Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress

Janne Grønli, Jonathan Soulé, Clive R Bramham, Janne Grønli, Jonathan Soulé, Clive R Bramham

Abstract

Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function.

Keywords: Arc/Arg3.1; brain-derived neurotrophic factor; gene expression; long-term potentiation; mood disorder; sleep deprivation; stress; translation control.

Figures

Figure 1
Figure 1
Model of sleep stage-specific potentiation and homeostatic scaling. In this working model, waking experience (LTP-like event) is consolidated through sleep stage-specific synaptic scaling, immediate early gene expression, and protein synthesis. Wakefulness (A–C). (A) Stimulation of glutamatergic synapses leads to rapid calcium influx into the postsynaptic compartment via NMDAR (dark blue) and AMPAR (green). Elevation of calcium levels activates multiple kinases and signaling cascades (e.g., PKA, CaMKII, ERK) which converge toward transcription factors such as cyclic AMP response element-binding protein (CREB), thus triggering rapid immediate early gene (IEG) expression. (B) Within minutes, polymerization of actin into filaments (red, actin filaments (F-actin)) induces remodeling of the actin cytoskeleton within spines. While CaMKII likely contributes to bundling of F-actin and expansion of the actin scaffolds, PKA promotes the insertion of AMPARs into the postsynaptic membrane. This whole process results in robust growth of synapses and enhanced synaptic efficacy. (C) These changes are then wake-consolidated in a de novo protein synthesis-dependent manner. Newly transcribed IEGs are either translated in the cell soma or trafficked further into the dendrites to be processed by the local translation machinery. Neuronal activity may release and translate dendritically stored mRNAs (light gray circle). Both mammalian target of rapamycin complex 1 (mTORC1) and mitogen-activated protein kinase-interacting kinase (MNK) signaling enhance rates of translation initiation. Postsynaptic receptors depicted are TrkB (black), AMPAR (green) and NMDAR (blue). Sleep (D–F). (D) NREM sleep supports the homeostatic process of cellular restoration by transcription and translation of genes involved in macromolecular biosynthesis and transport. In parallel, slow-wave activity (SWA) generates global synaptic downscaling in which synapses shrink and synaptic efficacy is reduced. Synapse-specific LTD at inactive or weakly active synapses may also be involved. (E) REM sleep and ponto-geniculo-occipital (PGO)-waves reactivate transcription of the plasticity-related IEGs Arc, brain-derived neurotrophic factor (BDNF) and zif268. Theta (θ) activity and increased acetylcholine levels regulate Arc protein turnover at the level of translation, degradation and mRNA decay. Arc may consolidate activity-induced synaptic changes by stabilizing the actin cytoskeleton and regulating trafficking of AMPAR from and to the postsynaptic membrane. (F) NREM sleep events like hippocampal sharp wave-ripples (SWRs) and thalamo-cortical sleep spindles have been suggested to actively take part in memory consolidation in conjunction with replay of neuronal activity patterns representing waking experience. The precise function of SWRs at the synaptic scale is yet to be unveiled. However, sparse and synapse-specific reactivations during SWRs of NREM sleep could provide bursts of local protein synthesis that consolidate synaptic modifications and memory formation. Thus, alternations of REM sleep-associated gene expression and NREM sleep-associated synaptic replay favor protein synthesis-dependent synaptic consolidation across sleep cycles.

References

    1. Alhaider I. A., Aleisa A. M., Tran T. T., Alkadhi K. A. (2011). Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine. Mol. Cell. Neurosci. 46, 742–751 10.1016/j.mcn.2011.02.006
    1. Artola A., von Frijtag J. C., Fermont P. C., Gispen W. H., Schrama L. H., Kamal A., et al. (2006). Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur. J. Neurosci. 23, 261–272 10.1111/j.1460-9568.2005.04552.x
    1. Aton S. J., Seibt J., Dumoulin M., Jha S. K., Steinmetz N., Coleman T., et al. (2009). Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61, 454–466 10.1016/j.neuron.2009.01.007
    1. Bachmann V., Klein C., Bodenmann S. (2012). The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency-and state-specificity. Sleep 35, 335–334 10.5665/sleep.1690
    1. Banks S., Dinges D. F. (2007). Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 3, 519–528
    1. Basheer R., Brown R., Ramesh V., Begum S., McCarley R. W. (2005). Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. J. Neurosci. Res. 82, 650–658 10.1002/jnr.20675
    1. Baudin A., Blot K., Verney C., Estevez L., Santamaria J., Gressens P., et al. (2012). Maternal deprivation induces deficits in temporal memory and cognitive flexibility and exaggerates synaptic plasticity in the rat medial prefrontal cortex. Neurobiol. Learn. Mem. 98, 207–214 10.1016/j.nlm.2012.08.004
    1. Baumgärtel K. (2009). Changes in the proteome after neuronal zif268 overexpression. J. Proteome Res. 8, 3298–3316 10.1021/pr801000r
    1. Beique J. C., Na Y., Kuhl D., Worley P. F., Huganir R. L. (2010). Arc-dependent synapse-specific homeostatic plasticity. Proc. Natl. Acad. Sci. U S A 108, 816–821 10.1073/pnas.1017914108
    1. Bekinschtein P., Cammarota M., Izquierdo I., Medina J. H. (2008). BDNF and memory formation and storage. Neuroscientist 14, 147–156 10.1177/1073858407305850
    1. Bodnoff S. R., Humphreys A. G., Lehman J. C., Diamond D. M., Rose G. M., Meaney M. J. (1995). Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity and hippocampal neuropathology in young and mid-aged rats. J. Neurosci. 15, 61–69
    1. Borbely A. A. (1982). A two process model of sleep regulation. Hum. Neurobiol. 1, 195–204
    1. Borbely A. A., Baumann F., Brandeis D., Strauch I., Lehmann D. (1981). Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr. Clin. Neurophysiol. 51, 483–495 10.1016/0013-4694(81)90225-x
    1. Born J., Feld G. B. (2012). Sleep to upscale, sleep to downscale: balancing homeostasis and plasticity. Neuron 75, 933–935 10.1016/j.neuron.2012.09.007
    1. Bosch M., Hayashi Y. (2012). Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 22, 383–388 10.1016/j.conb.2011.09.002
    1. Bourne J. N., Harris K. M. (2008). Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67 10.1146/annurev.neuro.31.060407.125646
    1. Bourne J. N., Sorra K. E., Hurlburt J., Harris K. M. (2007). Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus 17, 1–4 10.1002/hipo.20238
    1. Bramham C. R. (2008). Local protein synthesis, actin dynamics and LTP consolidation. Curr. Opin. Neurobiol. 18, 524–531 10.1016/j.conb.2008.09.013
    1. Bramham C. R., Alme M. N., Bittins M., Kuipers S. D., Nair R. R., Pai B., et al. (2010). The Arc of synaptic memory. Exp. Brain Res. 200, 125–140 10.1007/s00221-009-1959-2
    1. Bramham C. R., Southard T., Sarvey J. M., Herkenham M., Brady L. S. (1996). Unilateral LTP triggers bilateral increases in hippocampal neurotrophin and trk receptor mRNA expression in behaving rats: evidence for interhemispheric communication. J. Comp. Neurol. 368, 371–382 10.1002/(sici)1096-9861(19960506)368:3<371::aid-cne4>;2-3
    1. Bramham C. R., Srebro B. (1989). Synaptic plasticity in the hippocampus is modulated by behavioral state. Brain Res. 493, 74–86 10.1016/0006-8993(89)91001-9
    1. Bramham C. R., Wells D. G. (2007). Dendritic mRNA: transport, translation and function. Nat. Rev. Neurosci. 8, 776–786 10.1038/nrn2150
    1. Brown R. E., Basheer R., McKenna J. T., Strecker R. E., McCarley R. W. (2012). Control of sleep and wakefulness. Physiol. Rev. 92, 1087–1187 10.1152/physrev.00032.2011
    1. Brunborg G. S., Mentzoni R. A., Molde H., Myrseth H., Skouverøe K. J. M., Bjorvatn B., et al. (2011). The relationship between media use in the bedroom, sleep habits and symptoms of insomnia. J. Sleep Res. 20, 569–575 10.1111/j.1365-2869.2011.00913.x
    1. Buxade M., Parra-Palau J. L., Proud C. G. (2008). The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front. Biosci. 13:5359–5373 10.2741/3086
    1. Buzsáki G., Logothetis N., Singer W. (2013). Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80, 751–764 10.1016/j.neuron.2013.10.002
    1. Campbell I. G., Guinan M. J., Horowitz J. M. (2002). Sleep deprivation impairs long-term potentiation in rat hippocampal slices sleep deprivation impairs long-term potentiation in rat hippocampal slices. J. Neurophysiol. 88, 1073–1076 10.1152/jn.00873.2001
    1. Cao X., Huang S., Cao J., Chen T., Zhu P., Zhu R., et al. (2013). The timing of maternal separation affects morris water maze performance and long-term potentiation in male rats. Dev. Psychobiol. [Epub ahead of print]. 10.1002/dev.21130
    1. Carskadon M., Dement W. C. (2011). “Normal human sleep: an overview,” in Principles and Practice of Sleep Medicine, eds Kryger M., Roth T., Dement W. (Philadelphia, PA, USA: Elsevier Saunders; ), 13–23
    1. Castrén E., Pitkänen M., Sirviö J., Parsadanian A., Lindholm D., Thoenen H., et al. (1993). The induction of LTP increases BDNF and NGF mRNA but decreases NT-3 mRNA in the dentate gyrus. Neuroreport 4, 895–898 10.1097/00001756-199307000-00014
    1. Cespuglio R., Marinesco S., Baubet V., Bonnet C., el Kafi B. (1995). Evidence for a sleep-promoting influence of stress. Adv. Neuroimmunol. 5, 145–154 10.1016/0960-5428(95)00005-m
    1. Champagne D. L., Bagot R. C., Van Hasselt F., Ramakers G., Meaney M. J., de Kloet E. R., et al. (2008). Maternal care and hippocampal plasticity: evidence for experience-dependent structural plasticity, altered synaptic functioning and differential responsiveness to glucocorticoids and stress. J. Neurosci. 28, 6037–6045 10.1523/jneurosci.0526-08.2008
    1. Chauvette S., Seigneur J., Timofeev I. (2012). Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75, 1105–1113 10.1016/j.neuron.2012.08.034
    1. Cheeta S., Ruigt G., Van Proosdij J., Willner P. (1997). Changes in sleep architecture following chronic mild stress. Biol. Psychiatry 41, 419–427 10.1016/s0006-3223(96)00058-3
    1. Chen C.-C., Yang C.-H., Huang C.-C., Hsu K.-S. (2010). Acute stress impairs hippocampal mossy fiber-CA3 long-term potentiation by enhancing cAMP-specific phosphodiesterase 4 activity. Neuropsychopharmacology 35, 1605–1617 10.1038/npp.2010.33
    1. Chotiner J., Khorasani H., Nairn A., O’Dell T., Watson J. (2003). Adenylyl cyclase-dependent form of chemical long-term potentiation triggers translational regulation at the elongation step. Neuroscience 116, 743–752 10.1016/s0306-4522(02)00797-2
    1. Chowdhury S., Shepherd J. D., Okuno H., Lyford G., Petralia R. S., Plath N., et al. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 10.1016/j.neuron.2006.08.033
    1. Cirelli C. (2013). Sleep and synaptic changes. Curr. Opin. Neurobiol. 23, 841–846 10.1016/j.conb.2013.04.001
    1. Cirelli C., Gutierrez C. M., Tononi G. (2004). Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41, 35–43 10.1016/s0896-6273(03)00814-6
    1. Cirelli C., Pfister-Genskow M., McCarthy D., Woodbury R., Tononi G. (2009). Proteomic profiling of the rat cerebral cortex in sleep and waking. Arch. Ital. Biol. 147, 59–68 10.1016/j.neuropharm.2013.05.043
    1. Cirelli C., Tononi G. (1999). Differences in gene expression during sleep and wakefulness. Ann. Med. 31, 117–124 10.3109/07853899908998787
    1. Cirelli C., Tononi G. (2000). Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J. Neurosci. 20, 9187–9194
    1. Comte J. C., Ravassard P., Salin P. A. (2006). Sleep dynamics: a self-organized critical system. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 73:056127 10.1103/physreve.73.056127
    1. Conrad C. D., Jackson J. L., Wieczorek L., Baran S. E., Harman J. S., Wright R. L., et al. (2004). Acute stress impairs spatial memory in male but not female rats: influence of estrous cycle. Pharmacol. Biochem. Behav. 78, 569–579 10.1016/j.pbb.2004.04.025
    1. Coppens C. M., Siripornmongcolchai T., Wibrand K., Alme M. N., Buwalda B., de Boer S. F., et al. (2011). Social defeat during adolescence and adulthood differentially induce bdnf-regulated immediate early genes. Front. Behav. Neurosci. 5:72 10.3389/fnbeh.2011.00072
    1. Costa-Mattioli M., Sossin W. S., Klann E., Sonenberg N. (2009). Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 10.1016/j.neuron.2008.10.055
    1. Craig T. J., Jaafari N., Petrovic M. M., Rubin P. P., Mellor J. R., Henley J. M. (2012). Homeostatic synaptic scaling is regulated by protein SUMOylation. J. Biol. Chem. 287, 22781–22788 10.1074/jbc.m112.356337
    1. Czeisler C. A., Weitzman E., Moore-Ede M. C., Zimmerman J. C., Knauer R. S. (1980). Human sleep: its duration and organization depend on its circadian phase. Science 210, 1264–1267 10.1126/science.7434029
    1. Datta S., Li G., Auerbach S. (2008). Activation of phasic pontine-wave generator in the rat: a mechanism for expression of plasticity-related genes and proteins in the dorsal hippocampus and amygdala. Eur. J. Neurosci. 27, 1876–1892 10.1111/j.1460-9568.2008.06166.x
    1. Davis S., Bozon B., Laroche S. (2003a). How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav. Brain Res. 142, 17–30 10.1016/s0166-4328(02)00421-7
    1. Davis C. J., Harding J. W., Wright J. W. (2003b). REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res. 973, 293–297 10.1016/s0006-8993(03)02508-3
    1. Davis S., Vanhoutte P., Pages C., Caboche J., Laroche S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572
    1. De Kloet E. R., Joëls M., Holsboer F. (2005). Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 10.1038/nrn1683
    1. Dewasmes G., Loos N., Delanaud S., Dewasmes D., Ramadan W. (2004). Pattern of rapid-eye movement sleep episode occurrence after an immobilization stress in the rat. Neurosci. Lett. 355, 17–20 10.1016/j.neulet.2003.10.031
    1. Diekelmann S., Born J. (2010). The memory function of sleep. Nat. Rev. Neurosci. 11, 114–126 10.1038/nrn2762
    1. Dijk D. J., Czeisler C. A. (1995). Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves and sleep spindle activity in humans. J. Neurosci. 15(5 Pt. 1), 3526–3538
    1. Dumoulin M. C., Aton S. J., Watson A. J., Renouard L., Coleman T., Frank M. G. (2013). Extracellular signal-regulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo. Cereb. Cortex [Epub ahead of print]. 10.1093/cercor/bht250
    1. Edelmann E., Leßmann V., Brigadski T. (2014). Pre- and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76(Pt. C), 610–627 10.1016/j.neuropharm.2013.05.043
    1. Egan M. F., Kojima M., Callicott J. H., Goldberg T. E., Kolachana B. S., Bertolino A., et al. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269 10.1016/s0092-8674(03)00035-7
    1. Faraguna U., Vyazovskiy V. V., Nelson A. B., Tononi G., Cirelli C. (2008). A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J. Neurosci. 28, 4088–4095 10.1523/jneurosci.5510-07.2008
    1. Florian C., Vecsey C. G., Halassa M. M., Haydon P. G., Abel T. (2011). Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J. Neurosci. 31, 6956–6962 10.1523/jneurosci.5761-10.2011
    1. Föcking M., Hölker I., Trapp T. (2003). Chronic glucocorticoid receptor activation impairs CREB transcriptional activity in clonal neurons. Biochem. Biophys. Res. Commun. 304, 720–723 10.1016/s0006-291x(03)00665-x
    1. Ford D. E., Kamerow D. B. (1989). Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention? JAMA 262, 1479–1484 10.1001/jama.262.11.1479
    1. Foy M. R., Stanton M. E., Levine S., Thompson R. F. (1987). Behavioral stress impairs long-term potentiation in rodent hippocampus. Behav. Neural Biol. 48, 138–149 10.1016/s0163-1047(87)90664-9
    1. Frank M. G. (2011). Sleep and developmental plasticity not just for kids. Prog. Brain Res. 193, 221–232 10.1016/B978-0-444-53839-0.00014-4
    1. Frank M. G. (2013). Why I am not shy: a reply to Tononi and Cirelli. Neural Plast. 2013:394946 10.1155/2013/394946
    1. Fuchs E., Flugge G., Czeh B. (2006). Remodeling of neuronal networks by stress. Front. Biosci. 11:2746–2758 10.2741/2004
    1. Fukazawa Y., Saitoh Y., Ozawa F., Ohta Y., Mizuno K., Inokuchi K. (2003). Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460 10.1016/s0896-6273(03)00206-x
    1. Fumagalli F., Bedogni F., Perez J., Racagni G., Riva M. A. (2004). Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur. J. Neurosci. 20, 1348–1354 10.1111/j.1460-9568.2004.03592.x
    1. Gais S., Born J. (2004). Declarative memory consolidation: mechanisms acting during human sleep. Learn. Mem. 11, 679–685 10.1101/lm.80504
    1. Gal-Ben-Ari S., Kenney J. W., Ounalla-Saad H., Taha E., David O., Levitan D., et al. (2012). Consolidation and translation regulation. Learn. Mem. 19, 410–422 10.1101/lm.026849.112
    1. Garcia V. A., Hirotsu C., Matos G., Alvarenga T., Pires G. N., Kapczinski F., et al. (2013). Modafinil ameliorates cognitive deficits induced by maternal separation and sleep deprivation. Behav. Brain Res. 253, 274–279 10.1016/j.bbr.2013.07.029
    1. Gingras A. C., Raught B., Sonenberg N. (2001). Control of translation by the target of rapamycin proteins. Prog. Mol. Subcell. Biol. 27, 143–174 10.1007/978-3-662-09889-9_6
    1. Giorgi C., Yeo G. W., Stone M. E., Katz D. B., Burge C., Turrigiano G., et al. (2007). The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130, 179–191 10.1016/j.cell.2007.05.028
    1. Graves L. A., Heller E. A., Pack A. I., Abel T. (2003). Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn. Mem. 10, 168–176 10.1101/lm.48803
    1. Grønli J., Bramham C., Murison R., Kanhema T., Fiske E., Bjorvatn B., et al. (2006). Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol. Biochem. Behav. 85, 842–849 10.1016/j.pbb.2006.11.021
    1. Grønli J., Dagestad G., Milde A. M., Murison R., Bramham C. R. (2012). Post-transcriptional effects and interactions between chronic mild stress and acute sleep deprivation: regulation of translation factor and cytoplasmic polyadenylation element-binding protein phosphorylation. Behav. Brain Res. 235, 251–262 10.1016/j.bbr.2012.08.008
    1. Grønli J., Murison R., Bjorvatn B., Sørensen E., Portas C. M., Ursin R. (2004). Chronic mild stress affects sucrose intake and sleep in rats. Behav. Brain Res. 150, 139–147 10.1016/s0166-4328(03)00252-3
    1. Grosmark A. D., Mizuseki K., Pastalkova E., Diba K., Buzsáki G. (2012). REM sleep reorganizes hippocampal excitability. Neuron 75, 1001–1007 10.1016/j.neuron.2012.08.015
    1. Guan Z., Peng X., Fang J. (2004). Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res. 1018, 38–47 10.1016/j.brainres.2004.05.032
    1. Gutièrrez-Mecinas M., Trollope A. F., Collins A., Morfett H., Hesketh S. A., Kersanté F., et al. (2011). Long-lasting behavioral responses to stress involve a direct interaction of glucocorticoid receptors with. Proc. Natl. Acad. Sci. U S A 108, 13806–13811 10.1073/pnas.1104383108
    1. Guzman-Marin R., Ying Z., Suntsova N., Methippara M., Bashir T., Szymusiak R., et al. (2006). Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J. Physiol. 575(Pt. 3), 807–819 10.1113/jphysiol.2006.115287
    1. Guzowski J. F., Lyford G. L., Stevenson G. D., Houston F. P., McGaugh J. L., Worley P. F., et al. (2000). Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001
    1. Hagewoud R., Havekes R., Tiba P. A., Novati A., Hogenelst K., Weinreder P., et al. (2010). Coping with sleep deprivation: shifts in regional brain activity and learning strategy. Sleep 33, 1465–1473
    1. Havekes R., Vecsey C., Abel T. (2012). The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell. Signal. 24, 1251–1260 10.1016/j.cellsig.2012.02.010
    1. Hegde P., Jayakrishnan H. R., Chattarji S., Kutty B. M., Laxmi T. R. (2011). Chronic stress-induced changes in REM sleep on θ oscillations in the rat hippocampus and amygdala. Brain Res. 1382, 155–164 10.1016/j.brainres.2011.01.055
    1. Hinard V., Mikhail C., Pradervand S., Curie T., Houtkooper R. H., Auwerx J., et al. (2012). Key electrophysiological, molecular and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures. J. Neurosci. 32, 12506–12517 10.1523/jneurosci.2306-12.2012
    1. Ho V. M., Lee J.-A., Martin K. C. (2011). The cell biology of synaptic plasticity. Science 334, 623–628 10.1126/science.1209236
    1. Huber R., Tononi G., Cirelli C. (2007). Exploratory behavior, cortical BDNF expression and sleep homeostasis. Sleep 30, 129–139
    1. Ishikawa A., Kanayama Y., Matsumura H., Tsuchimochi H., Ishida Y., Nakamura S. (2006). Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur. J. Neurosci. 24, 243–248 10.1111/j.1460-9568.2006.04874.x
    1. Jones M. W., Errington M. L., French P. J., Fine A., Bliss T. V., Garel S., et al. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296 10.1038/85138
    1. Kang H., Schuman E. M. (1996). A requirement for local protein synthesis in neurotrophin- induced hippocampal synaptic plasticity. Science 273, 1402–1406 10.1126/science.273.5280.1402
    1. Kanhema T., Dagestad G., Panja D., Tiron A., Messaoudi E., Håvik B., et al. (2006). Dual regulation of translation initiation and peptide chain elongation during BDNF-induced LTP in vivo: evidence for compartment-specific translation control. J. Neurochem. 99, 1328–1337 10.1111/j.1471-4159.2006.04158.x
    1. Kant G. J., Pastel R. H., Bauman R. A., Meininger G. R., Maughan K. R., Robinson T. N., et al. (1995). Effects of chronic stress on sleep in rats. Physiol. Behav. 57, 359–365 10.1016/0031-9384(94)00241-V
    1. Kawashima T., Okuno H., Nonaka M., Adachi-Morishima A., Kyo N., Okamura M., et al. (2009). Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc. Natl. Acad. Sci. U S A 106, 316–321 10.1073/pnas.0806518106
    1. Killgore W. D. (2010). Effects of sleep deprivation on cognition. Prog. Brain Res. 185, 105–129 10.1016/b978-0-444-53702-7.00007-5
    1. Kim J., Foy M., Thompson R. (1996). Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc. Natl. Acad. Sci. U S A 93, 4750–4753 10.1073/pnas.93.10.4750
    1. Kinn A. M., Grønli J., Fiske E., Kuipers S., Ursin R., Murison R., et al. (2008). A double exposure to social defeat induces sub-chronic effects on sleep and open field behaviour in rats. Physiol. Behav. 95, 553–561 10.1016/j.physbeh.2008.07.031
    1. Kinn Rød A. M., Murison R., Mrdalj J., Milde A. M., Jelelstad F. K., Øvernes L. A., et al. (2014). Effects of social defeat on sleep and behaviour: importance of the confrontational behavior. Physiol. Behav. in press.
    1. Knapska E., Kaczmarek L. (2004). A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog. Neurobiol. 74, 183–211 10.1016/j.pneurobio.2004.05.007
    1. Koo J., Park C., Choi S., Kim N., Kim H. (2003). The postnatal environment can counteract prenatal effects on cognitive ability, cell proliferation and synaptic protein expression. FASEB J. 17, 1556–1558 10.1096/fj.02-1032fje
    1. Kopp C., Longordo F., Nicholson J. R., Luthi A. (2006). Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J. Neurosci. 26, 12456–12465 10.1523/jneurosci.2702-06.2006
    1. Korb E., Finkbeiner S. (2011). Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 34, 591–598 10.1016/j.tins.2011.08.007
    1. Korb E., Wilkinson C. L., Delgado R. N., Lovero K. L., Finkbeiner S. (2013). Arc in the nucleus regulates PML-dependent GluA1 transcription and homeostatic plasticity. Nat. Neurosci. 16, 874–883 10.1038/nn.3429
    1. Krugers H. J., Goltstein P. M., Van Der Linden S., Joëls M. (2006). Blockade of glucocorticoid receptors rapidly restores hippocampal CA1 synaptic plasticity after exposure to chronic stress. Eur. J. Neurosci. 23, 3051–3055 10.1111/j.1460-9568.2006.04842.x
    1. Lee A. K., Wilson M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36, 1183–1194 10.1016/s0896-6273(02)01096-6
    1. Leproult R., Copinschi G., Buxton O., Van C. E. (1997). Sleep loss results in an elevation of cortisol levels the next evening. Sleep 20, 865–870
    1. Lisman J., Raghavachari S. (2006). A unified model of the presynaptic and postsynaptic changes during LTP at CA1 synapses. Sci. STKE 356:re11 10.1126/stke.3562006re11
    1. Lisman J., Yasuda R., Raghavachari S. (2012). Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13, 169–182 10.1038/nrn3192
    1. Liston C., Cichon J. M., Jeanneteau F., Jia Z., Chao M. V., Gan W.-B. (2013). Circadian glucocorticoid oscillations promote learning-dependent synapse formation and maintenance. Nat. Neurosci. 16, 698–705 10.1038/nn.3387
    1. Liu Z.-W., Faraguna U., Cirelli C., Tononi G., Gao X.-B. (2010). Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J. Neurosci. 30, 8671–8675 10.1523/jneurosci.1409-10.2010
    1. Luine V., Martinez C., Villegas M., Magariños A. M., McEwen B. S. (1996). Restraint stress reversibly enhances spatial memory performance. Physiol. Behav. 59, 27–32 10.1016/0031-9384(95)02016-0
    1. Lupien S. J., McEwen B. S., Gunnar M. R., Heim C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10, 434–445 10.1038/nrn2639
    1. Lyford G. L., Yamagata K., Kaufmann W. E., Barnes C. A., Sanders L. K., Copeland N. G., et al. (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 14, 433–445 10.1016/0896-6273(95)90299-6
    1. Mackiewicz M., Naidoo N., Zimmerman J. E., Pack A. I. (2008). Molecular mechanisms of sleep and wakefulness. Ann. N Y Acad. Sci. 1129, 335–349 10.1196/annals.1417.030
    1. Mackiewicz M., Shockley K. R., Romer M. A., Galante R. J., Zimmerman J. E., Naidoo N., et al. (2007). Macromolecule biosynthesis: a key function of sleep. Physiol. Genomics 31, 441–457 10.1152/physiolgenomics.00275.2006
    1. Malenka R. C., Bear M. F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 10.1016/j.neuron.2004.09.012
    1. Malinow R., Malenka R. C. (2002). AMPA receptor trafficking and synaptic plasticity. Annu. Rev. Neurosci. 25, 103–126 10.1146/annurev.neuro.25.112701.142758
    1. Maret S., Faraguna U., Nelson A. B., Cirelli C., Tononi G. (2011). Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat. Neurosci. 14, 1418–1420 10.1038/nn.2934
    1. Matthies H., Frey U., Reymann K., Krug M., Jork R., Schroeder H. (1990). Different mechanisms and multiple stages of LTP. Adv. Exp. Med. Biol. 268, 359–368 10.1007/978-1-4684-5769-8_39
    1. Mavanji V., Datta S. (2003). Activation of the phasic pontine-wave generator enhances improvement of learning performance: a mechanism for sleep-dependent plasticity. Eur. J. Neurosci. 17, 359–370 10.1046/j.1460-9568.2003.02460.x
    1. McDermott C. M., Hardy M. N., Bazan N. G., Magee J. C. (2006). Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J. Physiol. 570, 553–565 10.1113/jphysiol.2005.093781
    1. McDermott C. M., LaHoste G. J., Chen C., Musto A., Bazan N. G., Magee J. C. (2003). Sleep deprivation causes behavioral, synaptic and membrane excitability alterations in hippocampal neurons. J. Neurosci. 23, 9687–9695
    1. Meerlo P., de Bruin E. A., Strijkstra A. M., Daan S. (2001). A social conflict increases EEG slow-wave activity during subsequent sleep. Physiol. Behav. 73, 331–335 10.1016/s0031-9384(01)00451-6
    1. Meerlo P., Koehl M., Van Der Borght K., Turek F. W. (2002). Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J. Neuroendocrinol. 14, 397–402 10.1046/j.0007-1331.2002.00790.x
    1. Meerlo P., Pragt B. J., Daan S. (1997). Social stress induces high intensity sleep in rats. Neurosci. Lett. 225, 41–44 10.1016/s0304-3940(97)00180-8
    1. Messaoudi E., Kanhema T., Soulé J., Tiron A., Dagyte G., da Silva B., et al. (2007). Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 27, 10445–10455 10.1523/jneurosci.2883-07.2007
    1. Messaoudi E., Ying S.-W., Kanhema T., Croll S. D., Bramham C. R. (2002). Brain-derived neurotrophic factor triggers transcription-dependent, late phase long-term potentiation in vivo. J. Neurosci. 22, 7453–7461
    1. Mikkelsen J. D., Larsen M. H. (2006). Effects of stress and adrenalectomy on activity-regulated cytoskeleton protein (Arc) gene expression. Neurosci. Lett. 403, 239–243 10.1016/j.neulet.2006.04.040
    1. Möller-Levet C. S., Archer S. N., Bucca G., Laing E. E., Slak A., Kabiljo R., et al. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc. Natl. Acad. Sci. U S A 110, E1132–E1141 10.1073/pnas.1217154110
    1. Mrdalj J., Pallesen S., Milde A. M., Jellestad F. K., Murison R., Ursin R., et al. (2013). Early and later life stress alter brain activity and sleep in rats. PLoS One 8:e69923 10.1371/journal.pone.0069923
    1. Murakoshi H., Yasuda R. (2012). Postsynaptic signaling during plasticity of dendritic spines. Trends Neurosci. 35, 135–143 10.1016/j.tins.2011.12.002
    1. Nair A., Vadodaria K. C., Banerjee S. B., Benekareddy M., Dias B. G., Duman R. S., et al. (2007). Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic amp response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 32, 1504–1519 10.1038/sj.npp.1301276
    1. Nakanishi H., Sun Y., Nakamura R. K., Mori K., Ito M., Suda S., et al. (1997). Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur. J. Neurosci. 9, 271–279 10.1111/j.1460-9568.1997.tb01397.x
    1. Neckelmann D., Mykletun A., Dahl A. A. (2007). Chronic insomnia as a risk factor for developing anxiety and depression. Sleep 30, 873–880
    1. Ninan I. (2014). Synaptic regulation of affective behaviors; role of BDNF. Neuropharmacology 76(Pt. C), 684–695 10.1016/j.neuropharm.2013.04.011
    1. O’Malley M. W., Fishman R. L., Ciraulo D. A., Datta S. (2013). Effect of five-consecutive-day exposure to an anxiogenic stressor on sleep-wake activity in rats. Front. Neurol. 4:15 10.3389/fneur.2013.00015
    1. O’Neill J., Pleydell-Bouverie B., Dupret D., Csicsvari J. (2010). Play it again: reactivation of waking experience and memory. Trends Neurosci. 33, 220–229 10.1016/j.tins.2010.01.006
    1. Ohayon M. M. (2002). Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med. Rev. 6, 97–111 10.1053/smrv.2002.0186
    1. Okamoto K.-I., Nagai T., Miyawaki A., Hayashi Y. (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7, 1104–1112 10.1038/nn1311
    1. Okuno H., Akashi K., Ishii Y., Yagishita-Kyo N., Suzuki K., Nonaka M., et al. (2012). Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149, 886–898 10.1016/j.cell.2012.02.062
    1. Palchykova S., Winsky-Sommerer R., Meerlo P., Dürr R., Tobler I. (2006). Sleep deprivation impairs object recognition in mice. Neurobiol. Learn. Mem. 85, 263–271 10.1016/j.nlm.2005.11.005
    1. Pang P. T., Teng H. K., Zaitsev E., Woo N. T., Sakata K., Zhen S., et al. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491 10.1126/science.1100135
    1. Panja D., Bramham C. R. (2014). BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76(Pt. C), 664–676 10.1016/j.neuropharm.2013.06.024
    1. Panja D., Dagyte G., Bidinosti M., Wibrand K., Kristiansen A.-M., Sonenberg N., et al. (2009). Novel translational control in Arc-dependent long term potentiation consolidation in vivo. J. Biol. Chem. 284, 31498–31511 10.1074/jbc.m109.056077
    1. Papale L. A., Andersen M. L., Antunes I. B., Alvarenga T. A. F., Tufik S. (2005). Sleep pattern in rats under different stress modalities. Brain Res. 1060, 47–54 10.1016/j.brainres.2005.08.021
    1. Pardon M. C., Roberts R. E., Marsden C. A., Bianchi M., Latif M. L., Duxon M. S., et al. (2005). Social threat and novel cage stress-induced sustained extracellular-regulated kinase1/2 (ERK1/2) phosphorylation but differential modulation of brain-derived neurotrophic factor (BDNF) expression in the hippocampus of NMRI mice. Neuroscience 132, 561–574 10.1016/j.neuroscience.2005.01.033
    1. Park S., Park J. M., Kim S., Kim J.-A., Shepherd J. D., Smith-Hicks C. L., et al. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83 10.1016/j.neuron.2008.05.023
    1. Pavlides C., Ogawa S., Kimura A., McEwen B. S. (1996). Role of adrenal steroid mineralocorticoid and glucocorticoid receptors in long-term potentiation in the CA1 field of hippocampal slices. Brain Res. 738, 229–235 10.1016/s0006-8993(96)00776-7
    1. Penke Z., Morice E., Veyrac A., Gros1 A., Chagneau C., LeBlanc P., et al. (2014). Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Philos. Trans. R. Soc. B 369: 20130159 10.1098/rstb.2013.0159
    1. Philbert J., Pichat P., Beeské S., Decobert M., Belzung C., Griebel G. (2011). Acute inescapable stress exposure induces long-term sleep disturbances and avoidance behavior: a mouse model of post-traumatic stress disorder (PTSD). Behav. Brain Res. 221, 149–154 10.1016/j.bbr.2011.02.039
    1. Plath N., Ohana O., Dammermann B., Errington M. L., Schmitz D., Gross C., et al. (2006). Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron 52, 437–444 10.1016/j.neuron.2006.08.024
    1. Proud C. G. (2007). Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem. J. 403, 217–234 10.1042/bj20070024
    1. Ramm P., Smith C. T. (1990). Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol. Behav. 48, 749–753 10.1016/0031-9384(90)90220-x
    1. Rao U., McGinty D. J., Shinde A., McCracken J. T., Poland R. E. (1999). Prenatal stress is associated with depression-related electroencephalographic sleep changes in adult male rats: a preliminary report. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 929–939 10.1016/s0278-5846(99)00036-6
    1. Rao V. R., Pintchovski S. A., Chin J., Peebles C. L., Mitra S., Finkbeiner S. (2006). AMPA receptors regulate transcription of the plasticity-related immediate-early gene Arc. Nat. Neurosci. 9, 887–895 10.1038/nn1708
    1. Rasch B., Born J. (2013). About sleep’s role in memory. Physiol. Rev. 93, 681–766 10.1152/physrev.00032.2012
    1. Rasch B., Pommer J., Diekelmann S., Born J. (2009). Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nat.Neurosci. 12, 396–397 10.1038/nn.2206
    1. Ravassard P., Pachoud B., Comte J. C., Mejia-Perez C., Scote-Blachon C., Gay N., et al. (2009). Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels and ERK/MAPK activation in the dorsal hippocampus. Sleep 32, 227–240
    1. Rial Verde E. M., Lee-Osbourne J., Worley P. F., Malinow R., Cline H. T. (2006). Increased expression of the immediate-early gene arc/arg3.1 reduces AMPA receptor-mediated synaptic transmission. Neuron 52, 461–474 10.1016/j.neuron.2006.09.031
    1. Ribeiro S., Goyal V., Mello C. V., Pavlides C. (1999). Brain gene expression during REM sleep depends on prior waking experience. Learn. Mem. 6, 500–508 10.1101/lm.6.5.500
    1. Ribeiro S., Nicolelis M. A. (2004). Reverberation, storage and postsynaptic propagation of memories during sleep. Learn. Mem. 11, 686–696 10.1101/lm.75604
    1. Ribeiro S., Mello C. V., Velho T., Gardner T. J., Jarvis E. D., Pavlides C. (2002). Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J. Neurosci. 22, 10914–10923
    1. Ribeiro S., Shi X., Engelhard M., Zhou Y., Zhang H., Gervasoni D., et al. (2007). Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front. Neurosci. 1:43–55 10.3389/neuro.01.1.1.003.2007
    1. Riedner B. A., Vyazovskiy V. V., Huber R., Massimini M., Esser S., Murphy M., et al. (2007). Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30, 1643–1657
    1. Riemann D. (2007). Insomnia and comorbid psychiatric disorders. Sleep Med. 8(Suppl. 4), S15–S20 10.1016/s1389-9457(08)70004-2
    1. Roceri M., Cirulli F., Pessina C., Peretto P., Racagni G., Riva M. A. (2004). Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol. Psychiatry 55, 708–714 10.1016/j.biopsych.2003.12.011
    1. Roceri M., Hendriks W., Racagni G., Ellenbroek B. A., Riva M. A. (2002). Early maternal deprivation reduces the expression of BDNF and NMDA receptor subunits in rat hippocampus. Mol. Psychiatry 7, 609–616 10.1038/sj.mp.4001036
    1. Roenneberg T. (2013). The human sleep project. Nature 498, 427–428 10.1038/498427a
    1. Romcy-Pereira R. N., Erraji-Benchekroun L., Smyrniotopoulos P., Ogawa S., Mello C. V., Sibille E. (2009). Sleep-dependent gene expression in the hippocampus and prefrontal cortex following long-term potentiation. Physiol. Behav. 98, 44–52 10.1016/j.physbeh.2009.04.010
    1. Romcy-Pereira R., Pavlides C. (2004). Distinct modulatory effects of sleep on the maintenance of hippocampal and medial prefrontal cortex LTP. Eur. J. Neurosci. 20, 3453–3462 10.1111/j.1460-9568.2004.03808.x
    1. Sanford L. D., Yang L., Wellman L. L., Liu X., Tang X. (2010). Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep 33, 621–630
    1. Sastry B. R., Chirwa S. S., Goh J. W., Maretic H., Pandanaboina M. M. (1984). Verapamil counteracts depression but not long-lasting potentiation of the hippocampal population spike. Life Sci. 34, 1075–1086 10.1016/0024-3205(84)90021-3
    1. Scheetz A. J., Nairn A. C., Constantine-Paton M. (2000). NMDA receptor-mediated control of protein synthesis at developing synapses. Nat. Neurosci.3, 211–216 10.1038/72915
    1. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., et al. (2011). Global quantification of mammalian gene expression control. Nature 473, 337–342 10.1038/nature10098
    1. Seibt J., Dumoulin M. C., Aton S. J., Coleman T., Watson A., Naidoo N., et al. (2012). Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr. Biol. 22, 676–682 10.1016/j.cub.2012.02.016
    1. Seibt J., Frank M. G. (2012). Translation regulation in sleep: making experience last. Commun. Integr. Biol. 5, 491–495 10.4161/cib.21010
    1. Shepherd J. D., Bear M. F. (2011). New views of Arc, a master regulator of synaptic plasticity. Nat. Neurosci. 14, 279–284 10.1038/nn.2708
    1. Shepherd J. D., Rumbaugh G., Wu J., Chowdhury S., Plath N., Kuhl D., et al. (2006). Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 10.1016/j.neuron.2006.08.034
    1. Shors T. J. (2001). Acute stress rapidly and persistently enhances memory formation in the male rat. Neurobiol. Learn. Mem. 75, 10–29 10.1006/nlme.1999.3956
    1. Shors T. J., Seib T. B., Levine S., Thompson R. F. (1989). Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244, 224–226 10.1126/science.2704997
    1. Skaggs W. E., McNaughton B. L., Permenter M., Archibeque M., Vogt J., Amaral D. G., et al. (2007). EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. J. Neurophysiol. 98, 898–910 10.1152/jn.00401.2007
    1. Smith C. (1996). Sleep states, memory processes and synaptic plasticity. Behav. Brain Res. 78, 49–56 10.1016/0166-4328(95)00218-9
    1. Smith C., Butler S. (1982). Paradoxical sleep at selective times following training is necessary for learning. Physiol. Behav. 29, 469–473 10.1016/0031-9384(82)90268-2
    1. Smith C., Rose G. M. (1996). Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol. Behav. 59, 93–97 10.1016/0031-9384(95)02054-3
    1. Sossin W. S., Lacaille J.-C. (2010). Mechanisms of translational regulation in synaptic plasticity. Curr. Opin. Neurobiol. 20, 450–456 10.1016/j.conb.2010.03.011
    1. Soulé J., Alme M., Myrum C., Schubert M., Kanhema T., Bramham C. R. (2012). Balancing Arc synthesis, mRNA decay and proteasomal degradation: maximal protein expression triggered by rapid eye movement sleep-like bursts of muscarinic cholinergic receptor stimulation. J. Biol. Chem. 287, 22354–22366 10.1074/jbc.m112.376491
    1. Soulé J., Messaoudi E., Bramham C. R. (2006). Brain-derived neurotrophic factor and control of synaptic consolidation in the adult brain. Biochem. Soc. Trans. 34, 600–604 10.1042/bst0340600
    1. Stanton P. K., Sarvey J. M., Harmon M. (1984). Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J. Neurosci. 4, 3080–3088
    1. Süer C., Dolu N., Artis A. S., Sahin L., Yilmaz A., Cetin A. (2011). The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats. Neurosci. Res. 70, 71–77 10.1016/j.neures.2011.01.008
    1. Tada T., Sheng M. (2006). Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101 10.1016/j.conb.2005.12.001
    1. Tadavarty R., Kaan T. K. Y., Sastry B. R. (2009). Long-term depression of excitatory synaptic transmission in rat hippocampal CA1 neurons following sleep-deprivation. Exp. Neurol. 216, 239–242 10.1016/j.expneurol.2008.11.012
    1. Tartar J. L., Ward C. P., McKenna J. T., Thakkar M., Arrigoni E., McCarley R. W., et al. (2006). Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur. J. Neurosci. 23, 2739–2748 10.1111/j.1460-9568.2006.04808.x
    1. Thompson C. L., Wisor J. P., Lee C.-K., Pathak S. D., Gerashchenko D., Smith K. A., et al. (2010). Molecular and anatomical signatures of sleep deprivation in the mouse brain. Front. Neurosci. 4:165 10.3389/fnins.2010.00165
    1. Tiba P. A., Tufik S., Suchecki D. (2004). Effects of maternal separation on baseline sleep and cold stress-induced sleep rebound in adult Wistar rats. Sleep 27, 1146–1153
    1. Tononi G., Cirelli C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150 10.1016/j.brainresbull.2003.09.004
    1. Tononi G., Cirelli C. (2006). Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62 10.1016/j.smrv.2005.05.002
    1. Tononi G., Cirelli C. (2012). Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast. 2012:415250 10.1155/2012/415250
    1. Ulloor J., Datta S. (2005). Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor: a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat. J. Neurochem. 95, 418–428 10.1111/j.1471-4159.2005.03378.x
    1. Van Dongen H. P., Maislin G., Mullington J. M., Dinges D. F. (2003). The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117–126
    1. Vazquez J., Hall S. C., Witkowska H. E., Greco M. A. (2008). Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J. Cell. Biochem. 105, 1472–1484 10.1002/jcb.21970
    1. Vecsey C. G., Baillie G. S., Jaganath D., Havekes R., Daniels A., Wimmer M., et al. (2009). Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461, 1122–1125 10.1038/nature08488
    1. Vecsey C. G., Peixoto L., Choi J. H. K., Wimmer M., Jaganath D., Hernandez P. J., et al. (2012). Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol. Genomics 44, 981–991 10.1152/physiolgenomics.00084.2012
    1. Vecsey C. G., Wimmer M. E. J., Havekes R., Park A. J., Perron I. J., Meerlo P., et al. (2013). Daily acclimation handling does not affect hippocampal long-term potentiation or cause chronic sleep deprivation in mice. Sleep 36, 601–607 10.5665/sleep.2556
    1. Vertes R. P., Eastman K. E. (2000). The case against memory consolidation in REM sleep. Behav. Brain Sci. 23, 867–876 10.1017/s0140525x0039402x
    1. Vivaldi E. A., Ocampo-Garces A., Villegas R. (1994). Short-term homeostasis of REM sleep throughout a 12:12 light:dark schedule in the rat. Sleep 28, 931–943
    1. Vyazovskiy V. V., Cirelli C., Pfister-Genskow M., Faraguna U., Tononi G. (2008). Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200–208 10.1038/nn2035
    1. Vyazovskiy V. V., Riedner B. A., Cirelli C., Tononi G. (2007). Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30, 1631–1642
    1. Wall V. L., Fischer E. K., Bland S. T. (2012). Isolation rearing attenuates social interaction-induced expression of immediate early gene protein products in the medial prefrontal cortex of male and female rats. Physiol. Behav. 107, 440–450 10.1016/j.physbeh.2012.09.002
    1. Walsh C. M., Booth V., Poe G. R. (2011). Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training. Learn. Mem. 18, 422–434 10.1101/lm.2099011
    1. Waltereit R., Dammermann B., Wulff P., Scafidi J., Staubli U., Kauselmann G., et al. (2001). Arg3.1/Arc mRNA induction by Ca2+ and cAMP requires protein kinase A and mitogen-activated protein kinase/extracellular regulated kinase activation. J. Neurosci. 21, 5484–5493
    1. Wayman G. A., Lee Y.-S., Tokumitsu H., Silva A. J., Silva A., Soderling T. R. (2008). Calmodulin-kinases: modulators of neuronal development and plasticity. Neuron 59, 914–931 10.1016/j.neuron.2008.08.021
    1. Wibrand K., Messaoudi E., Håvik B., Steenslid V., Løvlie R., Steen V. M., et al. (2006). Identification of genes co-upregulated with Arc during BDNF-induced long-term potentiation in adult rat dentate gyrus in vivo. Eur. J. Neurosci. 23, 1501–1511 10.1111/j.1460-9568.2006.04687.x
    1. Willner P. (2005). Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90–110 10.1159/000087097
    1. Winson J., Abzug C. (1978). Neuronal transmission through hippocampal pathways dependent on behavior. J. Neurophysiol. 41, 716–732
    1. Wu J. C., Bunney W. E. (1990). The biological basis of an antidepressant response to sleep deprivation and relapse: review and hypothesis. Am. J. Psychiatry 147, 14–21
    1. Xie L., Korkmaz K., Braun K., Bock J. (2013). Early life stress-induced histone acetylations correlate with activation of the synaptic plasticity genes Arc and Egr1 in the mouse hippocampus. J. Neurochem. 125, 457–464 10.1111/jnc.12210
    1. Xiong W., Yang Y., Cao J., Wei H., Liang C., Yang S., et al. (2003). The stress experience dependent long-term depression disassociated with stress effect on spatial memory task. Neurosci. Res. 46, 415–421 10.1016/s0168-0102(03)00120-2
    1. Xu L., Anwyl R., Rowan M. (1997). Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387, 497–500 10.1038/387497a0
    1. Yang G., Gan W.-B. (2012). Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex. Dev. Neurobiol. 72, 1391–1398 10.1002/dneu.20996
    1. Yang C.-H., Huang C.-C., Hsu K.-S. (2004). Behavioral stress modifies hippocampal synaptic plasticity through corticosterone-induced sustained extracellular signal-regulated kinase/mitogen-activated protein kinase activation. J. Neurosci. 24, 11029–11034 10.1523/jneurosci.3968-04.2004
    1. Ying S.-W., Futter M., Rosenblum K., Webber M. J., Hunt S. P., Bliss T. V. P., et al. (2002). Brain-derived neurotrophic factor induces long-term potentiation in intact adult hippocampus: requirement for ERK activation coupled to CREB and upregulation of Arc synthesis. J. Neurosci. 22, 1532–1540
    1. Zunzunegui C., Gao B., Cam E., Hodor A., Bassetti C. (2011). Sleep disturbance impairs stroke recovery in the rat. Sleep 34, 1261–1269 10.5665/SLEEP.1252

Source: PubMed

3
구독하다