix P. Variations of cytokine levels and production in CAPD patients. The International Journal of Artificial Organs. 1997;20(11):614–621.
    1. Combet S., Miyata T., Moulin P., Pouthier D., Goffin E., Devuyst O. Vascular proliferation and enhanced expression of endothelial nitric oxide synthase in human peritoneum exposed to long-term peritoneal dialysis. Journal of the American Society of Nephrology. 2000;11(4):717–728.
    1. Miyata T., Kurokawa K., Van Ypersele de Strihou C. Advanced glycation and lipoxidation end products: role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism. Journal of the American Society of Nephrology. 2000;11(9):1744–1752.
    1. Boudouris G., Verginadis I. I., Simos Y. V., et al. Oxidative stress in patients treated with continuous ambulatory peritoneal dialysis (CAPD) and the significant role of vitamin C and E supplementation. International Urology and Nephrology. 2013;45(4):1137–1144. doi: 10.1007/s11255-012-0334-6.
    1. Kocak H., Gumuslu S., Ermis C., et al. Oxidative stress and asymmetric dimethylarginine is independently associated with carotid intima media thickness in peritoneal dialysis patients. American Journal of Nephrology. 2008;28(1):91–96. doi: 10.1159/000109397.
    1. Schmidt R. J., Yokota S., Tracy T. S., Sorkin M. I., Baylis C. Nitric oxide production is low in end-stage renal disease patients on peritoneal dialysis. The American Journal of Physiology. 1999;276(5, Part 2):F794–F797.
    1. Terawaki H., Matsuyama Y., Era S., et al. Elevated oxidative stress measured as albumin redox state in continuous ambulatory peritoneal dialysis patients correlates with small uraemic solutes. Nephrology Dialysis Transplantation. 2007;22(3):p. 968. doi: 10.1093/ndt/gfl635.
    1. Canestrari F., Buoncristiani U., Galli F., et al. Redox state, antioxidative activity and lipid peroxidation in erythrocytes and plasma of chronic ambulatory peritoneal dialysis patients. Clinica Chimica Acta. 1995;234(1-2):127–136. doi: 10.1016/0009-8981(94)05990-A.
    1. Zima T., Štípek S., Crkovská J., et al. Lipid peroxidation and antioxidant enzymes in CAPD patients. Renal Failure. 1996;18(1):113–119. doi: 10.3109/08860229609052781.
    1. Eraldemir F. C., Ozsoy D., Bek S., Kir H., Dervisoglu E. The relationship between brain-derived neurotrophic factor levels, oxidative and nitrosative stress and depressive symptoms: a study on peritoneal dialysis. Renal Failure. 2015;37(4):722–726. doi: 10.3109/0886022X.2015.1011551.
    1. Nourooz-Zadeh J. Effect of dialysis on oxidative stress in uraemia. Redox Report. 1999;4(1-2):17–22. doi: 10.1179/135100099101534693.
    1. Uzum A., Toprak O., Gumustas M. K., Ciftci S., Sen S. Effect of vitamin E therapy on oxidative stress and erythrocyte osmotic fragility in patients on peritoneal dialysis and hemodialysis. Journal of Nephrology. 2006;19(6):739–745.
    1. Sundl I., Roob J. M., Meinitzer A., et al. Antioxidant status of patients on peritoneal dialysis: associations with inflammation and glycoxidative stress. Peritoneal Dialysis International. 2009;29(1):89–101.
    1. Tarng D. C., Wen Chen T., Huang T. P., Chen C. L., Liu T. Y., Wei Y. H. Increased oxidative damage to peripheral blood leukocyte DNA in chronic peritoneal dialysis patients. Journal of the American Society of Nephrology. 2002;13(5):1321–1330. doi: 10.1097/01.ASN.0000013301.11876.7E.
    1. Zwolinska D., Grzeszczak W., Szczepanska M., Makulska I., Kilis-Pstrusinska K., Szprynger K. Oxidative stress in children on peritoneal dialysis. Peritoneal Dialysis International. 2009;29(2):171–177.
    1. Gotloib L. Mechanisms of cell death during peritoneal dialysis. A role for osmotic and oxidative stress. Contributions to Nephrology. 2009;163:35–44. doi: 10.1159/000223778.
    1. Ueda Y., Miyata T., Goffin E., et al. Effect of dwell time on carbonyl stress using icodextrin and amino acid peritoneal dialysis fluids. Kidney International. 2000;58(6):2518–2524. doi: 10.1046/j.1523-1755.2000.00436.x.
    1. Gastaldello K., Husson C., Dondeyne J. P., Vanherweghem J. L., Tielemans C. Cytotoxicity of mononuclear cells as induced by peritoneal dialysis fluids: insight into mechanisms that regulate osmotic stress-related apoptosis. Peritoneal Dialysis International. 2008;28(6):655–666.
    1. Gotloib L., Wajsbrot V., Shostak A. Mesothelial dysplastic changes and lipid peroxidation induced by 7.5% icodextrin. Nephron. 2002;92(1):142–155. doi: 10.1159/000064482.
    1. Ishibashi Y., Sugimoto T., Ichikawa Y., et al. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Peritoneal Dialysis International. 2002;22(1):11–21.
    1. Kim Y. L., Cho J. H., Choi J. Y., Kim C. D., Park S. H. Systemic and local impact of glucose and glucose degradation products in peritoneal dialysis solution. Journal of Renal Nutrition. 2013;23(3):218–222. doi: 10.1053/j.jrn.2013.01.019.
    1. Hung K. Y., Liu S. Y., Yang T. C., Liao T. L., Kao S. H. High-dialysate-glucose-induced oxidative stress and mitochondrial-mediated apoptosis in human peritoneal mesothelial cells. Oxidative Medicine and Cellular Longevity. 2014;2014:12. doi: 10.1155/2014/642793.642793
    1. Du X., Stockklauser-Färber K., Rösen P. Generation of reactive oxygen intermediates, activation of NF-κB, and induction of apoptosis in human endothelial cells by glucose: role of nitric oxide synthase? Free Radical Biology & Medicine. 1999;27(7-8):752–763. doi: 10.1016/S0891-5849(99)00079-9.
    1. Xiang M., Yang M., Zhou C., Liu J., Li W., Qian Z. Crocetin prevents AGEs-induced vascular endothelial cell apoptosis. Pharmacological Research. 2006;54(4):268–274. doi: 10.1016/j.phrs.2006.06.010.
    1. Catalan M. P., Santamaría B., Reyero A. N. A., Ortiz A., Egido J., Ortiz A. 3,4-di-deoxyglucosone-3-ene promotes leukocyte apoptosis. Kidney International. 2005;68(3):1303–1311. doi: 10.1111/j.1523-1755.2005.00528.x.
    1. Ha H., Lee H. B. Effect of high glucose on peritoneal mesothelial cell biology. Peritoneal Dialysis International. 2000;20(Supplement 2):S15–S18.
    1. Mortier S., Faict D., Schalkwijk C. G., Lameire N. H., De Vriese A. N. S. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney International. 2004;66(3):1257–1265. doi: 10.1111/j.1523-1755.2004.00879.x.
    1. Szeto C.-C., Chow K.-M., Lam C. W.-K., et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products—a 1-year randomized control trial. Nephrology Dialysis Transplantation. 2007;22(2):552–559. doi: 10.1093/ndt/gfl559.
    1. Samouilidou E. C., Karpouza A. P., Kostopoulos V., et al. Lipid abnormalities and oxidized LDL in chronic kidney disease patients on hemodialysis and peritoneal dialysis. Renal Failure. 2012;34(2):160–164. doi: 10.3109/0886022X.2011.641515.
    1. Castoldi G., Antolini L., Bombardi C., et al. Oxidative stress biomarkers and chromogranin a in uremic patients: effects of dialytic treatment. Clinical Biochemistry. 2010;43(18):1387–1392. doi: 10.1016/j.clinbiochem.2010.08.028.
    1. Filiopoulos V., Hadjiyannakos D., Takouli L., Metaxaki P., Sideris V., Vlassopoulos D. Inflammation and oxidative stress in end-stage renal disease patients treated with hemodialysis or peritoneal dialysis. The International Journal of Artificial Organs. 2009;32(12):872–882.
    1. Ahmadpoor P., Eftekhar E., Nourooz-Zadeh J., Servat H., Makhdoomi K., Ghafari A. Glutathione, glutathione-related enzymes, and total antioxidant capacity in patients on maintenance dialysis. Iranian Journal of Kidney Diseases. 2009;3(1):22–27.
    1. Mekki K., Taleb W., Bouzidi N., Kaddous A., Bouchenak M. Effect of hemodialysis and peritoneal dialysis on redox status in chronic renal failure patients: a comparative study. Lipids in Health and Disease. 2010;9(1):p. 93. doi: 10.1186/1476-511X-9-93.
    1. Mehmetoglu I., Yerlikaya F. H., Kurban S., Erdem S. S., Tonbul Z. Oxidative stress markers in hemodialysis and peritoneal dialysis patients, including coenzyme Q10 and ischemia-modified albumin. The International Journal of Artificial Organs. 2012;35(3):226–232.
    1. Al-Hweish A., Sultan S. S., Mogazi K., Elsammak M. Y. Plasma myeloperoxidase, NT-proBNP, and troponin-I in patients on CAPD compared with those on regular hemodialysis. Hemodialysis International. 2010;14(3):308–315. doi: 10.1111/j.1542-4758.2010.00455.x.
    1. Taylor J. E., Scott N., Bridges A., Henderson I. S., Stewart W. K., Belch J. J. Lipid peroxidation and antioxidants in continuous ambulatory dialysis patients. Peritoneal Dialysis International. 1992;12(2):252–256.
    1. McGrath L. T., Douglas A. F., McClean E., et al. Oxidative stress and erythrocyte membrane fluidity in patients undergoing regular dialysis. Clinica Chimica Acta. 1995;235(2):179–188. doi: 10.1016/0009-8981(95)06027-X.
    1. Agalou S., Ahmed N., Dawnay A., Thornalley P. J. Removal of advanced glycation end products in clinical renal failure by peritoneal dialysis and haemodialysis. Biochemical Society Transactions. 2003;31(6):1394–1396. doi: 10.1042/bst0311394.
    1. Kielstein J. T., Boger R. H., Bode-Boger S. M., et al. Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease. Journal of the American Society of Nephrology. 1999;10(3):594–600.
    1. Lim P. S., Chang Y. M., Thien L. M., et al. 8-iso-prostaglandin F2α as a useful clinical biomarker of oxidative stress in ESRD patients. Blood Purification. 2002;20(6):537–542. doi: 10.1159/000066962.
    1. Puchades M. J., Saez G., Munoz M. C., et al. Study of oxidative stress in patients with advanced renal disease and undergoing either hemodialysis or peritoneal dialysis. Clinical Nephrology. 2013;80(09):177–186. doi: 10.5414/CN107639.
    1. Lucchi L., Bergamini S., Iannone A., et al. Erythrocyte susceptibility to oxidative stress in chronic renal failure patients under different substitutive treatments. Artificial Organs. 2005;29(1):67–72. doi: 10.1111/j.1525-1594.2004.29011.x.
    1. Usberti M., Gerardi G. M., Gazzotti R. M., et al. Oxidative stress and cardiovascular disease in dialyzed patients. Nephron. 2002;91(1):25–33. doi: 10.1159/000057601.
    1. Sela S., Shurtz-Swirski R., Cohen-Mazor M., et al. Primed peripheral polymorphonuclear leukocyte: a culprit underlying chronic low-grade inflammation and systemic oxidative stress in chronic kidney disease. Journal of the American Society of Nephrology. 2005;16(8):2431–2438. doi: 10.1681/ASN.2004110929.
    1. Morimoto H., Nakao K., Fukuoka K., et al. Long-term use of vitamin E-coated polysulfone membrane reduces oxidative stress markers in haemodialysis patients. Nephrology Dialysis Transplantation. 2005;20(12):2775–2782. doi: 10.1093/ndt/gfi121.
    1. Pawlak K., Pawlak D., Mysliwiec M. Impaired renal function and duration of dialysis therapy are associated with oxidative stress and proatherogenic cytokine levels in patients with end-stage renal disease. Clinical Biochemistry. 2007;40(1-2):81–85. doi: 10.1016/j.clinbiochem.2006.09.001.
    1. Kayabasi H., Sit D., Atay A. E., Yilmaz Z., Kadiroglu A. K., Yilmaz M. E. Parameters of oxidative stress and echocardiographic indexes in patients on dialysis therapy. Renal Failure. 2010;32(3):328–334. doi: 10.3109/08860221003606299.
    1. Yonova D., Trendafilov I., Papazov V., Stanchev I., Zidarov R., Antonov S. Comparative study of oxidative stress in peritoneal dialysis and hemodialysis patients. Hippokratia. 2004;8(4):170–172.
    1. Guoa C.-H., Wangb C.-L., Chen P.-C., Yang T.-C. Linkage of some trace elements, peripheral blood lymphocytes, inflammation, and oxidative stress in patients undergoing either hemodialysis or peritoneal dialysis. Peritoneal Dialysis International. 2011;31(5):583–591. doi: 10.3747/pdi.2009.00225.
    1. Zhou Q., Wu S., Jiang J., et al. Accumulation of circulating advanced oxidation protein products is an independent risk factor for ischaemic heart disease in maintenance haemodialysis patients. Nephrology. 2012;17(7):642–649. doi: 10.1111/j.1440-1797.2012.01640.x.
    1. Marques de Mattos A., Marino L. V., Ovidio P. P., Jordao A. A., Almeida C. C., Chiarello P. G. Protein oxidative stress and dyslipidemia in dialysis patients. Therapeutic Apheresis and Dialysis. 2012;16(1):68–74. doi: 10.1111/j.1744-9987.2011.01009.x.
    1. Marques de Mattos A., Afonso Jordão A., Abrão Cardeal da Costa J., Garcia Chiarello P. Study of protein oxidative stress, antioxidant vitamins and inflammation in patients undergoing either hemodialysis or peritoneal dialysis. International Journal for Vitamin and Nutrition Research. 2014;84(5-6):261–268. doi: 10.1024/0300-9831/a000212.
    1. Capusa C., Stoian I., Rus E., Lixandru D., Barbulescu C., Mircescu G. Does dialysis modality influence the oxidative stress of uremic patients? Kidney & Blood Pressure Research. 2012;35(4):220–225. doi: 10.1159/000331560.
    1. Mitrogianni Z., Barbouti A., Galaris D., Siamopoulos K. C. Oxidative modification of albumin in predialysis, hemodialysis, and peritoneal dialysis patients. Nephron Clinical Practice. 2009;113(3):c234–c240. doi: 10.1159/000235244.
    1. Donate T., Herreros A., Martinez E., et al. Protein oxidative stress in dialysis patients. Advances in Peritoneal Dialysis. 2002;18:15–17.
    1. Xu H., Watanabe M., Qureshi A. R., et al. Oxidative DNA damage and mortality in hemodialysis and peritoneal dialysis patients. Peritoneal Dialysis International. 2015;35(2):206–215. doi: 10.3747/pdi.2013.00259.
    1. Ross E. A., Koo L. C., Moberly J. B. Low whole blood and erythrocyte levels of glutathione in hemodialysis and peritoneal dialysis patients. American Journal of Kidney Diseases. 1997;30(4):489–494. doi: 10.1016/S0272-6386(97)90306-1.
    1. Takayama F., Tsutsui S., Horie M., Shimokata K., Niwa T. Glutathionyl hemoglobin in uremic patients undergoing hemodialysis and continuous ambulatory peritoneal dialysis. Kidney International. 2001;78:S155–S158. doi: 10.1046/j.1523-1755.2001.59780155.x.
    1. Stępniewska J., Dołęgowska B., Cecerska-Heryć E., et al. The activity of antioxidant enzymes in blood platelets in different types of renal replacement therapy: a cross-sectional study. International Urology and Nephrology. 2016;48(4):593–599. doi: 10.1007/s11255-015-1204-9.
    1. Zima T., Mestek O., Nĕmecek K., et al. Trace elements in hemodialysis and continuous ambulatory peritoneal dialysis patients. Blood Purification. 1998;16(5):253–260. doi: 10.1159/000014342.
    1. Pastor M. C., Sierra C., Bonal J., Teixido J. Serum and erythrocyte tocopherol in uremic patients: effect of hemodialysis versus peritoneal dialysis. American Journal of Nephrology. 1993;13(4):238–243. doi: 10.1159/000168626.
    1. De Rojas A. H., Mateo M. C. M. Superoxide dismutase and catalase activities in patients undergoing hemodialysis and continuous ambulatory peritoneal dialysis. Renal Failure. 1996;18(6):937–946. doi: 10.3109/08860229609047720.
    1. Fortes P. C., Versari P. H., Stinghen A. E., Pecoits-Filho R. Controlling inflammation in peritoneal dialysis: the role of pd-related factors as potential intervention targets. Peritoneal Dialysis International. 2007;27(Supplement 2):S76–S81.
    1. Pecoits-Filho R., Carvalho M. J., Stenvinkel P., Lindholm B., Heimburger O. Systemic and intraperitoneal interleukin-6 system during the first year of peritoneal dialysis. Peritoneal Dialysis International. 2006;26(1):53–63.
    1. Borazan A., Ustün H., Ustundag Y., et al. The effects of peritoneal dialysis and hemodialysis on serum tumor necrosis factor-alpha, interleukin-6, interleukin-10 and C-reactive-protein levels. Mediators of Inflammation. 2004;13(3):201–204. doi: 10.1080/09511920410001713493.
    1. Nakanishi I., Moutabarrik A., Okada N., et al. Interleukin-8 in chronic renal failure and dialysis patients. Nephrology Dialysis Transplantation. 1994;9(10):1435–1442. doi: 10.1093/ndt/9.10.1435.
    1. Snaedal S., Qureshi A. R., Lund S. H., et al. Dialysis modality and nutritional status are associated with variability of inflammatory markers. Nephrology Dialysis Transplantation. 2016;31(8):1320–1327. doi: 10.1093/ndt/gfw104.
    1. Jiang J., Chen P., Chen J., et al. Accumulation of tissue advanced glycation end products correlated with glucose exposure dose and associated with cardiovascular morbidity in patients on peritoneal dialysis. Atherosclerosis. 2012;224(1):187–194. doi: 10.1016/j.atherosclerosis.2012.06.022.
    1. Kaya Y., Ari E., Demir H., et al. Accelerated atherosclerosis in haemodialysis patients; correlation of endothelial function with oxidative DNA damage. Nephrology Dialysis Transplantation. 2012;27(3):1164–1169. doi: 10.1093/ndt/gfr443.
    1. Fassett R. G., Driver R., Healy H., et al. Comparison of markers of oxidative stress, inflammation and arterial stiffness between incident hemodialysis and peritoneal dialysis patients – an observational study. BMC Nephrology. 2009;10(1):p. 8. doi: 10.1186/1471-2369-10-8.
    1. Garcia-Lopez E., Carrero J. J., Suliman M. E., Lindholm B., Stenvinkel P. Risk factors for cardiovascular disease in patients undergoing peritoneal dialysis. Peritoneal Dialysis International. 2007;27(Supplement 2):S205–S209.
    1. MC H., Shi M., Zhang J., et al. Klotho deficiency causes vascular calcification in chronic kidney disease. Journal of the American Society of Nephrology. 2011;22(1):124–136. doi: 10.1681/ASN.2009121311.
    1. HJ O., Nam B. Y., Lee M. J., et al. Decreased circulating klotho levels in patients undergoing dialysis and relationship to oxidative stress and inflammation. Peritoneal Dialysis International. 2015;35(1):43–51. doi: 10.3747/pdi.2013.00150.
    1. Cueto-Manzano A. M., Rojas-Campos E., Martínez-Ramírez H. R., et al. Can the inflammation markers of patients with high peritoneal permeability on continuous ambulatory peritoneal dialysis be reduced on nocturnal intermittent peritoneal dialysis? Peritoneal Dialysis International. 2006;26(3):341–348.
    1. Gunal A. I., Celiker H., Ustundag B., Akpolat N., Dogukan A., Akcicek F. The effect of oxidative stress inhibition with trimetazidine on the peritoneal alterations induced by hypertonic peritoneal dialysis solution. Journal of Nephrology. 2003;16(2):225–230.
    1. Honda K., Nitta K., Horita S., Yumura W., Nihei H., Nagai R., et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrology Dialysis Transplantation. 1999;14(6):1541–1549. doi: 10.1093/ndt/14.6.1541.
    1. Yamaji Y., Nakazato Y., Oshima N., Hayashi M., Saruta T. Oxidative stress induced by iron released from transferrin in low pH peritoneal dialysis solution. Nephrology Dialysis Transplantation. 2004;19(10):2592–2597. doi: 10.1093/ndt/gfh278.
    1. Mochizuki S., Takayama A., Sasaki T., et al. Direct measurement of nitric oxide concentration in CAPD dialysate. Peritoneal Dialysis International. 2009;29(1):111–114.
    1. Yang C. W., Hwang T. L., CH W., et al. Peritoneal nitric oxide is a marker of peritonitis in patients on continuous ambulatory peritoneal dialysis. Nephrology Dialysis Transplantation. 1996;11(12):2466–2471. doi: 10.1093/ndt/11.12.2466.
    1. Choi K. C., Jeong T. K., Lee S. C., Kim S. W., Kim N. H., Lee K. Y. Nitric oxide is a marker of peritonitis in patients on continuous ambulatory peritoneal dialysis. Advances in Peritoneal Dialysis. 1998;14:173–179.
    1. Duranay M., Yilmaz F. M., Yilmaz G., Akay H., Parpucu H., Yucel D. Association between nitric oxide and oxidative stress in continuous ambulatory peritoneal dialysis patients peritonitis. Scandinavian Journal of Clinical and Laboratory Investigation. 2007;67(6):654–660. doi: 10.1080/00365510701253350.
    1. Davenport A., Fernando R. L., Varghese Z. Intraperitoneal nitric oxide production in patients treated by continuous ambulatory peritoneal dialysis. Blood Purification. 2004;22(2):216–223. doi: 10.1159/000076856.
    1. Bargman J. M., Thorpe K. E., Churchill D. N., Group CPDS Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. Journal of the American Society of Nephrology. 2001;12(10):2158–2162.
    1. Ignace S., Fouque D., Arkouche W., Steghens J. P., Guebre-Egziabher F. Preserved residual renal function is associated with lower oxidative stress in peritoneal dialysis patients. Nephrology Dialysis Transplantation. 2009;24(5):1685–1689. doi: 10.1093/ndt/gfp077.
    1. Furuya R., Kumagai H., Odamaki M., Takahashi M., Miyaki A., Hishida A. Impact of residual renal function on plasma levels of advanced oxidation protein products and pentosidine in peritoneal dialysis patients. Nephron Clinical Practice. 2009;112(4):c255–c261. doi: 10.1159/000224792.
    1. Morinaga H., Sugiyama H., Inoue T., et al. Effluent free radicals are associated with residual renal function and predict technique failure in peritoneal dialysis patients. Peritoneal Dialysis International. 2012;32(4):453–461. doi: 10.3747/pdi.2011.00032.
    1. Feldman L., Shani M., Efrati S., et al. N-acetylcysteine improves residual renal function in peritoneal dialysis patients: a pilot study. Peritoneal Dialysis International. 2011;31(5):545–550. doi: 10.3747/pdi.2009.00263.
    1. Shing C. M., Fassett R. G., Peake J. M., Coombes J. S. Effect of tocopherol on atherosclerosis, vascular function, and inflammation in apolipoprotein E knockout mice with subtotal nephrectomy. Cardiovascular Therapeutics. 2014;32(6):270–275. doi: 10.1111/1755-5922.12096.
    1. Ando M., Sanaka T., Nihei H. Eicosapentanoic acid reduces plasma levels of remnant lipoproteins and prevents in vivo peroxidation of LDL in dialysis patients. Journal of the American Society of Nephrology. 1999;10(10):2177–2184.
    1. Islam K. N., O’Byrne D., Devaraj S., Palmer B., Grundy S. M., Jialal I. Alpha-tocopherol supplementation decreases the oxidative susceptibility of LDL in renal failure patients on dialysis therapy. Atherosclerosis. 2000;150(1):217–224. doi: 10.1016/S0021-9150(99)00410-4.
    1. Diepeveen S. H. A., Verhoeven G. W. H. E., Van Der Palen J., et al. Effects of atorvastatin and vitamin E on lipoproteins and oxidative stress in dialysis patients: a randomised-controlled trial. Journal of Internal Medicine. 2005;257(5):438–445. doi: 10.1111/j.1365-2796.2005.01484.x.
    1. Domenici F. A., Vannucchi M. T., Jordao A. A., Jr., Meirelles M. S., Vannucchi H. DNA oxidative damage in patients with dialysis treatment. Renal Failure. 2005;27(6):689–694. doi: 10.1080/08860220500242678.
    1. O'Byrne D., Devaraj S., Islam K. N., et al. Low-density lipoprotein (LDL)-induced monocyte-endothelial cell adhesion, soluble cell adhesion molecules, and autoantibodies to oxidized-LDL in chronic renal failure patients on dialysis therapy. Metabolism. 2001;50(2):207–215. doi: 10.1053/meta.2001.19486.
    1. Tsapas G., Magoula I., Paletas K., Concouris L. Effect of peritoneal dialysis on plasma levels of ascorbic acid. Nephron. 1983;33(1):34–37. doi: 10.1159/000182901.
    1. Shah G. M., Ross E. A., Sabo A., Pichon M., Bhagavan H., Reynolds R. D. Ascorbic acid supplements in patients receiving chronic peritoneal dialysis. American Journal of Kidney Diseases. 1991;18(1):84–90. doi: 10.1016/S0272-6386(12)80295-2.
    1. Finkelstein F. O., Juergensen P., Wang S., et al. Hemoglobin and plasma vitamin C levels in patients on peritoneal dialysis. Peritoneal Dialysis International. 2011;31(1):74–79. doi: 10.3747/pdi.2009.00154.
    1. Aruoma O. I., Halliwell B., Hoey B. M., Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radical Biology & Medicine. 1989;6(6):593–597. doi: 10.1016/0891-5849(89)90066-X.
    1. Miyazaki H., Matsuoka H., Itabe H., et al. Hemodialysis impairs endothelial function via oxidative stress: effects of vitamin E–coated dialyzer. Circulation. 2000;101(9):1002–1006. doi: 10.1161/01.CIR.101.9.1002.
    1. Tepel M., van der Giet M., Schwarzfeld C., Laufer U., Liermann D., Zidek W. Prevention of radiographic-contrast-agent–induced reductions in renal function by acetylcysteine. The New England Journal of Medicine. 2000;343(3):180–184. doi: 10.1056/NEJM200007203430304.
    1. Kilner R. G., D'Souza R. J., Oliveira D. B., MacPhee I. A., Turner D. R., Eastwood J. B. Acute renal failure from intoxication by Cortinarius orellanus: recovery using anti-oxidant therapy and steroids. Nephrology Dialysis Transplantation. 1999;14(11):2779–2780. doi: 10.1093/ndt/14.11.2779-a.
    1. Holt S., Goodier D., Marley R., et al. Improvement in renal function in hepatorenal syndrome with N-acetylcysteine. Lancet. 1999;353(9149):294–295. doi: 10.1016/S0140-6736(05)74933-3.
    1. Trimarchi H., Mongitore M. R., Baglioni P., et al. N-acetylcysteine reduces malondialdehyde levels in chronic hemodialysis patients – a pilot study. Clinical Nephrology. 2003;59(06):441–446. doi: 10.5414/CNP59441.
    1. Witko-Sarsat V., Gausson V., Nguyen A. T., et al. AOPP-induced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney International. 2003;64(1):82–91. doi: 10.1046/j.1523-1755.2003.00044.x.
    1. Nakayama M., Izumi G., Nemoto Y., et al. Suppression of N(epsilon)-(carboxymethyl)lysine generation by the antioxidant N-acetylcysteine. Peritoneal Dialysis International. 1999;19(3):207–210.
    1. Bozkurt D., Hur E., Ulkuden B., et al. Can N-acetylcysteine preserve peritoneal function and morphology in encapsulating peritoneal sclerosis? Peritoneal Dialysis International. 2009;29(Supplement 2):S202–S205.
    1. Nascimento M. M., Suliman M. E., Silva M., et al. Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Peritoneal Dialysis International. 2010;30(3):336–342. doi: 10.3747/pdi.2009.00073.
    1. Noh H., Kim J. S., Han K. H., et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney International. 2006;69(11):2022–2028. doi: 10.1038/sj.ki.5001506.
    1. Schwenger V., Morath C., Salava A., et al. Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. Journal of the American Society of Nephrology. 2006;17(1):199–207. doi: 10.1681/ASN.2005020155.
    1. Seo E. Y., Gwak H., Lee H. B., Ha H. Stability of N-acetylcysteine in peritoneal dialysis solution. Peritoneal Dialysis International. 2010;30(1):105–108. doi: 10.3747/pdi.2008.00032.

Source: PubMed

3
구독하다