Immune Mediated Degeneration and Possible Protection in Glaucoma

Teresa Tsai, Sabrina Reinehr, Ana M Maliha, Stephanie C Joachim, Teresa Tsai, Sabrina Reinehr, Ana M Maliha, Stephanie C Joachim

Abstract

The underlying pathomechanisms for glaucoma, one of the most common causes of blindness worldwide, are still not identified. In addition to increased intraocular pressure (IOP), oxidative stress, excitotoxicity, and immunological processes seem to play a role. Several pharmacological or molecular/genetic methods are currently investigated as treatment options for this disease. Altered autoantibody levels were detected in serum, aqueous humor, and tissue sections of glaucoma patients. To further analyze the role of the immune system, an IOP-independent, experimental autoimmune glaucoma (EAG) animal model was developed. In this model, immunization with ocular antigens leads to antibody depositions, misdirected T-cells, retinal ganglion cell death and degeneration of the optic nerve, similar to glaucomatous degeneration in patients. Moreover, an activation of the complement system and microglia alterations were identified in the EAG as well as in ocular hypertension models. The inhibition of these factors can alleviate degeneration in glaucoma models with and without high IOP. Currently, several neuroprotective approaches are tested in distinct models. It is necessary to have systems that cover underlying pathomechanisms, but also allow for the screening of new drugs. In vitro models are commonly used, including single cell lines, mixed-cultures, and even organoids. In ex vivo organ cultures, pathomechanisms as well as therapeutics can be investigated in the whole retina. Furthermore, animal models reveal insights in the in vivo situation. With all these models, several possible new drugs and therapy strategies were tested in the last years. For example, hypothermia treatment, neurotrophic factors or the blockage of excitotoxity. However, further studies are required to reveal the pressure independent pathomechanisms behind glaucoma. There is still an open issue whether immune mechanisms directly or indirectly trigger cell death pathways. Hence, it might be an imbalance between protective and destructive immune mechanisms. Moreover, identified therapy options have to be evaluated in more detail, since deeper insights could lead to better treatment options for glaucoma patients.

Keywords: autoantibody; complement system; glaucoma; neuroprotection; organ culture; porcine.

Figures

FIGURE 1
FIGURE 1
The complement system can be activated via three different pathways. The classical pathway is initiated by antibody complexes binding to C1q. The mannose binding lectin (MBL) and the mannose-associated-serine-proteases (MASPs) bind to specific carbohydrate structures leading to the activation via the lectin pathway. The alternative pathway is spontaneously activated through the cleavage of C3 to C3b. All three pathways lead to the generation of C3 convertases that cleaves the C3 protein into C3a and C3b. C3b acts in the opsonization of target cells and additionally form the C5 convertase, which cleaves C5 to C5a and C5b. C5a and C3a act as anaphylatoxins. At the end, the interaction of C5b with C6, C7, C8, and C9 lead to the formation of C5b-9, the membrane attack complex (MAC). MAC is the terminal pathway, which can cause lysis of the target cells due to a formation of a pore.
FIGURE 2
FIGURE 2
Various mechanisms can influence a loss of retinal ganglion cells. To identify novel neuroprotective treatments for glaucoma, different experimental setups are currently used. In vitro analyses reveal the function of new therapeutics on single cells, mixed cultures, or organoids. Ex vivo experiments can provide insights into the whole retina, e.g., in cultured porcine/bovine retina. In vivo investigations in animals have the advantage to provide a closer look at local and systemic mechanisms and possible side effects.
FIGURE 3
FIGURE 3
(A) Schematic illustration of the explantation process. Porcine eyes were obtained from the local slaughterhouse. Anterior parts of the eyeball were separated from the posterior, retina containing part of the eye. A dermal punch was used to punch out four retinal explants per eye and cultivated on an insert the ganglion cell layer facing up. (B) Retinal explants were cultivated in 6-well plates for up to eight days at 37°C and 5% CO2. There are two possibilities to induce different pathomechanisms in the retina, which lead to a degeneration of the inner layers. Either with 300 μM H2O2 for 3 h to induce oxidative stress on day one of cultivation or with 300 μM CoCl2 for 48 h, starting on day one, to induce hypoxic processes. The best point in time to start therapeutic treatment is at day one, simultaneously to the degeneration via H2O2 or CoCl2. The treatment-duration varies, depending on the substance. In the end of the cultivation, retinal explants can be prepared for e.g., immunohistological and qPCR-analyses.

References

    1. Ajami B., Bennett J. L., Krieger C., Mcnagny K. M., Rossi F. M. (2011). Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14 1142–1149. 10.1038/nn.2887
    1. Akhtar T., Xie H., Khan M. I., Zhao H., Bao J., Zhang M., et al. (2019). Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res. 39:101491. 10.1016/j.scr.2019.101491
    1. Almasieh M., Wilson A. M., Morquette B., Cueva Vargas J. L., Di Polo A. (2012). The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res. 31 152–181. 10.1016/j.preteyeres.2011.11.002
    1. Baehr W., Frederick J. M. (2009). Naturally occurring animal models with outer retina phenotypes. Vision Res. 49 2636–2652. 10.1016/j.visres.2009.04.008
    1. Becker S., Reinehr S., Burkhard Dick H., Joachim S. C. (2015). [Complement activation after induction of ocular hypertension in an animal model]. Ophthalmologe 112 41–48. 10.1007/s00347-014-3100-6
    1. Bell K., Gramlich O. W., Von Thun Und Hohenstein-Blaul N., Beck S., Funke S., Wilding C., et al. (2013). Does autoimmunity play a part in the pathogenesis of glaucoma? Prog. Retin. Eye Res. 36 199–216. 10.1016/j.preteyeres.2013.02.003
    1. Bell K., Wilding C., Funke S., Perumal N., Beck S., Wolters D., et al. (2016). Neuroprotective effects of antibodies on retinal ganglion cells in an adolescent retina organ culture. J. Neurochem. 139 256–269. 10.1111/jnc.13765
    1. Bell K., Wilding C., Funke S., Pfeiffer N., Grus F. H. (2015). Protective effect of 14-3-3 antibodies on stressed neuroretinal cells via the mitochondrial apoptosis pathway. BMC Ophthalmol. 15:64. 10.1186/s12886-015-0044-9
    1. Boehm N., Beck S., Lossbrand U., Pfeiffer N., Grus F. H. (2010). Analysis of complement proteins in retina and sera of glaucoma patients. Invest. Ophthalmol. Vis. Sci. 51:5221. 10.1371/journal.pone.0057557
    1. Boehm N., Wolters D., Thiel U., Lossbrand U., Wiegel N., Pfeiffer N., et al. (2012). New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav. Immun. 26 96–102. 10.1016/j.bbi.2011.07.241
    1. Bordone M. P., Gonzalez Fleitas M. F., Pasquini L. A., Bosco A., Sande P. H., Rosenstein R. E., et al. (2017). Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J. Neurochem. 142 323–337. 10.1111/jnc.14070
    1. Bosco A., Anderson S. R., Breen K. T., Romero C. O., Steele M. R., Chiodo V. A., et al. (2018). Complement C3-targeted gene therapy restricts onset and progression of neurodegeneration in chronic mouse glaucoma. Mol. Ther. 26 2379–2396. 10.1016/j.ymthe.2018.08.017
    1. Bosco A., Crish S. D., Steele M. R., Romero C. O., Inman D. M., Horner P. J., et al. (2012). Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7:e43602. 10.1371/journal.pone.0043602
    1. Bosco A., Inman D. M., Steele M. R., Wu G., Soto I., Marsh-Armstrong N., et al. (2008). Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest. Ophthalmol. Vis. Sci. 49 1437–1446. 10.1167/iovs.07-1337
    1. Bosco A., Steele M. R., Vetter M. L. (2011). Early microglia activation in a mouse model of chronic glaucoma. J. Comp. Neurol. 519 599–620. 10.1002/cne.22516
    1. Casola C., Reinehr S., Kuehn S., Stute G., Spiess B. M., Dick H. B., et al. (2016). Specific inner retinal layer cell damage in an autoimmune glaucoma model is induced by GDNF with or without HSP27. Invest. Ophthalmol. Vis. Sci. 57 3626–3639. 10.1167/iovs.15-18999R2
    1. Casola C., Schiwek J. E., Reinehr S., Kuehn S., Grus F. H., Kramer M., et al. (2015). S100 alone has the same destructive effect on retinal ganglion cells as in combination with HSP 27 in an autoimmune glaucoma model. J. Mol. Neurosci. 56 228–236. 10.1007/s12031-014-0485-2
    1. Casson R. J. (2006). Possible role of excitotoxicity in the pathogenesis of glaucoma. Clin. Exp. Ophthalmol. 34 54–63. 10.1111/j.1442-9071.2006.01146.x
    1. Casson R. J., Chidlow G., Wood J. P., Crowston J. G., Goldberg I. (2012). Definition of glaucoma: clinical and experimental concepts. Clin. Exp. Ophthalmol. 40 341–349. 10.1111/j.1442-9071.2012.02773.x
    1. Chang E. E., Goldberg J. L. (2012). Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology 119 979–986. 10.1016/j.ophtha.2011.11.003
    1. Chaudhary P., Ahmed F., Sharma S. C. (1998). MK801-a neuroprotectant in rat hypertensive eyes. Brain Res. 792 154–158. 10.1016/s0006-8993(98)00212-1
    1. Chen D. W., Narsineni L., Foldvari M. (2019). Multipotent stem cell-derived retinal ganglion cells in 3D culture as tools for neurotrophic factor gene delivery system development. Nanomedicine 21:102045. 10.1016/j.nano.2019.102045
    1. Chen H., Cho K. S., Vu T. H. K., Shen C. H., Kaur M., Chen G., et al. (2018). Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma. Nat. Commun. 9:3209. 10.1038/s41467-018-05681-9
    1. Chen S. J., Lu P., Zhang W. F., Lu J. H. (2012). High myopia as a risk factor in primary open angle glaucoma. Int. J. Ophthalmol. 5 750–753. 10.3980/j.issn.2222-3959.2012.06.18
    1. Cheng Z., Yao W., Zheng J., Ding W., Wang Y., Zhang T., et al. (2019). A derivative of betulinic acid protects human Retinal Pigment Epithelial (RPE) cells from cobalt chloride-induced acute hypoxic stress. Exp. Eye Res. 180 92–101. 10.1016/j.exer.2018.12.011
    1. Cogswell J. P., Godlevski M. M., Wisely G. B., Clay W. C., Leesnitzer L. M., Ways J. P., et al. (1994). NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J. Immunol. 153 712–723.
    1. Coleman A. L., Miglior S. (2008). Risk factors for glaucoma onset and progression. Surv. Ophthalmol. 53(Suppl. 1), S3–S10. 10.1016/j.survophthal.2008.08.006
    1. Collard C. D., Lekowski R., Jordan J. E., Agah A., Stahl G. L. (1999). Complement activation following oxidative stress. Mol. Immunol. 36 941–948. 10.1016/s0161-5890(99)00116-9
    1. Conlon R., Saheb H., Ahmed I. I. (2017). Glaucoma treatment trends: a review. Can. J. Ophthalmol. 52 114–124. 10.1016/j.jcjo.2016.07.013
    1. Cui Y., Xu N., Xu W., Xu G. (2017). Mesenchymal stem cells attenuate hydrogen peroxide-induced oxidative stress and enhance neuroprotective effects in retinal ganglion cells. In Vitro Cell. Dev. Biol. Anim. 53 328–335. 10.1007/s11626-016-0115-0
    1. Curcio C. A., Sloan K. R., Kalina R. E., Hendrickson A. E. (1990). Human photoreceptor topography. J. Comp. Neurol. 292 497–523. 10.1002/cne.902920402
    1. Dai C., Jiang S., Chu C., Xin M., Song X., Zhao B. (2019). Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145. Exp. Mol. Pathol. 106 123–130. 10.1016/j.yexmp.2019.01.002
    1. Dalke C., Graw J. (2005). Mouse mutants as models for congenital retinal disorders. Exp. Eye Res. 81 503–512. 10.1016/j.exer.2005.06.004
    1. de Hoz R., Ramirez A. I., Gonzalez-Martin R., Ajoy D., Rojas B., Salobrar-Garcia E., et al. (2018). Bilateral early activation of retinal microglial cells in a mouse model of unilateral laser-induced experimental ocular hypertension. Exp. Eye Res. 171 12–29. 10.1016/j.exer.2018.03.006
    1. Dodel R., Balakrishnan K., Keyvani K., Deuster O., Neff F., Andrei-Selmer L. C., et al. (2011). Naturally occurring autoantibodies against beta-amyloid: investigating their role in transgenic animal and in vitro models of Alzheimer’s disease. J. Neurosci. 31 5847–5854. 10.1523/JNEUROSCI.4401-10.2011
    1. Dreyer E. B., Zurakowski D., Schumer R. A., Podos S. M., Lipton S. A. (1996). Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol. 114 299–305.
    1. Du W., An Y., He X., Zhang D., He W. (2018). Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage. Oxid. Med. Cell. Longev. 2018:1610751. 10.1155/2018/1610751
    1. Ebneter A., Casson R. J., Wood J. P., Chidlow G. (2010). Microglial activation in the visual pathway in experimental glaucoma: spatiotemporal characterization and correlation with axonal injury. Invest. Ophthalmol. Vis. Sci. 51 6448–6460. 10.1167/iovs.10-5284
    1. EGS (2017). European glaucoma society terminology and guidelines for glaucoma, 4th edition - chapter 2: classification and terminology. Br. J. Ophthalmol. 101 73–127. 10.1136/bjophthalmol-2016-egsguideline.002
    1. Ehrnthaller C., Ignatius A., Gebhard F., Huber-Lang M. (2011). New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol. Med. 17 317–329. 10.2119/molmed.2010.00149
    1. Elliott C., Lindner M., Arthur A., Brennan K., Jarius S., Hussey J., et al. (2012). Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. Brain 135 1819–1833. 10.1093/brain/aws105
    1. Evangelho K., Mogilevskaya M., Losada-Barragan M., Vargas-Sanchez J. K. (2019). Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: a review of the literature. Int. Ophthalmol. 39 259–271. 10.1007/s10792-017-0795-9
    1. Finger R. P., Fimmers R., Holz F. G., Scholl H. P. (2011). Incidence of blindness and severe visual impairment in Germany: projections for 2030. Invest. Ophthalmol. Vis. Sci. 52 4381–4389. 10.1167/iovs.10-6987
    1. Fosbrink M., Niculescu F., Rus H. (2005). The role of c5b-9 terminal complement complex in activation of the cell cycle and transcription. Immunol. Res. 31 37–46. 10.1385/ir:31:1:37
    1. Fuhrmann M., Bittner T., Jung C. K., Burgold S., Page R. M., Mitteregger G., et al. (2010). Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci. 13 411–413. 10.1038/nn.2511
    1. Gaton D. D., Sagara T., Lindsey J. D., Gabelt B. T., Kaufman P. L., Weinreb R. N. (2001). Increased matrix metalloproteinases 1, 2, and 3 in the monkey uveoscleral outflow pathway after topical prostaglandin F(2 alpha)-isopropyl ester treatment. Arch. Ophthalmol. 119 1165–1170.
    1. Graeber M. B., Streit W. J. (2010). Microglia: biology and pathology. Acta Neuropathol. 119 89–105. 10.1007/s00401-009-0622-0
    1. Gramlich O. W., Beck S., Von Thun Und Hohenstein-Blaul N., Boehm N., Ziegler A., Vetter J. M., et al. (2013). Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 8:e57557. 10.1371/journal.pone.0057557
    1. Gramlich O. W., Teister J., Neumann M., Tao X., Beck S., Von Pein H. D., et al. (2016). Immune response after intermittent minimally invasive intraocular pressure elevations in an experimental animal model of glaucoma. J. Neuroinflammation 13:82. 10.1186/s12974-016-0542-6
    1. Greco A., Rizzo M. I., De Virgilio A., Gallo A., Fusconi M., De Vincentiis M. (2016). Emerging concepts in glaucoma and review of the literature. Am. J. Med. 129 1000.e7–1000.e13. 10.1016/j.amjmed.2016.03.038
    1. Grodum K., Heijl A., Bengtsson B. (2002). A comparison of glaucoma patients identified through mass screening and in routine clinical practice. Acta Ophthalmol. Scand. 80 627–631. 10.1034/j.1600-0420.2002.800613.x
    1. Grossniklaus H. E., Geisert E. E., Nickerson J. M. (2015). Introduction to the retina. Prog. Mol. Biol. Transl. Sci. 134 383–396. 10.1016/bs.pmbts.2015.06.001
    1. Grus F. H., Joachim S. C., Bruns K., Lackner K. J., Pfeiffer N., Wax M. B. (2006). Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States. Invest. Ophthalmol. Vis. Sci. 47 968–976.
    1. Grus F. H., Joachim S. C., Hoffmann E. M., Pfeiffer N. (2004). Complex autoantibody repertoires in patients with glaucoma. Mol. Vis. 10 132–137.
    1. Grus F. H., Joachim S. C., Wuenschig D., Rieck J., Pfeiffer N. (2008). Autoimmunity and glaucoma. J. Glaucoma 17 79–84. 10.1097/ijg.0b013e318156a592
    1. Hartwig K., Fackler V., Jaksch-Bogensperger H., Winter S., Furtner T., Couillard-Despres S., et al. (2014). Cerebrolysin protects PC12 cells from CoCl2-induced hypoxia employing GSK3beta signaling. Int. J. Dev. Neurosci. 38 52–58. 10.1016/j.ijdevneu.2014.07.005
    1. Hendrickson A., Hicks D. (2002). Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. Exp. Eye Res. 74 435–444. 10.1006/exer.2002.1181
    1. Hoon M., Okawa H., Della Santina L., Wong R. O. (2014). Functional architecture of the retina: development and disease. Prog. Retin. Eye Res. 42 44–84. 10.1016/j.preteyeres.2014.06.003
    1. Howell G. R., Macalinao D. G., Sousa G. L., Walden M., Soto I., Kneeland S. C., et al. (2011). Molecular clustering identifies complement and endothelin induction as early events in a mouse model of glaucoma. J. Clin. Invest. 121 1429–1444. 10.1172/JCI44646
    1. Howell G. R., Soto I., Ryan M., Graham L. C., Smith R. S., John S. W. (2013). Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice. J. Neuroinflammation 10:76. 10.1186/1742-2094-10-76
    1. Hu S. J., Calippe B., Lavalette S., Roubeix C., Montassar F., Housset M., et al. (2015). Upregulation of P2RX7 in Cx3cr1-deficient mononuclear phagocytes leads to increased interleukin-1beta secretion and photoreceptor neurodegeneration. J. Neurosci. 35 6987–6996. 10.1523/JNEUROSCI.3955-14.2015
    1. Huang D., Chen Y. S., Thakur S. S., Rupenthal I. D. (2017). Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur. J. Pharm. Biopharm. 119 125–136. 10.1016/j.ejpb.2017.06.009
    1. Hurst J., Kuehn S., Jashari A., Tsai T., Bartz-Schmidt K. U., Schnichels S., et al. (2017). A novel porcine ex vivo retina culture model for oxidative stress induced by H(2)O(2). Altern. Lab. Anim. 45 11–25. 10.1177/026119291704500105
    1. Jacobs G. H., Neitz J., Deegan J. F., II (1991). Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353 655–656. 10.1038/353655a0
    1. Jha P., Banda H., Tytarenko R., Bora P. S., Bora N. S. (2011). Complement mediated apoptosis leads to the loss of retinal ganglion cells in animal model of glaucoma. Mol. Immunol. 48 2151–2158. 10.1016/j.molimm.2011.07.012
    1. Jiao H., Natoli R., Valter K., Provis J. M., Rutar M. (2015). Spatiotemporal cadence of macrophage polarisation in a model of light-induced retinal degeneration. PLoS One 10:e0143952. 10.1371/journal.pone.0143952
    1. Joachim S. C., Bruns K., Lackner K. J., Pfeiffer N., Grus F. H. (2007). Antibodies to alpha B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr. Eye Res. 32 501–509. 10.1080/02713680701375183
    1. Joachim S. C., Gramlich O. W., Laspas P., Schmid H., Beck S., Von Pein H. D., et al. (2012). Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One 7:e40616. 10.1371/journal.pone.0040616
    1. Joachim S. C., Mondon C., Gramlich O. W., Grus F. H., Dick H. B. (2014). Apoptotic retinal ganglion cell death in an autoimmune glaucoma model is accompanied by antibody depositions. J. Mol. Neurosci. 52 216–224. 10.1007/s12031-013-0125-2
    1. Joachim S. C., Pfeiffer N., Grus F. H. (2005). Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch. Clin. Exp. Ophthalmol. 243 817–823. 10.1007/s00417-004-1094-5
    1. Joachim S. C., Reichelt J., Berneiser S., Pfeiffer N., Grus F. H. (2008). Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens. Graefes Arch. Clin. Exp. Ophthalmol. 246 573–580. 10.1007/s00417-007-0737-8
    1. Karlstetter M., Scholz R., Rutar M., Wong W. T., Provis J. M., Langmann T. (2015). Retinal microglia: just bystander or target for therapy? Prog. Retin. Eye Res. 45 30–57. 10.1016/j.preteyeres.2014.11.004
    1. Kataoka K., Matsumoto H., Kaneko H., Notomi S., Takeuchi K., Sweigard J. H., et al. (2015). Macrophage- and RIP3-dependent inflammasome activation exacerbates retinal detachment-induced photoreceptor cell death. Cell Death Dis. 6:e1731. 10.1038/cddis.2015.73
    1. Keeler C. E. (1924). The inheritance of a retinal abnormality in white mice. Proc. Natl. Acad. Sci. U.S.A. 10 329–333. 10.1073/pnas.10.7.329
    1. Kerr E. C., Copland D. A., Dick A. D., Nicholson L. B. (2008). The dynamics of leukocyte infiltration in experimental autoimmune uveoretinitis. Prog. Retin. Eye Res. 27 527–535. 10.1016/j.preteyeres.2008.07.001
    1. Kerrigan-Baumrind L. A., Quigley H. A., Pease M. E., Kerrigan D. F., Mitchell R. S. (2000). Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest. Ophthalmol. Vis. Sci. 41 741–748.
    1. Kettenmann H., Hanisch U. K., Noda M., Verkhratsky A. (2011). Physiology of microglia. Physiol. Rev. 91 461–553. 10.1152/physrev.00011.2010
    1. Kim H. S., Suh Y. H. (2009). Minocycline and neurodegenerative diseases. Behav. Brain Res. 196 168–179. 10.1016/j.bbr.2008.09.040
    1. Ko M. L., Hu D. N., Ritch R., Sharma S. C., Chen C. F. (2001). Patterns of retinal ganglion cell survival after brain-derived neurotrophic factor administration in hypertensive eyes of rats. Neurosci. Lett. 305 139–142. 10.1016/s0304-3940(01)01830-4
    1. Kreutzberg G. W. (1995). Microglia, the first line of defence in brain pathologies. Arzneimittelforschung 45 357–360.
    1. Krishnamoorthy R. R., Agarwal P., Prasanna G., Vopat K., Lambert W., Sheedlo H. J., et al. (2001). Characterization of a transformed rat retinal ganglion cell line. Brain Res. Mol. Brain Res. 86 1–12. 10.1016/s0169-328x(00)00224-2
    1. Krumbholz M., Derfuss T., Hohlfeld R., Meinl E. (2012). B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat. Rev. Neurol. 8 613–623. 10.1038/nrneurol.2012.203
    1. Kuehn M. H., Kim C. Y., Ostojic J., Bellin M., Alward W. L., Stone E. M., et al. (2006). Retinal synthesis and deposition of complement components induced by ocular hypertension. Exp. Eye Res. 83 620–628. 10.1016/j.exer.2006.03.002
    1. Kuehn S., Grotegut P., Smit A., Stute G., Dick H. B., Joachim S. C. (2018). Important role of microglia in a novel S100B based retina degeneration model. Invest. Ophthalmol. Vis. Sci. 59:4500.
    1. Kuehn S., Hurst J., Rensinghoff F., Tsai T., Grauthoff S., Satgunarajah Y., et al. (2017a). Degenerative effects of cobalt-chloride treatment on neurons and microglia in a porcine retina organ culture model. Exp. Eye Res. 155 107–120. 10.1016/j.exer.2017.01.003
    1. Kuehn S., Rodust C., Stute G., Grotegut P., Meissner W., Reinehr S., et al. (2017b). Concentration-dependent inner retina layer damage and optic nerve degeneration in a NMDA model. J. Mol. Neurosci. 63 283–299. 10.1007/s12031-017-0978-x
    1. Lang G. K. (2014). Augenheilkunde. Stuttgart: Thieme.
    1. Laspas P., Gramlich O. W., Muller H. D., Cuny C. S., Gottschling P. F., Pfeiffer N., et al. (2011). Autoreactive antibodies and loss of retinal ganglion cells in rats induced by immunization with ocular antigens. Invest. Ophthalmol. Vis. Sci. 52 8835–8848. 10.1167/iovs.10-6889
    1. Latina M. A., Sibayan S. A., Shin D. H., Noecker R. J., Marcellino G. (1998). Q-switched 532-nm Nd:YAG laser trabeculoplasty (selective laser trabeculoplasty): a multicenter, pilot, clinical study. Ophthalmology 105 2082–2088; discussion 2089–2090.
    1. Lavalette S., Raoul W., Houssier M., Camelo S., Levy O., Calippe B., et al. (2011). Interleukin-1beta inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am. J. Pathol. 178 2416–2423. 10.1016/j.ajpath.2011.01.013
    1. Levkovitch-Verbin H., Kalev-Landoy M., Habot-Wilner Z., Melamed S. (2006). Minocycline delays death of retinal ganglion cells in experimental glaucoma and after optic nerve transection. Arch. Ophthalmol. 124 520–526.
    1. Li K. R., Zhang Z. Q., Yao J., Zhao Y. X., Duan J., Cao C., et al. (2013). Ginsenoside Rg-1 protects retinal pigment epithelium (RPE) cells from cobalt chloride (CoCl2) and hypoxia assaults. PLoS One 8:e84171. 10.1371/journal.pone.0084171
    1. Li L., Qin J., Fu T., Shen J. (2019). Fisetin rescues retinal functions by suppressing inflammatory response in a DBA/2J mouse model of glaucoma. Doc. Ophthalmol. 138 125–135. 10.1007/s10633-019-09676-9
    1. Li L., Qu C., Wang F. (2015). A novel method for co-culture with Muller cells and microglia in rat retina in vitro. Biomed. Rep. 3 25–27. 10.3892/br.2014.370
    1. Li Z. Y., Wong F., Chang J. H., Possin D. E., Hao Y., Petters R. M., et al. (1998). Rhodopsin transgenic pigs as a model for human retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 39 808–819.
    1. Liao K. P., Kurreeman F., Li G., Duclos G., Murphy S., Guzman R., et al. (2013). Associations of autoantibodies, autoimmune risk alleles, and clinical diagnoses from the electronic medical records in rheumatoid arthritis cases and non-rheumatoid arthritis controls. Arthritis Rheum. 65 571–581. 10.1002/art.37801
    1. Liu X., Xie J., Liu Z., Gong Q., Tian R., Su G. (2016). Identification and validation of reference genes for quantitative RT-PCR analysis of retinal pigment epithelium cells under hypoxia and/or hyperglycemia. Gene 580 41–46. 10.1016/j.gene.2016.01.001
    1. Maliha A. M., Kuehn S., Hurst J., Herms F., Fehr M., Bartz-Schmidt K. U., et al. (2019). Diminished apoptosis in hypoxic porcine retina explant cultures through hypothermia. Sci. Rep. 9:4898. 10.1038/s41598-019-41113-4
    1. Martin K. R., Quigley H. A., Zack D. J., Levkovitch-Verbin H., Kielczewski J., Valenta D., et al. (2003). Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Invest. Ophthalmol. Vis. Sci. 44 4357–4365.
    1. Martus P., Stroux A., Budde W. M., Mardin C. Y., Korth M., Jonas J. B. (2005). Predictive factors for progressive optic nerve damage in various types of chronic open-angle glaucoma. Am. J. Ophthalmol. 139 999–1009. 10.1016/j.ajo.2004.12.056
    1. Maruyama I., Ohguro H., Ikeda Y. (2000). Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest. Ophthalmol. Vis. Sci. 41 1657–1665.
    1. Matsushita M., Thiel S., Jensenius J. C., Terai I., Fujita T. (2000). Proteolytic activities of two types of mannose-binding lectin-associated serine protease. J. Immunol. 165 2637–2642. 10.4049/jimmunol.165.5.2637
    1. McMonnies C. W. (2017). Glaucoma history and risk factors. J. Optom. 10 71–78.
    1. Mitchell P., Smith W., Attebo K., Healey P. R. (1996). Prevalence of open-angle glaucoma in Australia. The blue mountains eye study. Ophthalmology 103 1661–1669. 10.1016/s0161-6420(96)30449-1
    1. Mohlin C., Sandholm K., Kvanta A., Ekdahl K. N., Johansson K. (2018). A model to study complement involvement in experimental retinal degeneration. Ups. J. Med. Sci. 123 28–42. 10.1080/03009734.2018.1431744
    1. Murphy K. T., Walport M. (2008). Janeway’s Immunobiology. Milton Park: Taylor & Francis Ltd.
    1. Narayanaswamy A., Neog A., Baskaran M., George R., Lingam V., Desai C., et al. (2007). A randomized, crossover, open label pilot study to evaluate the efficacy and safety of Xalatan in comparison with generic Latanoprost (Latoprost) in subjects with primary open angle glaucoma or ocular hypertension. Indian J. Ophthalmol. 55 127–131.
    1. Nathans J., Thomas D., Hogness D. S. (1986). Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232 193–202. 10.1126/science.2937147
    1. Natoli R., Fernando N., Madigan M., Chu-Tan J. A., Valter K., Provis J., et al. (2017). Microglia-derived IL-1beta promotes chemokine expression by Muller cells and RPE in focal retinal degeneration. Mol. Neurodegener. 12:31. 10.1186/s13024-017-0175-y
    1. Nauta A. J., Raaschou-Jensen N., Roos A., Daha M. R., Madsen H. O., Borrias-Essers M. C., et al. (2003). Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur. J. Immunol. 33 2853–2863. 10.1002/eji.200323888
    1. Nesargikar P. N., Spiller B., Chavez R. (2012). The complement system: history, pathways, cascade and inhibitors. Eur. J. Microbiol. Immunol. 2 103–111. 10.1556/EuJMI.2.2012.2.2
    1. Neufeld A. H., Hernandez M. R., Gonzalez M. (1997). Nitric oxide synthase in the human glaucomatous optic nerve head. Arch. Ophthalmol. 115 497–503.
    1. Nickells R. W., Schmitt H. M., Maes M. E., Schlamp C. L. (2017). AAV2-mediated transduction of the mouse retina after optic nerve injury. Invest. Ophthalmol. Vis. Sci. 58 6091–6104. 10.1167/iovs.17-22634
    1. Noristani R., Kuehn S., Stute G., Reinehr S., Stellbogen M., Dick H. B., et al. (2016). Retinal and optic nerve damage is associated with early glial responses in an experimental autoimmune glaucoma model. J. Mol. Neurosci. 58 470–482. 10.1007/s12031-015-0707-2
    1. Nucci C., Tartaglione R., Rombola L., Morrone L. A., Fazzi E., Bagetta G. (2005). Neurochemical evidence to implicate elevated glutamate in the mechanisms of high intraocular pressure (IOP)-induced retinal ganglion cell death in rat. Neurotoxicology 26 935–941. 10.1016/j.neuro.2005.06.002
    1. Ogden C. A., Decathelineau A., Hoffmann P. R., Bratton D., Ghebrehiwet B., Fadok V. A., et al. (2001). C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194 781–795.
    1. Ouchi Y., Yoshikawa E., Sekine Y., Futatsubashi M., Kanno T., Ogusu T., et al. (2005). Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann. Neurol. 57 168–175. 10.1002/ana.20338
    1. Pascale A., Drago F., Govoni S. (2012). Protecting the retinal neurons from glaucoma: lowering ocular pressure is not enough. Pharmacol. Res. 66 19–32. 10.1016/j.phrs.2012.03.002
    1. Peynshaert K., Devoldere J., Forster V., Picaud S., Vanhove C., De Smedt S. C., et al. (2017). Toward smart design of retinal drug carriers: a novel bovine retinal explant model to study the barrier role of the vitreoretinal interface. Drug Deliv. 24 1384–1394. 10.1080/10717544.2017.1375578
    1. Quigley H. A. (1993). Open-angle glaucoma. N. Engl. J. Med. 328 1097–1106.
    1. Quigley H. A., Broman A. T. (2006). The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90 262–267. 10.1136/bjo.2005.081224
    1. Quigley H. A., Jampel H. D. (2003). How are glaucoma patients identified? J. Glaucoma 12 451–455. 10.1097/00061198-200312000-00001
    1. Ramirez A. I., De Hoz R., Salobrar-Garcia E., Salazar J. J., Rojas B., Ajoy D., et al. (2017). The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front. Aging Neurosci. 9:214. 10.3389/fnagi.2017.00214
    1. Rao N. A., Kimoto T., Zamir E., Giri R., Wang R., Ito S., et al. (2003). Pathogenic role of retinal microglia in experimental uveoretinitis. Invest. Ophthalmol. Vis. Sci. 44 22–31.
    1. Reinehr S., Kuehn S., Casola C., Koch D., Stute G., Grotegut P., et al. (2018a). HSP27 immunization reinforces AII amacrine cell and synapse damage induced by S100 in an autoimmune glaucoma model. Cell Tissue Res. 371 237–249. 10.1007/s00441-017-2710-0
    1. Reinehr S., Reinhard J., Gandej M., Gottschalk I., Stute G., Faissner A., et al. (2018b). S100B immunization triggers NFκB and complement activation in an autoimmune glaucoma model. Sci. Rep. 8:9821 10.1038/s41598-018-28183-6
    1. Reinehr S., Reinhard J., Gandej M., Kuehn S., Noristani R., Faissner A., et al. (2016a). Simultaneous complement response via lectin pathway in retina and optic nerve in an experimental autoimmune glaucoma model. Front. Cell. Neurosci. 10:140. 10.3389/fncel.2016.00140
    1. Reinehr S., Reinhard J., Wiemann S., Stute G., Kuehn S., Woestmann J., et al. (2016b). Early remodelling of the extracellular matrix proteins tenascin-C and phosphacan in retina and optic nerve of an experimental autoimmune glaucoma model. J. Cell. Mol. Med. 20 2122–2137. 10.1111/jcmm.12909
    1. Rojas B., Gallego B. I., Ramirez A. I., Salazar J. J., De Hoz R., Valiente-Soriano F. J., et al. (2014). Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. J. Neuroinflammation 11:133. 10.1186/1742-2094-11-133
    1. Russo R., Varano G. P., Adornetto A., Nucci C., Corasaniti M. T., Bagetta G., et al. (2016). Retinal ganglion cell death in glaucoma: exploring the role of neuroinflammation. Eur. J. Pharmacol. 787 134–142. 10.1016/j.ejphar.2016.03.064
    1. Sanchez-Bretano A., Baba K., Janjua U., Piano I., Gargini C., Tosini G. (2017). Melatonin partially protects 661W cells from H2O2-induced death by inhibiting Fas/FasL-caspase-3. Mol. Vis. 23 844–852.
    1. Schmid H., Renner M., Dick H. B., Joachim S. C. (2014). Loss of inner retinal neurons after retinal ischemia in rats. Invest. Ophthalmol. Vis. Sci. 55 2777–2787. 10.1167/iovs.13-13372
    1. Sippl C., Tamm E. R. (2014). What is the nature of the RGC-5 cell line? Adv. Exp. Med. Biol. 801 145–154. 10.1007/978-1-4614-3209-8_19
    1. Sommer A., Tielsch J. M., Katz J., Quigley H. A., Gottsch J. D., Javitt J., et al. (1991). Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore eye survey. Arch. Ophthalmol. 109 1090–1095.
    1. Song W., Huang P., Zhang C. (2015). Neuroprotective therapies for glaucoma. Drug Des. Devel. Ther. 9 1469–1479. 10.2147/DDDT.S80594
    1. Sontheimer R. D., Racila E., Racila D. M. (2005). C1q: its functions within the innate and adaptive immune responses and its role in lupus autoimmunity. J. Invest. Dermatol. 125 14–23. 10.1111/j.0022-202x.2005.23673.x
    1. Stasi K., Nagel D., Yang X., Wang R. F., Ren L., Podos S. M., et al. (2006). Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 47 1024–1029.
    1. Stevens G. A., White R. A., Flaxman S. R., Price H., Jonas J. B., Keeffe J., et al. (2013). Global prevalence of vision impairment and blindness: magnitude and temporal trends, 1990-2010. Ophthalmology 120 2377–2384.
    1. Stuart L. M., Takahashi K., Shi L., Savill J., Ezekowitz R. A. (2005). Mannose-binding lectin-deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. J. Immunol. 174 3220–3226. 10.4049/jimmunol.174.6.3220
    1. Szel A., Diamantstein T., Rohlich P. (1988). Identification of the blue-sensitive cones in the mammalian retina by anti-visual pigment antibody. J. Comp. Neurol. 273 593–602. 10.1002/cne.902730413
    1. Takahashi M., Iwaki D., Kanno K., Ishida Y., Xiong J., Matsushita M., et al. (2008). Mannose-binding lectin (MBL)-associated serine protease (MASP)-1 contributes to activation of the lectin complement pathway. J. Immunol. 180 6132–6138. 10.4049/jimmunol.180.9.6132
    1. Tezel G. (2011). The immune response in glaucoma: a perspective on the roles of oxidative stress. Exp. Eye Res. 93 178–186. 10.1016/j.exer.2010.07.009
    1. Tezel G., Seigel G. M., Wax M. B. (1998). Autoantibodies to small heat shock proteins in glaucoma. Invest. Ophthalmol. Vis. Sci. 39 2277–2287.
    1. Tezel G., Wax M. B. (2004). The immune system and glaucoma. Curr. Opin. Ophthalmol. 15 80–84. 10.1097/00055735-200404000-00003
    1. Tezel G., Yang X., Luo C., Kain A. D., Powell D. W., Kuehn M. H., et al. (2010). Oxidative stress and the regulation of complement activation in human glaucoma. Invest. Ophthalmol. Vis. Sci. 51 5071–5082. 10.1167/iovs.10-5289
    1. Tielsch J. M., Sommer A., Katz J., Royall R. M., Quigley H. A., Javitt J. (1991). Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore eye survey. JAMA 266 369–374. 10.1001/jama.266.3.369
    1. Tkatchenko T. V., Shen Y., Tkatchenko A. V. (2010). Analysis of postnatal eye development in the mouse with high-resolution small animal magnetic resonance imaging. Invest. Ophthalmol. Vis. Sci. 51 21–27. 10.1167/iovs.08-2767
    1. Vass C., Hirn C., Sycha T., Findl O., Bauer P., Schmetterer L. (2007). Medical interventions for primary open angle glaucoma and ocular hypertension. Cochrane Database Syst. Rev. 4:CD003167.
    1. Volland S., Esteve-Rudd J., Hoo J., Yee C., Williams D. S. (2015). A comparison of some organizational characteristics of the mouse central retina and the human macula. PLoS One 10:e0125631. 10.1371/journal.pone.0125631
    1. Wang L., Cioffi G. A., Cull G., Dong J., Fortune B. (2002). Immunohistologic evidence for retinal glial cell changes in human glaucoma. Invest. Ophthalmol. Vis. Sci. 43 1088–1094.
    1. Wax M. B. (2011). The case for autoimmunity in glaucoma. Exp. Eye Res. 93 187–190. 10.1016/j.exer.2010.08.016
    1. Wax M. B., Barrett D. A., Pestronk A. (1994). Increased incidence of paraproteinemia and autoantibodies in patients with normal-pressure glaucoma. Am. J. Ophthalmol. 117 561–568. 10.1016/s0002-9394(14)70059-5
    1. Wax M. B., Tezel G., Edward P. D. (1998). Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. Arch. Ophthalmol. 116 993–1001. 10.1001/archopht.116.8.993
    1. Wax M. B., Tezel G., Yang J., Peng G., Patil R. V., Agarwal N., et al. (2008). Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived fas-ligand. J. Neurosci. 28 12085–12096. 10.1523/JNEUROSCI.3200-08.2008
    1. Williams P. A., Tribble J. R., Pepper K. W., Cross S. D., Morgan B. P., Morgan J. E., et al. (2016). Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol. Neurodegener. 11:26. 10.1186/s13024-016-0091-6
    1. Wood J. P., Chidlow G., Tran T., Crowston J. G., Casson R. J. (2010). A comparison of differentiation protocols for RGC-5 cells. Invest. Ophthalmol. Vis. Sci. 51 3774–3783. 10.1167/iovs.09-4305
    1. Xie J., Gong Q., Liu X., Liu Z., Tian R., Cheng Y., et al. (2017). Transcription factor SP1 mediates hyperglycemia-induced upregulation of roundabout4 in retinal microvascular endothelial cells. Gene 616 31–40. 10.1016/j.gene.2017.03.027
    1. Yoneda S., Tanihara H., Kido N., Honda Y., Goto W., Hara H., et al. (2001). Interleukin-1beta mediates ischemic injury in the rat retina. Exp. Eye Res. 73 661–667. 10.1006/exer.2001.1072
    1. Yoo H. I., Moon Y. H., Kim M. S. (2016). Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells. Korean J. Physiol. Pharmacol. 20 53–62. 10.4196/kjpp.2016.20.1.53
    1. Yu J., Sun W., Song Y., Liu J., Xue F., Gong K., et al. (2019). SIRT6 protects retinal ganglion cells against hydrogen peroxide-induced apoptosis and oxidative stress by promoting Nrf2/ARE signaling via inhibition of Bach1. Chem. Biol. Interact. 300 151–158. 10.1016/j.cbi.2019.01.018
    1. Yuan L., Neufeld A. H. (2001). Activated microglia in the human glaucomatous optic nerve head. J. Neurosci. Res. 64 523–532. 10.1002/jnr.1104
    1. Zanon-Moreno V., Marco-Ventura P., Lleo-Perez A., Pons-Vazquez S., Garcia-Medina J. J., Vinuesa-Silva I., et al. (2008). Oxidative stress in primary open-angle glaucoma. J. Glaucoma 17 263–268. 10.1097/IJG.0b013e31815c3a7f
    1. Zeng H. Y., Green W. R., Tso M. O. (2008). Microglial activation in human diabetic retinopathy. Arch. Ophthalmol. 126 227–232. 10.1001/archophthalmol.2007.65
    1. Zeyen T. (1999). Target pressures in glaucoma. Bull. Soc. Belge Ophtalmol. 274 61–65.
    1. Zhao H., Wang R., Ye M., Zhang L. (2019). Genipin protects against H2O2-induced oxidative damage in retinal pigment epithelial cells by promoting Nrf2 signaling. Int. J. Mol. Med. 43 936–944. 10.3892/ijmm.2018.4027
    1. Zhao L., Zabel M. K., Wang X., Ma W., Shah P., Fariss R. N., et al. (2015). Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 7 1179–1197. 10.15252/emmm.201505298
    1. Zhou X., Wang W., Lu F., Hu S., Jiang L., Yan D., et al. (2007). A comparative gene expression profile of the whole eye from human, mouse, and guinea pig. Mol. Vis. 13 2214–2221.

Source: PubMed

3
구독하다