Sleep duration and resting fMRI functional connectivity: examination of short sleepers with and without perceived daytime dysfunction

Brian J Curtis, Paula G Williams, Christopher R Jones, Jeffrey S Anderson, Brian J Curtis, Paula G Williams, Christopher R Jones, Jeffrey S Anderson

Abstract

Background: Approximately 30% of the U.S. population reports recurrent short sleep; however, perceived sleep need varies widely among individuals. Some "habitual short sleepers" routinely sleep 4-6 hr/night without self-reported adverse consequences. Identifying neural mechanisms underlying individual differences in perceived sleep-related dysfunction has important implications for understanding associations between sleep duration and health.

Method: This study utilized data from 839 subjects of the Human Connectome Project to examine resting functional connectivity associations with self-reported short sleep duration, as well as differences between short sleepers with versus without reported dysfunction. Functional connectivity was analyzed using a parcellation covering the cortical, subcortical, and cerebellar gray matter at 5 mm resolution.

Results: Self-reported sleep duration predicts one of the primary patterns of intersubject variance in resting functional connectivity. Compared to conventional sleepers, both short sleeper subtypes exhibited resting fMRI (R-fMRI) signatures consistent with diminished wakefulness, potentially indicating inaccurate perception of functionality among those denying dysfunction. Short sleepers denying dysfunction exhibited increased connectivity between sensory cortices and bilateral amygdala and hippocampus, suggesting that efficient sleep-related memory consolidation may partly explain individual differences in perceived daytime dysfunction.

Conclusions: Overall, current findings indicate that R-fMRI investigations should include assessment of average sleep duration during the prior month. Furthermore, short sleeper subtype findings provide a candidate neural mechanism underlying differences in perceived daytime impairment associated with short sleep duration.

Keywords: environmental stimulation; fatigue; resting functional connectivity; sleep duration.

Figures

Figure 1
Figure 1
Regions for which functional connectivity significantly covaried with reported sleep duration. Color scale shows for each ROI how many of the 6,922 connections to other ROIs were correlated with sleep duration. The top 50% of ROIs are colored
Figure 2
Figure 2
Correlation of functional connectivity to sensory/motor cortex and sleep duration. Left: Seeds used for auditory, motor, somatosensory, and visual cortex. Middle: Correlation of functional connectivity to the seed and other regions in the brain. Right: Slices showing significant covariation between functional connectivity to the seed and sleep duration. Slices are in neurological format with subject left on image left. Slice locations: MNI = −25, = 20, = 65
Figure 3
Figure 3
Correlation of sleep duration and functional connectivity between sensory/motor cortex, subcortical, and cerebellar regions. (A) Asterisk (*) denotes connections that were significant for false discovery rate q < .05 over all region pairs. Color scale shows Pearson correlation coefficient between functional connectivity and sleep duration across subjects. (B) Correlation values were obtained from two subject cohorts: = 475 subjects from the S500 Release, and = 364 additional subjects from the S900 Release. Scatter plots show comparison of results for the same 4 × 32 ROIs for both subject samples. (C) Relationship between sleep duration and head motion for all 839 subjects is shown. (D) Comparison of correlation with sleep duration for the same 4 × 32 ROIs using two different postprocessing strategies to account for head motion
Figure 4
Figure 4
Principal components of intersubject variance in functional connectivity. (A) The first three principal components are shown representing subject by connection singular vectors. (B) Matrix of 839 subjects × 118 connections used to obtain principal components. (C) Singular values of first five components. (D) Comparison of principal component 2 with relationship of sleep duration and functional connectivity for the same connections
Figure 5
Figure 5
Differences in functional connectivity in self‐reported short sleepers versus conventional sleepers reporting and denying daytime dysfunction. Colored squares satisfied p < .05, uncorrected. Asterisk (*) denotes connections that were significant for false discovery rate q < .05 over all region pairs. Color scale represents t‐statistic for a two‐tailed t‐test of functional connectivity between short and conventional sleepers
Figure 6
Figure 6
Model for effects of sleep duration on functional connectivity in self‐reported short sleepers reporting and denying daytime dysfunction

References

    1. Aeschbach, D. , Postolache, T. T. , Sher, L. , Matthews, J. R. , Jackson, M. A. , & Wehr, T. A. (2001). Evidence from the waking electroencephalogram that short sleepers live under higher homeostatic sleep pressure than long sleepers. Neuroscience, 102, 493–502.
    1. American Academy of Sleep Medicine ed. (2014). International classification of sleep disorders, 3rd ed Darien, IL: American Academy of Sleep Medicine.
    1. Biswal, B. B. , Mennes, M. , Zuo, X.‐N. , Gohel, S. , Kelly, C. , Smith, S. M. , … Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107, 4734–4739.
    1. Buckner, R. L. , Krienen, F. M. , Castellanos, A. , Diaz, J. C. , & Yeo, B. T. T. (2011). The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 2322–2345.
    1. Buysse, D. J. , Hall, M. L. , Strollo, P. J. , Kamarck, T. W. , Owens, J. , Lee, L. , … Matthews, K. A. (2008). Relationships between the Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and clinical/polysomnographic measures in a community sample. Journal of Clinical Sleep Medicine, 4, 563–571.
    1. Buysse, D. J. , Reynolds, C. F. , Monk, T. H. , Berman, S. R. , & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28, 193–213.
    1. Cohen, D. A. , Wang, W. , Wyatt, J. K. , Kronauer, R. E. , Dijk, D.‐J. , Czeisler, C. A. , & Klerman, E. B. (2010). Uncovering residual effects of chronic sleep loss on human performance. Science Translational Medicine, 2, 14ra3–14ra3.
    1. Curtis, B. J. , Brewer, J. A. , & Jones, C. R. (2011). Short sleeper syndrome (SSS): A possible sleep‐duration, circadian, metabolic, affective, pain‐tolerance, normal variant in humans. Sleep, 34, A259–A260.
    1. Davis, B. , Tagliazucchi, E. , Jovicich, J. , Laufs, H. , & Hasson, U. (2016). Progression to deep sleep is characterized by changes to BOLD dynamics in sensory cortices. NeuroImage, 130, 293–305.
    1. Dorsey, C. M. , & Bootzin, R. R. (1997). Subjective and psychophysiologic insomnia: An examination of sleep tendency and personality. Biological Psychiatry, 41, 209–216.
    1. Duggan, K. A. , Friedman, H. S. , McDevitt, E. A. , & Mednick, S. C. (2014). Personality and healthy sleep: The importance of conscientiousness and neuroticism. Ed. Oscar Arias‐Carrion PLoS ONE, 9, e90628.
    1. Ertel, K. A. , Berkman, L. F. , & Buxton, O. M. (2011). Socioeconomic status, occupational characteristics, and sleep duration in African/Caribbean immigrants and US White health care workers. Sleep, 34, 509–518.
    1. Feinberg, D. A. , Moeller, S. , Smith, S. M. , Auerbach, E. , Ramanna, S. , Gunther, M. , … Yacoub, E. (2010). Multiplexed echo planar imaging for sub‐second whole brain FMRI and fast diffusion imaging. Ed. Pedro Antonio Valdes‐Sosa PLoS ONE, 5, e15710.
    1. Fischl, B. , Salat, D. H. , Busa, E. , Albert, M. , Dieterich, M. , Haselgrove, C. , … Dale, A. M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.
    1. Glasser, M. F. , Sotiropoulos, S. N. , Wilson, J. A. , Coalson, T. S. , Fischl, B. , Andersson, J. L. , … WU‐Minn HCP Consortium (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124.
    1. Grandner, M. A. , Chakravorty, S. , Perlis, M. L. , Oliver, L. , & Gurubhagavatula, I. (2014). Habitual sleep duration associated with self‐reported and objectively determined cardiometabolic risk factors. Sleep Medicine, 15, 42–50.
    1. Grandner, M. A. , Hale, L. , Moore, M. , & Patel, N. P. (2010). Mortality associated with short sleep duration: The evidence, the possible mechanisms, and the future. Sleep Medicine Reviews, 14, 191–203.
    1. Grandner, M. A. , Jackson, N. J. , Pak, V. M. , & Gehrman, P. R. (2012). Sleep disturbance is associated with cardiovascular and metabolic disorders. Journal of Sleep Research, 21, 427–433.
    1. Grandner, M. A. , Kripke, D. F. , Yoon, I.‐Y. , & Youngstedt, S. D. (2006). Criterion validity of the Pittsburgh Sleep Quality Index: Investigation in a non‐clinical sample. Sleep and Biological Rhythms, 4, 129–139.
    1. Grandner, M. A. , Patel, N. P. , Gehrman, P. R. , Perlis, M. L. , & Pack, A. I. (2010). Problems associated with short sleep: Bridging the gap between laboratory and epidemiological studies. Sleep Medicine Reviews, 14, 239–247.
    1. Grandner, M. A. , Sands‐Lincoln, M. R. , Pak, V. M. , & Garland, S. N. (2013). Sleep duration, cardiovascular disease, and proinflammatory biomarkers. Nature and Science of Sleep, 5, 93–107.
    1. Griffanti, L. , Salimi‐Khorshidi, G. , Beckmann, C. F. , Auerbach, E. J. , Douaud, G. , Sexton, C. E. , … Smith, S. M. (2014). ICA‐based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage, 95, 232–247.
    1. Hartmann, E. , Baekeland, F. , & Zwilling, G. R. (1972). Psychological differences between long and short sleepers. Archives of General Psychiatry, 26, 463–468.
    1. He, Y. , Jones, C. R. , Fujiki, N. , Xu, Y. , Guo, B. , Holder, J. L. , … Fu, Y.‐H. (2009). The transcriptional repressor DEC2 regulates sleep length in mammals. Science, 325, 866–870.
    1. Hegerl, U. , & Hensch, T. (2014). The vigilance regulation model of affective disorders and ADHD. Neuroscience and Biobehavioral Reviews, 44, 45–57.
    1. Hirshkowitz, M. , Whiton, K. , Albert, S. M. , Alessi, C. , & Bruni, O. (2015). National Sleep Foundation's sleep time duration recommendations: Methodology and results summary. Sleep Health, 1, 40–43.
    1. Horovitz, S. G. , Fukunaga, M. , de Zwart, J. A. , van Gelderen, P. , Fulton, S. C. , Balkin, T. J. , & Duyn, J. H. (2008). Low frequency BOLD fluctuations during resting wakefulness and light sleep: A simultaneous EEG‐fMRI study. Human Brain Mapping, 29, 671–682.
    1. Jesmanowicz, A. , Nencka, A. S. , Li, S.‐J. , & Hyde, J. S. (2011). Two‐axis acceleration of functional connectivity magnetic resonance imaging by parallel excitation of phase‐tagged slices and Half k‐Space Acceleration. Brain Connectivity, 1, 81–90.
    1. Johns, M. W. (1991). A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep, 14, 540–545.
    1. Johns, M. W. (2000). Sensitivity and specificity of the multiple sleep latency test (MSLT), the maintenance of wakefulness test and the epworth sleepiness scale: Failure of the MSLT as a gold standard. Journal of Sleep Research, 9, 5–11.
    1. Jones, H. S. , & Oswald, I. (1968). Two cases of healthy insomnia. Electroencephalography and Clinical Neurophysiology, 24, 378–380.
    1. Killgore, W. D. S. , Schwab, Z. J. , & Weiner, M. R. (2012). Self‐reported nocturnal sleep duration is associated with next‐day resting state functional connectivity. NeuroReport, 23, 741–745.
    1. Kurien, P. A. , Chong, S. Y. C. , Ptáček, L. J. , & Fu, Y.‐H. (2013). Sick and tired: How molecular regulators of human sleep schedules and duration impact immune function. Current Opinion in Neurobiology, 23, 873–879.
    1. Larson‐Prior, L. J. , Zempel, J. M. , Nolan, T. S. , Prior, F. W. , Snyder, A. Z. , & Raichle, M. E. (2009). Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences of the United States of America, 106, 4489–4494.
    1. Lim, J. , & Dinges, D. F. (2010). A meta‐analysis of the impact of short‐term sleep deprivation on cognitive variables. Psychological Bulletin, 136, 375–389.
    1. Luckhaupt, S. E. , Tak, S. , & Calvert, G. M. (2010). The prevalence of short sleep duration by industry and occupation in the National Health Interview Survey. Sleep, 33, 149–159.
    1. Markwald, R. R. , Melanson, E. L. , Smith, M. R. , Higgins, J. , Perreault, L. , Eckel, R. H. , & Wright, K. P. (2013). Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proceedings of the National Academy of Sciences of the United States of America, 110, 5695–5700.
    1. Moeller, S. , Yacoub, E. , Olman, C. A. , Auerbach, E. , Strupp, J. , Harel, N. , & Ugurbil, K. (2010). Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI. Magnetic Resonance in Medicine, 63, 1144–1153.
    1. Monk, T. H. , Buysse, D. J. , Welsh, D. K. , Kennedy, K. S. , & Rose, L. R. (2001). A sleep diary and questionnaire study of naturally short sleepers. Journal of Sleep Research, 10, 173–179.
    1. Picchioni, D. , Duyn, J. H. , & Horovitz, S. G. (2013). Sleep and the functional connectome. NeuroImage, 80, 387–396.
    1. Power, J. D. , Barnes, K. A. , Snyder, A. Z. , Schlaggar, B. L. , & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 2142–2154.
    1. Setsompop, K. , Gagoski, B. A. , Polimeni, J. R. , Witzel, T. , Wedeen, V. J. , & Wald, L. L. (2012). Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty. Magnetic Resonance in Medicine, 67, 1210–1224.
    1. Shah, L. M. , Cramer, J. A. , Ferguson, M. A. , Birn, R. M. , & Anderson, J. S. (2016). Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state. Brain and Behavior, 6, e00456.
    1. Smith, S. M. , Beckmann, C. F. , Andersson, J. , Auerbach, E. J. , Bijsterbosch, J. , Douaud, G. , … WU‐Minn HCP Consortium (2013). Resting‐state fMRI in the Human Connectome Project. NeuroImage, 80, 144–168.
    1. Stickgold, R. (2005). Sleep‐dependent memory consolidation. Nature, 437, 1272–1278.
    1. Tagliazucchi, E. , & Laufs, H. (2014). Decoding wakefulness levels from typical fMRI resting‐state data reveals reliable drifts between wakefulness and sleep. Neuron, 82, 695–708.
    1. Tagliazucchi, E. , von Wegner, F. , Morzelewski, A. , Borisov, S. , Jahnke, K. , & Laufs, H. (2012). Automatic sleep staging using fMRI functional connectivity data. NeuroImage, 63, 63–72.
    1. Tambini, A. , Ketz, N. , & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65, 280–290.
    1. Van Dongen, H. P. A. , Maislin, G. , Mullington, J. M. , & Dinges, D. F. (2003). The cumulative cost of additional wakefulness: Dose‐response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep, 26, 117–126.
    1. Van Essen, D. C. , Smith, S. M. , Barch, D. M. , Behrens, T. E. J. , Yacoub, E. , Ugurbil, K. , & WU‐Minn HCP Consortium (2013). The WU‐Minn Human Connectome Project: An overview. NeuroImage, 80, 62–79.
    1. Van Sweden, B. (1986). Disturbed vigilance in mania. Biological Psychiatry, 21, 311–313.
    1. Waters, F. , & Bucks, R. S. (2011). Neuropsychological effects of sleep loss: Implication for neuropsychologists. Journal of the International Neuropsychological Society, 17, 571–586.
    1. Watson, N. F. , Harden, K. P. , Buchwald, D. , Vitiello, M. V. , Pack, A. I. , Strachan, E. , & Goldberg, J. (2014). Sleep duration and depressive symptoms: A gene‐environment interaction. Sleep, 37, 351–358.
    1. Wehrle, R. , Kaufmann, C. , Wetter, T. C. , Holsboer, F. , Auer, D. P. , Pollmächer, T. , & Czisch, M. (2007). Functional microstates within human REM sleep: First evidence from fMRI of a thalamocortical network specific for phasic REM periods. European Journal of Neuroscience, 25, 863–871.
    1. Wulff, K. , Gatti, S. , Wettstein, J. G. , & Foster, R. G. (2010). Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nature Reviews Neuroscience, 11, 589–599.
    1. Yarkoni, T. , Poldrack, R. A. , Nichols, T. E. , Van Essen, D. C. , & Wager, T. D. (2011). Large‐scale automated synthesis of human functional neuroimaging data. Nature Methods, 8, 665–670.

Source: PubMed

3
구독하다