Changes in the Responsiveness of the Hypothalamic-Pituitary-Gonadal Axis to Kisspeptin-10 Administration during Pubertal Transition in Boys

Ghulam Nabi, Hamid Ullah, Suliman Khan, Fazal Wahab, Pengfei Duan, Rahim Ullah, Lunguang Yao, Muhammad Shahab, Ghulam Nabi, Hamid Ullah, Suliman Khan, Fazal Wahab, Pengfei Duan, Rahim Ullah, Lunguang Yao, Muhammad Shahab

Abstract

In human, no studies are available regarding changes in kisspeptin1 receptor (KISS1R) sensitivity during pubertal transition. In this study, healthy boys were classified into 5 Tanner stages of puberty (n = 5/stage). Human kisspeptin-10 was administered to boys at each Tanner stage and to adult men (n = 5) as an IV bolus for comparison. Serial blood samples were collected for 30 min pre- and 120 min post-kisspeptin injection periods at 30 min interval for measuring plasma LH and testosterone levels. There was insignificant effect of kisspeptin on LH and testosterone levels in boys of Tanner stages I-III. At Tanner stage IV, the effect of kisspeptin on plasma LH was insignificant. However, a paired t-test on a log-transformed data showed a significant (P < 0.05) increase in mean peak post-kisspeptin testosterone level. In Tanner stage V, a significant (P < 0.05) increase was observed in mean post-kisspeptin peak LH level as compared to the mean basal LH value. Post-kisspeptin plasma testosterone levels were also significantly (P < 0.05) increased as compared to the pre-kisspeptin level in Tanner stage V. Our data suggest that sensitivity of KISS1R on GnRH neurons with reference to LH stimulation in boys develops during the later part of puberty reaching to adult level at Tanner stage V. This trial is registered with WHO International Clinical Trial Registration ID NCT03286517.

Figures

Figure 1
Figure 1
Comparison of overall mean ± SEM plasma LH and testosterone concentrations observed before and after kisspeptin administration in Tanner stage I boys. Paired t-test showed that post-kisspeptin plasma LH level was comparable to the pre-kisspeptin level. Testosterone level was below the range of detection in both pre- and post-kisspeptin plasma.
Figure 2
Figure 2
(a) Comparison of overall mean ± SEM peak testosterone concentration observed following kisspeptin-10 administration with mean overall basal values in Tanner stage IV boys. Paired t-test on a log-transformed data showed a significant (∗P < 0.05) increase in mean peak testosterone level as compared to the mean basal testosterone value. (b) Comparison of overall mean ± SEM peak LH concentration observed following kisspeptin-10 administration with mean overall basal values in Tanner stage V boys. Paired t-test on a log-transformed data showed a significant (∗P < 0.05) increase in mean peak LH level as compared to the mean basal LH value.
Figure 3
Figure 3
Comparison of overall mean ± SEM plasma LH and testosterone concentrations observed before and after kisspeptin administration in Tanner stage V boys. Paired t-test showed that the post-kisspeptin plasma LH level was insignificant to the pre-kisspeptin level. However, paired t-test on a log-transformed data showed that the post-kisspeptin plasma testosterone level was significantly (∗P < 0.05) increased as compared to pre-kisspeptin level.
Figure 4
Figure 4
Comparison of overall mean ± SEM plasma LH and testosterone concentrations observed before and after kisspeptin-10 administration in adult men. Paired t-test on a log-transformed data showed significant (∗P < 0.05) increase in both post-kisspeptin LH and testosterone levels versus pre-kisspeptin levels.
Figure 5
Figure 5
Comparison of the basal and post-kisspeptin mean ± SEM plasma testosterone level observed at different Tanner stages and adulthood (n = 5/stage). One-way ANOVA followed by a post hoc analysis indicated significant (∗∗P < 0.05) elevation in the mean post-kisspeptin testosterone level at adulthood as compared to Tanner stages I–IV. No significant (P < 0.05) variations in the basal levels of testosterone were observed across the groups.

References

    1. Teles M. G., Bianco S. D., Brito V. N., et al. A GPR54-activating mutation in a patient with central precocious puberty. The New England Journal of Medicine. 2008;358(7):709–715. doi: 10.1056/NEJMoa073443.
    1. de Roux N., Genin E., Carel J. C., Matsuda F., Chaussain J. L., Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(19):10972–10976. doi: 10.1073/pnas.1834399100.
    1. Seminara S. B., Messager S., Chatzidaki E. E., et al. The GPR54 gene as a regulator of puberty. The New England Journal of Medicine. 2003;349(17):1614–1627. doi: 10.1056/NEJMoa035322.
    1. Lanfranco F., Gromoll J., von Eckardstein S., Herding E. M., Nieschlag E., Simoni M. Role of sequence variations of the GnRH receptor and G protein-coupled receptor 54 gene in male idiopathic hypogonadotropic-hypogonadism. European Journal of Endocrinology. 2005;153(6):845–852. doi: 10.1530/eje.1.02031.
    1. Semple R. K., Achermann J. C., Ellery J., et al. Two novel missense mutations in g protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. The Journal of Clinical Endocrinology & Metabolism. 2005;90(3):1849–1855. doi: 10.1210/jc.2004-1418.
    1. Cerrato F., Shagoury J., Kralickova M., et al. Coding sequence analysis of GNRHR and GPR54 in patients with congenital and adult-onset forms of hypogonadotropic hypogonadism. European Journal of Endocrinology. 2006;155:S3–10. doi: 10.1530/eje.1.02235.
    1. Tenenbaum-Rakover Y., Commenges-Ducos M., Iovane A., Aumas C., Admoni O., de Roux N. Neuroendocrine phenotype analysis in five patients with isolated hypogonadotropic hypogonadism due to a L102P inactivating mutation of GPR54. The Journal of Clinical Endocrinology & Metabolism. 2007;92(3):1137–1144. doi: 10.1210/jc.2006-2147.
    1. Nimri R., Lebenthal Y., Lazar L., et al. A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. The Journal of Clinical Endocrinology & Metabolism. 2011;96(3):E536–E545. doi: 10.1210/jc.2010-1676.
    1. Funes S., Hedrick J. A., Vassileva G., et al. The KiSS-1 receptor GPR54 is essential for the development of the murine reproductive system. Biochemical and Biophysical Research Communications. 2003;312(4):1357–1363. doi: 10.1016/j.bbrc.2003.11.066.
    1. Lapatto R., Pallais J. C., Zhang D., et al. Kiss1−/− mice exhibit more variable hypogonadism than Gpr54−/− mice. Endocrinology. 2007;148(10):4927–4936. doi: 10.1210/en.2007-0078.
    1. Han S. K., Gottsch M. L., Lee K. J., et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. The Journal of Neuroscience. 2005;25(49):11349–11356. doi: 10.1523/JNEUROSCI.3328-05.2005.
    1. Tena-Sempere M. GPR54 and kisspeptin in reproduction. Human Reproduction Update. 2006;12(5):631–639. doi: 10.1093/humupd/dml023.
    1. Rhie Y. J., Lee K. H., Eun S. H., et al. Serum kisspeptin levels in Korean girls with central precocious puberty. Journal of Korean Medical Science. 2011;26(7):927–931. doi: 10.3346/jkms.2011.26.7.927.
    1. Demirbilek H., Gonc E. N., Ozon A., Alikasifoglu A., Kandemir N. Evaluation of serum kisspeptin levels in girls in the diagnosis of central precocious puberty and in the assessment of pubertal suppression. Journal of Pediatric Endocrinology and Metabolism. 2012;25(3-4):313–316. doi: 10.1515/jpem-2011-0445.
    1. Clarkson J., Han S. K., Liu X., Lee K., Herbison A. E. Neurobiological mechanisms underlying kisspeptin activation of gonadotropin-releasing hormone (GnRH) neurons at puberty. Molecular and Cellular Endocrinology. 2010;324(1-2):45–50. doi: 10.1016/j.mce.2010.01.026.
    1. Gill J. C., Wang O., Kakar S., Martinelli E., Carroll R. S., Kaiser U. B. Reproductive hormone-dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLoS One. 2010;5(7, article e11911) doi: 10.1371/journal.pone.0011911.
    1. De Bond J.-A. P., Li Q., Millar R. P., Clarke I. J., Smith J. T. Kisspeptin signaling is required for the luteinizing hormone response in anestrous ewes following the introduction of males. PLoS One. 2013;8(2, article e57972) doi: 10.1371/journal.pone.0057972.
    1. Brioude F., Bouligand J., Francou B., et al. Two families with normosmic congenital hypogonadotropic hypogonadism and biallelic mutations in KISS1R (KISS1 receptor): clinical evaluation and molecular characterization of a novel mutation. PLoS One. 2013;8(1, article e53896) doi: 10.1371/journal.pone.0053896.
    1. Skorupskaite K., George J. T., Anderson R. A. The kisspeptin-GnRH pathway in human reproductive health and disease. Human Reproduction Update. 2014;20(4):485–500. doi: 10.1093/humupd/dmu009.
    1. Terasawa E., Fernandez D. L. Neurobiological mechanisms of the onset of puberty in primates. Endocrine Reviews. 2001;22(1):111–151. doi: 10.1210/edrv.22.1.0418.
    1. Grumbach M. M. The neuroendocrinology of human puberty revisited. Hormone Research in Paediatrics. 2002;57(2):2–14. doi: 10.1159/000058094.
    1. Plant T. M., Barker-Gibb M. L. Neurobiological mechanisms of puberty in higher primates. Human Reproduction Update. 2004;10(1):67–77. doi: 10.1093/humupd/dmh001.
    1. Plant T. M. Neurobiological bases underlying the control of the onset of puberty in the rhesus monkey: a representative higher primate. Frontiers in Neuroendocrinology. 2001;22(2):107–139. doi: 10.1006/frne.2001.0211.
    1. El-Majdoubi M., Sahu A., Ramaswamy S., Plant T. M. Neuropeptide Y: a hypothalamic brake restraining the onset of puberty in primates. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(11):6179–6184. doi: 10.1073/pnas.090099697.
    1. Terasawa E., Kurian J. R., Keen K. L., Shiel N. A., Colman R. J., Capuano S. V. Body weight impact on puberty: effects of high-calorie diet on puberty onset in female rhesus monkeys. Endocrinology. 2012;153(4):1696–1705. doi: 10.1210/en.2011-1970.
    1. Plant T. M., Fraser M. O., Medhamurthy R., Gay V. L. Somatogenic control of GnRH neuronal synchronization during development in primates: a speculation. In: Delamarre-van de Waal H. A., Plant T. M., Rees G. P., Schoemaker J., editors. Control of the Onset of Puberty III. Amsterdam: Excerpta Medica; 1989. pp. 111–121.
    1. Wilson M. E., Gordon T. P., Rudman C. G., Tanner J. M. Effects of growth hormone on the tempo of sexual maturation in female rhesus monkeys. The Journal of Clinical Endocrinology & Metabolism. 1989;68(1):29–38. doi: 10.1210/jcem-68-1-29.
    1. Mann D. R., Plant T. M. The role and potential sites of action of thyroid hormone in timing the onset of puberty in male primates. Brain Research. 2010;1364:175–185. doi: 10.1016/j.brainres.2010.09.082.
    1. Marshall W. A., Tanner J. M. Variations in pattern of pubertal changes in girls. Archives of Disease in Childhood. 1969;44(235):291–303. doi: 10.1136/adc.44.235.291.
    1. Bond J. P. D., Smith J. T. Kisspeptin and energy balance in reproduction. Reproduction. 2014;147(3):R53–R63. doi: 10.1530/rep-13-0509.
    1. Pankov A. Y. Kisspeptin and leptin in the regulation of fertility. Molecular Biology. 2015;49(5):631–637. doi: 10.1134/s0026893315050131.
    1. Dhillo W. S., Chaudhri O. B., Patterson M., et al. Kisspeptin-54 stimulates the hypothalamic-pituitary gonadal axis in human males. The Journal of Clinical Endocrinology & Metabolism. 2005;90(12):6609–6615. doi: 10.1210/jc.2005-1468.
    1. Navarro V. M., Castellano J. M., Fernandez-Fernandez R., et al. Developmental and hormonally regulated messenger ribonucleic acid expression of KiSS-1 and its putative receptor, GPR54, in rat hypothalamus and potent luteinizing hormone-releasing activity of KiSS-1 peptide. Endocrinology. 2004;145(10):4565–4574. doi: 10.1210/en.2004-0413.
    1. Shahab M., Mastronardi C., Seminara S. B., Crowley W. F., Ojeda S. R., Plant T. M. Increased hypothalamic GPR54 signaling: a potential mechanism for initiation of puberty in primates. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(6):2129–2134. doi: 10.1073/pnas.0409822102.
    1. de Vries L., Shtaif B., Phillip M., Gat-Yablonski G. Kisspeptin serum levels in girls with central precocious puberty. Clinical Endocrinology. 2009;71(4):524–528. doi: 10.1111/j.1365-2265.2009.03575.x.
    1. Feingold D. Pediatric Endocrinology. 2nd. WB Saunders: Philadelphia; 1992. Atlas of physical diagnosis; pp. 16–19.
    1. Holford N. H. A size standard for pharmacokinetics. Clinical Pharmacokinetics. 1996;30(5):329–332. doi: 10.2165/00003088-199630050-00001.
    1. George J. T., Veldhuis J. D., Roseweir A. K., et al. Kisspeptin-10 is a potent stimulator of LH and increases pulse frequency in men. The Journal of Clinical Endocrinology & Metabolism. 2011;96(8):E1228–E1236. doi: 10.1210/jc.2011-0089.
    1. Semaan S. J., Kauffman A. S. Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice. Molecular and Cellular Endocrinology. 2015;401:84–97. doi: 10.1016/j.mce.2014.11.025.
    1. Mitsushima D., Hei D. L., Terasawa E. Gamma-aminobutyric acid is an inhibitory neurotransmitter restricting the release of luteinizing hormone-releasing hormone before the onset of puberty. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(1):395–399. doi: 10.1073/pnas.91.1.395.
    1. Keen K. L., Burich A. J., Mitsushima D., Kasuya E., Terasawa E. Effects of pulsatile infusion of the GABAA receptor blocker bicuculline on the onset of puberty in female rhesus monkeys. Endocrinology. 1999;140(11):5257–5266. doi: 10.1210/endo.140.11.7139.
    1. Nakada K., Ishikawa Y., Nakao T., Sawamukai Y. Changes in responses to GnRH on luteinizing hormone and follicle stimulating hormone secretion in prepubertal heifers. Journal of Reproduction and Development. 2002;48(6):545–551. doi: 10.1262/jrd.48.545.
    1. Kotani M., Detheux M., Vandenbogaerde A., et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. Journal of Biological Chemistry. 2001;276(37):34631–34636. doi: 10.1074/jbc.M104847200.
    1. Ramaswamy S., Seminara S. B., Pohl C. R. D., Pietro M. J., WFJr C., Plant T. M. Effect of continuous intravenous administration of human metastin 45–54 on the neuroendocrine activity of the hypothalamic-pituitary-testicular axis in the adult male rhesus monkey (Macaca mulatta) Endocrinology. 2007;148(7):3364–3370. doi: 10.1210/en.2007-0207.
    1. Anjum S., Krishna A., Sridaran R., Tsutsui K. Localization of gonadotropin-releasing hormone (GnRH), gonadotropin-inhibitory hormone (GnIH), kisspeptin and GnRH receptor and their possible roles in testicular activities from birth to senescence in mice. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology. 2012;317A:1–15. doi: 10.1002/jez.1765.
    1. Irfan S., Ehmcke J., Wahab F., Shahab M., Schlatt S. Intratesticular action of kisspeptin in rhesus monkey (Macaca mulatta) Andrologia. 2013;46(6):610–617. doi: 10.1111/and.12121.
    1. Mann D. R., Johnoson A. K., Gimple T., Castracane V. D. Changes in circulating leptin, leptin receptor, and gonadal hormones from infancy until advanced age in humans. The Journal of Clinical Endocrinology & Metabolism. 2003;88(7):3339–3345. doi: 10.1210/jc.2002-022030.
    1. Ioannis E. M., Spyros D. M. Leptin in human reproduction. Human Reproduction Update. 1999;5(1):52–63. doi: 10.1093/humupd/5.1.52.
    1. Smith J. T., Cunningham M. J., Rissman E. F., Clifton D. F., Steiner R. A. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology. 2005;146(9):3686–3692. doi: 10.1210/en.2005-0488.
    1. Cioffi J. A., Shafer A. W., Zupancic T. J., et al. Novel B219/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nature Medicine. 1996;2(5):585–589. doi: 10.1038/nm0596-585.
    1. Moschos S., Chan J. L., Mantzoros C. S. Leptin and reproduction: a review. Fertility and Sterility. 2002;77(3):433–444. doi: 10.1016/S0015-0282(01)03010-2.
    1. Bellver J., Melo M. A., Bosch E., Serra V., Remohi J., Pellicer A. Obesity and poor reproductive outcome: the potential role of the endometrium. Fertility and Sterility. 2007;88(2):446–451. doi: 10.1016/j.fertnstert.2006.11.162.
    1. Luque R. M., Kineman R. D., Tena-Sempere M. Regulation of hypothalamic expression of KiSS-1 and GPR54 genes by metabolic factors: analyses using mouse models and a cell line. Endocrinology. 2007;148(10):4601–4611. doi: 10.1210/en.2007-0500.
    1. Backholer K., Smith J. T., Rao A., et al. Kisspeptin cells in the ewe brain respond to leptin and communicate with neuropeptide Y and proopiomelanocortin cells. Endocrinology. 2010;151(5):2233–2243. doi: 10.1210/en.2009-1190.
    1. Morelli A., Marini M., Mancina R., et al. Sex steroids and leptin regulate the “first Kiss” (KiSS 1/G-protein-coupled receptor 54 system) in human gonadotropin-releasing-hormone-secreting neuroblasts. The Journal of Sexual Medicine. 2008;5(5):1097–1113. doi: 10.1111/j.1743-6109.2008.00782.x.
    1. Palmert M. R., Radovick S., Boepple P. A. Leptin levels in children with central precocious puberty. The Journal of Clinical Endocrinology & Metabolism. 1998;83(7):2260–2265. doi: 10.1210/jcem.83.7.4973.
    1. Terasawa E., Guerriero K. A., Plant T. M. Kisspeptin and puberty in mammals. In: Kauffman A. S., Smith J. T., editors. Kisspeptin Signaling in Reproductive Biology. Vol. 784. New York, NY, USA: Springer; 2013. pp. 253–273. (Advances in Experimental Medicine and Biology).
    1. Burr I. M., Izonenko P. C., Kaplan S. L., Grumbach M. M. Hormonal changes in puberty I. Correlation of serum luteinizing hormone and follicle stimulating hormone with stages of puberty, testicular size, and bone age in normal boys. Pediatric Research. 1970;4(1):25–35. doi: 10.1203/00006450-197001000-00003.
    1. Albertson-Wikland K., Rosberg S., Lannering B. Twenty-four-hour profiles of luteinizing hormone, follicle-stimulating hormone, testosterone, and estradiol levels: a semilongitudinal study throughout puberty in healthy boys. The Journal of Clinical Endocrinology & Metabolism. 1997;82(2):541–549. doi: 10.1210/jc.82.2.541.
    1. Jayasena C. N., Nijher G. M., Chaudhri O. B., et al. Subcutaneous injection of kisspeptin-54 acutely stimulates gonadotropin secretion in women with hypothalamic amenorrhea, but chronic administration causes tachyphylaxis. The Journal of Clinical Endocrinology & Metabolism. 2009;94(11):4315–4323. doi: 10.1210/jc.2009-0406.
    1. Irwig M. S., Fraley G. S., Smith J. T., et al. Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuro-endocrinology. 2004;80(4):264–272. doi: 10.1159/000083140.
    1. Carabulea G., Bughi S., Klepsch I., Eşanu C. Circulating FSH, LH, GH, testosterone, TSH, T3, T4, prolactin and insulin in boys during puberty. Endocrinologie. 1980;18(2):109–114.

Source: PubMed

3
구독하다