Persistent Pulmonary Hypertension of the Newborn: Pathophysiological Mechanisms and Novel Therapeutic Approaches

Sofia Martinho, Rui Adão, Adelino F Leite-Moreira, Carmen Brás-Silva, Sofia Martinho, Rui Adão, Adelino F Leite-Moreira, Carmen Brás-Silva

Abstract

Persistent pulmonary hypertension of the newborn (PPHN) is one of the main causes of neonatal morbidity and mortality. It is characterized by sustained elevation of pulmonary vascular resistance (PVR), preventing an increase in pulmonary blood flow after birth. The affected neonates fail to establish blood oxygenation, precipitating severe respiratory distress, hypoxemia, and eventually death. Inhaled nitric oxide (iNO), the only approved pulmonary vasodilator for PPHN, constitutes, alongside supportive therapy, the basis of its treatment. However, nearly 40% of infants are iNO resistant. The cornerstones of increased PVR in PPHN are pulmonary vasoconstriction and vascular remodeling. A better understanding of PPHN pathophysiology may enlighten targeted and more effective therapies. Sildenafil, prostaglandins, milrinone, and bosentan, acting as vasodilators, besides glucocorticoids, playing a role on reducing inflammation, have all shown potential beneficial effects on newborns with PPHN. Furthermore, experimental evidence in PPHN animal models supports prospective use of emergent therapies, such as soluble guanylyl cyclase (sGC) activators/stimulators, l-citrulline, Rho-kinase inhibitors, peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists, recombinant superoxide dismutase (rhSOD), tetrahydrobiopterin (BH4) analogs, ω-3 long-chain polyunsaturated fatty acids (LC-PUFAs), 5-HT2A receptor antagonists, and recombinant human vascular endothelial growth factor (rhVEGF). This review focuses on current knowledge on alternative and novel pathways involved in PPHN pathogenesis, as well as recent progress regarding experimental and clinical evidence on potential therapeutic approaches for PPHN.

Keywords: persistent pulmonary hypertension of the newborn; pulmonary vascular remodeling; pulmonary vascular resistance; pulmonary vasoconstriction; pulmonary vasodilators.

Copyright © 2020 Martinho, Adão, Leite-Moreira and Brás-Silva.

Figures

Figure 1
Figure 1
Signaling pathways involved in the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN) and its interactions. 5-HT, serotonin; 5-HT2A, 5-HT receptor 2A; AA, arachidonic acid; AC, adenylyl cyclase; AMP, adenosine monophosphate; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanylyl monophosphate; COX, cyclooxygenase; eETB, endothelial relaxant endothelin receptor B; eNOS, nitric oxide synthase; EP, PGE1-receptor; ET-1, endothelin-1; ETA, endothelin receptor A; GMP, guanylyl monophosphate; IGF-1, insulin growth factor 1; IGF-1R, IGF-1 receptor; IL-1β, IL-6, IL-8, interleukins-1β, 6, and 8; IP, PGI2-receptor; mETB, smooth muscle contractile endothelin receptor B; NgBR, Nogo-B receptor; NO, nitric oxide; PDE3, phosphodiesterase-3; PDE5, phosphodiesterase-5; PGE1, prostaglandin E1; PGI2, prostacyclin; PGSs, prostaglandin synthases; PPAR- γ, peroxisome proliferator-activated receptor-γ; ROCK, Rho-kinase; ROS, reactive oxygen species; sGC, soluble guanylyl cyclase; SNAT1, sodium-coupled neutral amino acid transporter; TNF-α: tumor necrosis factor α; TP, TXA2-receptor; TXA2, thromboxane A2; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor. This figure was created with BioRender.com.
Figure 2
Figure 2
Pathogenic mechanisms of persistent pulmonary hypertension of the newborn (PPHN) and its current and potential target therapies: NO-cGMP pathway. cGMP, cyclic guanylyl monophosphate; eNOS, nitric oxide synthase; GMP, guanylyl monophosphate; iNO, inhaled nitric oxide; NgBR, Nogo-B receptor; NO, nitric oxide; PDE5, phosphodiesterase-5; ROS, reactive oxygen species; sGC, soluble guanylyl cyclase; SNAT1, sodium-coupled neutral amino acid transporter; VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor. Target therapies are marked with a syringe icon and are colored based on the type of evidence supporting its use on PPHN—purple, evidence on its was obtained by adequately powered RCTs/meta-analysis; pink, evidence limited to observational studies or small and underpowered RCTs and/or inconsistent results in human newborns; blue, beneficial effects only demonstrated in experimental models of PPHN. This figure was created with BioRender.com.
Figure 3
Figure 3
Pathogenic mechanisms of persistent pulmonary hypertension of the newborn (PPHN) and its current and potential target therapies: Arachidonic acid-prostacyclin-cAMP pathway. AA, arachidonic acid; AC, adenylyl cyclase; AMP, adenosine monophosphate; cAMP, cyclic adenosine monophosphate; COX, cyclooxygenase; EP, PGE1-receptor; IL-1β, IL-6, IL-8, interleukins-1β, 6 and 8; IP, PGI2-receptor; PDE3, phosphodiesterase-3; PGE1, prostaglandin E1; PGES, PGE1 synthase; PGI2, prostacyclin; PGIS, PGI2 synthase; RV, right ventricle; TBXAS, TXA2 synthase; TNF-α: tumor necrosis factor α; TP, TXA2-receptor; TXA2, thromboxane A2. Target therapies are marked with a syringe icon and are colored based on the type of evidence supporting its use on PPHN- Purple: Evidence on its was obtained by adequately powered RCTs/meta-analysis; Pink: Evidence limited to observational studies or small and underpowered RCTs and/or inconsistent results in human newborns; Blue: Beneficial effects only demonstrated in experimental models of PPHN. This figure was created with BioRender.com.
Figure 4
Figure 4
Pathogenic mechanisms of persistent pulmonary hypertension of the newborn (PPHN) and its current and potential target therapies: endothelin-1-ETA/ETB receptors. eETB, endothelial relaxant endothelin receptor B; eNOS, nitric oxide synthase; ET-1, endothelin-1; ETA, endothelin receptor A; IL-1β, IL-6, IL-8, interleukins-1β, 6 and 8; mETB, smooth muscle contractile endothelin receptor B; PPAR-γ, peroxisome proliferator-activated receptor-γ; ROCK, Rho-kinase; ROS, reactive oxygen species; TNF-α, tumor necrosis factor α. Target therapies are marked with a syringe icon and are colored based on the type of evidence supporting its use on PPHN—purple, evidence on its was obtained by adequately powered RCTs/meta-analysis; pink, evidence limited to observational studies or small and underpowered RCTs and/or inconsistent results in human newborns; blue, beneficial effects only demonstrated in experimental models of PPHN. This figure was created with BioRender.com.
Figure 5
Figure 5
Pathogenic mechanisms of persistent pulmonary hypertension of the newborn (PPHN) and its current and potential target therapies: RhoA/ROCK signaling, PPAR-γ, and 5-HT signaling pathways. 5,HT, serotonin; 5-HT2A, 5-HT receptor 2A; eETB, endothelial relaxant endothelin receptor B; eNOS, nitric oxide synthase; ET-1, endothelin-1; ETA, endothelin receptor A; IL-1β, IL-6, IL-8, interleukins-1β, 6, and 8; mETB, smooth muscle contractile endothelin receptor B; MLC, myosin light chain; MLCP: myosin light chain phosphatase; PDE5, phosphodiesterase-5; PPAR- γ, peroxisome proliferator-activated receptor γ; Rac1, Ras-related C3 botulinum toxin substrate 1; RhoA, Ras homolog family member A; ROCK, Rho-kinase; TNF-α: tumor necrosis factor α; TPH1, tryptophan hydrolase 1. Target therapies are marked with a syringe icon and are colored based on the type of evidence supporting its use on PPHN—purple, evidence on its was obtained by adequately powered RCTs/meta-analysis; pink, evidence limited to observational studies or small and underpowered RCTs and/or inconsistent results in human newborns; blue, beneficial effects only demonstrated in experimental models of PPHN. This figure was created with BioRender.com.
Figure 6
Figure 6
Pathogenic mechanisms of persistent pulmonary hypertension of the newborn (PPHN) and its current and potential target therapies: perinatal inflammation and hyperoxia and reactive oxygen species (ROS). ω-3 LC-PUFAs, ω-3 long-chain polyunsaturated fatty acids; 5-HT, serotonin; 5-HT2A, 5-HT receptor 2A; BH4, tetrahydrobiopterin; cGMP, cyclic guanylyl monophosphate; CHIP, C terminus of Hsc70-interacting protein; eNOS, nitric oxide synthase; ET-1, endothelin-1; ETA, endothelin receptor A; GMP, guanylyl monophosphate; IL-1β, IL-6, IL-8, interleukins-1β, 6, and 8; mETB, smooth muscle contractile endothelin receptor B; NgBR, Nogo-B receptor; NO, nitric oxide; OLA1, Obg-like ATPase 1; PDE5, phosphodiesterase-5; rhSOD, recombinant superoxide-dismutase; ROS, reactive oxygen species; sGC, soluble guanylyl cyclase; SOD2, superoxide-dismutase 2; TNF-α: tumor necrosis factor α; TP, TXA2-receptor; TXA2, thromboxane A2. Target therapies are marked with a syringe icon and are colored based on the type of evidence supporting its use on PPHN—purple, evidence on its was obtained by adequately powered RCTs/meta-analysis; pink, evidence limited to observational studies or small and underpowered RCTs and/or inconsistent results in human newborns; blue, beneficial effects only demonstrated in experimental models of PPHN. This figure was created with BioRender.com.

References

    1. Abman SH. Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology. (2007) 91:283–90. 10.1159/000101343
    1. Lipkin PH, Davidson D, Spivak L, Straube R, Rhines J, Chang CT. Neurodevelopmental and medical outcomes of persistent pulmonary hypertension in term newborns treated with nitric oxide. J Pediatr. (2002) 140:306–10. 10.1067/mpd.2002.122730
    1. Walsh-Sukys MC, Tyson JE, Wright LL, Bauer CR, Korones SB, Stevenson DK, et al. . Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics. (2000) 105:14–20. 10.1542/peds.105.1.14
    1. Steurer MA, Jelliffe-Pawlowski LL, Baer RJ, Partridge JC, Rogers EE, Keller RL. Persistent pulmonary hypertension of the newborn in late preterm and term infants in California. Pediatrics. (2017) 139:e20161165. 10.1542/peds.2016-1165
    1. Rosenzweig EB, Abman SH, Adatia I, Beghetti M, Bonnet D, Haworth S, et al. . Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management. Eur Respir J. (2019) 53:1801916. 10.1183/13993003.01916-2018
    1. Hilgendorff A, Apitz C, Bonnet D, Hansmann G. Pulmonary hypertension associated with acute or chronic lung diseases in the preterm and term neonate and infant. The European Paediatric pulmonary vascular disease network, endorsed by ISHLT DGPK. Heart. (2016) 102(Suppl. 2):ii49–56. 10.1136/heartjnl-2015-308591
    1. Hooper SB, Te Pas AB, Lang J, van Vonderen JJ, Roehr CC, Kluckow M, et al. . Cardiovascular transition at birth: a physiological sequence. Pediatr Res. (2015) 77:608–14. 10.1038/pr.2015.21
    1. Crossley KJ, Allison BJ, Polglase GR, Morley CJ, Davis PG, Hooper SB. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol. (2009) 587:4695–704. 10.1113/jphysiol.2009.174870
    1. Hillman NH, Kallapur SG, Jobe AH. Physiology of transition from intrauterine to extrauterine life. Clin Perinatol. (2012) 39:769–83. 10.1016/j.clp.2012.09.009
    1. Dodson RB, Galambos C, Abman SH. Developmental physiology of the pulmonary circulation. In: Richard H, Pinkerton K, editors. The Lung: Development, Aging and the Environment. 2nd ed Boston, MA: Elsevier Ltd; (2014). 121–36. 10.1016/B978-0-12-799941-8.00006-7
    1. Teitel DF, Iwamoto HS, Rudolph AM. Changes in the pulmonary circulation during birth-related events. Pediatr Res. (1990) 27:372–8. 10.1203/00006450-199004000-00010
    1. Morin FC, Egan EA, Ferguson W, Lundgren CE. Development of pulmonary vascular response to oxygen. Am J Physiol Circ Physiol. (1988) 254:H542–6. 10.1152/ajpheart.1988.254.3.H542
    1. Wedgwood S, Bekker JM, Black SM. Shear stress regulation of endothelial NOS in fetal pulmonary arterial endothelial cells involves PKC. Am J Physiol Cell Mol Physiol. (2001) 281:L490–8. 10.1152/ajplung.2001.281.2.L490
    1. Hooper S. Role of luminal volume changes in the increase in pulmonary blood flow at birth in sheep. Exp Physiol. (1998) 83:833–42. 10.1113/expphysiol.1998.sp004163
    1. Hooper SB, Te Pas AB, Kitchen MJ. Respiratory transition in the newborn: a three-phase process. Arch Dis Child Fetal Neonatal Ed. (2016) 101:F266–71. 10.1136/archdischild-2013-305704
    1. Polglase GR, Wallace MJ, Grant DA, Hooper SB. Influence of fetal breathing movements on pulmonary hemodynamics in fetal sheep. Pediatr Res. (2004) 56:932–8. 10.1203/01.PDR.0000145254.66447.C0
    1. Lang JAR, Pearson JT, te Pas AB, Wallace MJ, Siew ML, Kitchen MJ, et al. . Ventilation/perfusion mismatch during lung aeration at birth. J Appl Physiol. (1985) 117:535–43. 10.1152/japplphysiol.01358.2013
    1. Lang JAR, Pearson JT, Binder-Heschl C, Wallace MJ, Siew ML, Kitchen MJ, et al. . Increase in pulmonary blood flow at birth: role of oxygen and lung aeration. J Physiol. (2016) 594:1389–98. 10.1113/JP270926
    1. Lang JAR, Pearson JT, Binder-Heschl C, Wallace MJ, Siew ML, Kitchen MJ, et al. . Vagal denervation inhibits the increase in pulmonary blood flow during partial lung aeration at birth. J Physiol. (2017) 595:1593–606. 10.1113/JP273682
    1. Foglia EE, te Pas AB. Effective ventilation: the most critical intervention for successful delivery room resuscitation. Semin Fetal Neonatal Med. (2018) 23:340–6. 10.1016/j.siny.2018.04.001
    1. Hernandez-Diaz S, Marter LJ Van, Werler MM, Louik C, Mitchell AA. Risk factors for persistent pulmonary hypertension. Pediatrics. (2007) 120:e272–82. 10.1542/peds.2006-3037
    1. Huybrechts KF, Bateman BT, Palmsten K, Desai RJ, Patorno E, Gopalakrishnan C, et al. . Antidepressant use late in pregnancy and risk of persistent pulmonary hypertension of the newborn. JAMA. (2015) 313:2142–51. 10.1001/jama.2015.5605
    1. Van Marter LJ, Hernandez-Diaz S, Werler MM, Louik C, Mitchell AA. Nonsteroidal antiinflammatory drugs in latepregnancy and persistentpulmonary hypertension of the newborn. Pediatrics. (2013) 131:79–87. 10.1542/peds.2012-0496
    1. Rocha G, Baptista MJ, Guimarães H. Persistent pulmonary hypertension of non cardiac cause in a neonatal intensive care unit. Pulm Med. (2012) 2012:818971. 10.1155/2012/818971
    1. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev. (2010) 90:1291–335. 10.1152/physrev.00032.2009
    1. Murphy JD, Rabinovitch M, Goldstein JD, Reid LM. The structural basis of persistent pulmonary hypertension of the newborn infant. J Pediatr. (1981) 98:962–7. 10.1016/S0022-3476(81)80605-1
    1. Bendapudi P, Rao GG, Greenough A. Diagnosis and management of persistent pulmonary hypertension of the newborn. Paediatr Respir Rev. (2015) 16:157–61. 10.1016/j.prrv.2015.02.001
    1. Afolayan AJ, Eis A, Alexander M, Michalkiewicz T, Teng R, Lakshminrusimha S, et al. . Decreased endothelial nitric oxide synthase expression and function contribute to impaired mitochondrial biogenesis and oxidative stress in fetal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. (2016) 310:40–9. 10.1152/ajplung.00392.2014
    1. Shaul PW, Farrar MA, Magness RR. Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and newborn. Am J Physiol Circ Physiol. (1993) 265:H1056–63. 10.1152/ajpheart.1993.265.4.H1056
    1. Abman SH, Chatfield BA, Hall SL, McMurtry IF. Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Physiol Circ Physiol. (1990) 259:H1921–7. 10.1152/ajpheart.1990.259.6.H1921
    1. Fineman JR, Wong J, Morin FC, Wild LM, Soifer SJ. Chronic nitric oxide inhibition in utero produces persistent pulmonary hypertension in newborn lambs. J Clin Invest. (1994) 93:2675–83. 10.1172/JCI117281
    1. Barrington KJ, Finer N, Pennaforte T, Altit G. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev. (2017) 1:CD000399 10.1002/14651858.CD000399.pub3
    1. Kelly LE, Ohlsson A, Shah PS. Sildenafil for pulmonary hypertension in neonates. Cochrane Database Syst Rev. (2017) 8:CD005494. 10.1002/14651858.CD005494.pub4
    1. Janjindamai W, Thatrimontrichai A, Maneenil G, Chanvitan P, Dissaneevate S. Effectiveness and safety of intravenous iloprost for severe persistent pulmonary hypertension of the newborn. Indian Pediatr. (2013) 50:934–8. 10.1007/s13312-013-0263-1
    1. Kahveci H, Yilmaz O, Avsar UZ, Ciftel M, Kilic O, Laloglu F, et al. . Oral sildenafil and inhaled iloprost in the treatment of pulmonary hypertension of the newborn. Pediatr Pulmonol. (2014) 49:1205–13. 10.1002/ppul.22985
    1. Eronen M, Pohjavuori M, Andersson S, Pesonen E, Raivio KO. Prostacyclin treatment for persistent pulmonary hypertension of the newborn. Pediatr Cardiol. (1997) 18:3–7. 10.1007/s002469900099
    1. de Jaegere APMC, van den Anker JN. Endotracheal instillation of prostacyclin in preterm infants with persistent pulmonary hypertension. Eur Respir J. (1998) 12:932–4. 10.1183/09031936.98.12040932
    1. Park BY, Chung S-H. Treprostinil for persistent pulmonary hypertension of the newborn, with early onset sepsis in preterm infant: 2 case reports. Medicine. (2017) 96:e7303. 10.1097/MD.0000000000007303
    1. Nakwan N, Nakwan N, Wannaro J. Persistent pulmonary hypertension of the newborn successfully treated with beraprost sodium: a retrospective chart review. Neonatology. (2011) 99:32–37. 10.1159/000298137
    1. Gupta N, Kamlin CO, Cheung M, Stewart M, Patel N. Prostaglandin E1 use during neonatal transfer: potential beneficial role in persistent pulmonary hypertension of the newborn. Arch Dis Child Fetal Neonatal Ed. (2013) 98:F186–8. 10.1136/archdischild-2012-303294
    1. McNamara PJ, Laique F, Muang-In S, Whyte HE. Milrinone improves oxygenation in neonates with severe persistent pulmonary hypertension of the newborn. J Crit Care. (2006) 21:217–22. 10.1016/j.jcrc.2006.01.001
    1. McNamara PJ, Shivananda SP, Sahni M, Freeman D, Taddio A. Pharmacology of milrinone in neonates with persistent pulmonary hypertension of the newborn and suboptimal response to inhaled nitric oxide. Pediatr Crit Care Med. (2013) 14:74–84. 10.1097/PCC.0b013e31824ea2cd
    1. Maneenil G, Thatrimontrichai A, Janjindamai W, Dissaneevate S. Effect of bosentan therapy in persistent pulmonary hypertension of the newborn. Pediatr Neonatol. (2018) 59:58–64. 10.1016/j.pedneo.2017.02.003
    1. Mohamed WA, Ismail M. A randomized, double-blind, placebo-controlled, prospective study of bosentan for the treatment of persistent pulmonary hypertension of the newborn. J Perinatol. (2012) 32:608–13. 10.1038/jp.2011.157
    1. Steinhorn RH, Fineman J, Kusic-Pajic A, Cornelisse P, Gehin M, Nowbakht P, et al. . Bosentan as adjunctive therapy for persistent pulmonary hypertension of the newborn: results of the randomized multicenter placebo-controlled exploratory trial. J Pediatr. (2016) 177:90–6. 10.1016/j.jpeds.2016.06.078
    1. Alsaleem M, Malik A, Lakshminrusimha S, Kumar VHS. Hydrocortisone improves oxygenation index and systolic blood pressure in term infants with persistent pulmonary hypertension. Clin Med Insights Pediatr. (2019) 13:1179556519888918. 10.1177/1179556519888918
    1. Lakshminrusimha S, Mathew B, Leach CL. Pharmacologic strategies in neonatal pulmonary hypertension other than nitric oxide. Semin Perinatol. (2016) 40:160–73. 10.1053/j.semperi.2015.12.004
    1. Rubin LJ, Badesch DB, Fleming TR, Galiè N, Simonneau G, Ghofrani HA, et al. . Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest. (2011) 140:1274–83. 10.1378/chest.10-0969
    1. Steinhorn RH, Kinsella JP, Pierce C, Butrous G, Dilleen M, Oakes M, et al. . Intravenous sildenafil in the treatment of neonates with persistent pulmonary hypertension. J Pediatr. (2009) 155:841–7. 10.1016/j.jpeds.2009.06.012
    1. Luong C, Rey-Perra J, Vadivel A, Gilmour G, Sauve Y, Koonen D, et al. . Antenatal sildenafil treatment attenuates pulmonary hypertension in experimental congenital diaphragmatic hernia. Circulation. (2011) 123:2120–31. 10.1161/CIRCULATIONAHA.108.845909
    1. Tessler RB, Zadinello M, Fiori H, Colvero M, Belik J, Fiori RM. Tadalafil improves oxygenation in a model of newborn pulmonary hypertension. Pediatr Crit Care Med. (2008) 9:330–2. 10.1097/PCC.0b013e31816c7035
    1. Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Rescue treatment with L-Citrulline inhibits hypoxia-induced pulmonary hypertension in newborn pigs. Am J Respir Cell Mol Biol. (2015) 53:255–64. 10.1165/rcmb.2014-0351OC
    1. Deruelle P, Grover TR, Abman SH. Pulmonary vascular effects of nitric oxide-cGMP augmentation in a model of chronic pulmonary hypertension in fetal and neonatal sheep. Am J Physiol Cell Mol Physiol. (2005) 289:L798–806. 10.1152/ajplung.00119.2005
    1. Chester M, Tourneux P, Seedorf G, Grover TR, Gien J, Abman SH. Cinaciguat, a soluble guanylate cyclase activator, causes potent and sustained pulmonary vasodilation in the ovine fetus. Am J Physiol Cell Mol Physiol. (2009) 297:L318–25. 10.1152/ajplung.00062.2009
    1. Simonneau G, Torbicki A, Hoeper MM, Delcroix M, Karlócai K, Galiè N, et al. . Selexipag: an oral, selective prostacyclin receptor agonist for the treatment of pulmonary arterial hypertension. Eur Respir J. (2012) 40:874–880. 10.1183/09031936.00137511
    1. Parker TA, Roe G, Grover TR, Abman SH. Rho kinase activation maintains high pulmonary vascular resistance in the ovine fetal lung. Am J Physiol Lung Cell Mol Physiol. (2006) 291:976–83. 10.1152/ajplung.00512.2005
    1. McNamara PJ, Murthy P, Kantores C, Teixeira L, Engelberts D, van Vliet T, et al. . Acute vasodilator effects of Rho-kinase inhibitors in neonatal rats with pulmonary hypertension unresponsive to nitric oxide. Am J Physiol Lung Cell Mol Physiol. (2008) 294:205–13. 10.1152/ajplung.00234.2007
    1. Gosal K, Dunlop K, Dhaliwal R, Ivanovska J, Kantores C, Desjardins J-F, et al. . Rho kinase mediates right ventricular systolic dysfunction in rats with chronic neonatal pulmonary hypertension. Am J Respir Cell Mol Biol. (2015) 52:717–27. 10.1165/rcmb.2014-0201OC
    1. Wong MJ, Kantores C, Ivanovska J, Jain A, Jankov RP. Simvastatin prevents and reverses chronic pulmonary hypertension in newborn rats via pleiotropic inhibition of RhoA signaling. Am J Physiol Lung Cell Mol Physiol. (2016) 311:L985–99. 10.1152/ajplung.00345.2016
    1. Gien J, Tseng N, Seedorf G, Roe G, Abman SH. Peroxisome proliferator activated receptor-γ-Rho-kinase interactions contribute to vascular remodeling after chronic intrauterine pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. (2014) 306:299–309. 10.1152/ajplung.00271.2013
    1. Crossno JT, Garat CV, Reusch JEB, Morris KG, Dempsey EC, McMurtry IF, et al. . Rosiglitazone attenuates hypoxia-induced pulmonary arterial remodeling. Am J Physiol Cell Mol Physiol. (2007) 292:L885–97. 10.1152/ajplung.00258.2006
    1. Rehan VK, Wang Y, Patel S, Santos J, Torday JS. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, prevents hyperoxia-induced neonatal rat lung injury in vivo. Pediatr Pulmonol. (2006) 41:558–69. 10.1002/ppul.20407
    1. Dikalova A, Aschner JL, Kaplowitz MR, Summar M, Fike CD. Tetrahydrobiopterin oral therapy recouples eNOS and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am J Physiol Lung Cell Mol Physiol. (2016) 311:L743–53. 10.1152/ajplung.00238.2016
    1. Shintaku H, Ohura T. Sapropterin is safe and effective in patients less than 4-years-old with bh4-responsive phenylalanine hydroxylase deficiency. J Pediatr. (2014) 165:1241–4. 10.1016/j.jpeds.2014.08.003
    1. Lakshminrusimha S, Russell JA, Wedgwood S, Gugino SF, Kazzaz JA, Davis JM, et al. . Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J Respir Crit Care Med. (2006) 174:1370–7. 10.1164/rccm.200605-676OC
    1. Steinhorn RH, Albert G, Swartz DD, Russell JA, Levine CR, Davis JM. Recombinant human superoxide dismutase enhances the effect of inhaled nitric oxide in persistent pulmonary hypertension. Am J Respir Crit Care Med. (2001) 164:834–9. 10.1164/ajrccm.164.5.2010104
    1. Houeijeh A, Aubry E, Coridon H, Montaigne K, Sfeir R, Deruelle P, et al. . Effects of n-3 polyunsaturated fatty acids in the fetal pulmonary circulation. Crit Care Med. (2011) 39:1431–8. 10.1097/CCM.0b013e31821204fb
    1. Delaney C, Gien J, Roe G, Isenberg N, Kailey J, Abman SH. Serotonin contributes to high pulmonary vascular tone in a sheep model of persistent pulmonary hypertension of the newborn. Am J Physiol Cell Mol Physiol. (2013) 304:L894–901. 10.1152/ajplung.00043.2013
    1. McGoon MD, Vlietstra RE. Acute hemodynamic response to the S2-serotonergic receptor antagonist, ketanserin, in patients with primary pulmonary hypertension. Int J Cardiol. (1987) 14:303–9. 10.1016/0167-5273(87)90200-2
    1. Grover TR, Parker TA, Markham NE, Abman SH. rhVEGF treatment preserves pulmonary vascular reactivity and structure in an experimental model of pulmonary hypertension in fetal sheep. Am J Physiol Cell Mol Physiol. (2005) 289:L315–21. 10.1152/ajplung.00038.2005
    1. Shiva A, Shiran M, Rafati M, Zamani H, Babazadeh K, Saeedi M, et al. . Oral tadalafil in children with pulmonary arterial hypertension. Drug Res. (2015) 66:7–10. 10.1055/s-0034-1395510
    1. Dikalova A, Fagiana A, Aschner JL, Aschner M, Summar M, Fike CD. Sodium-coupled neutral amino acid transporter 1 (SNAT1) modulates L-Citrulline transport and Nitric Oxide (NO) signaling in piglet pulmonary arterial endothelial cells. PLoS ONE. (2014) 9:e85730. 10.1371/journal.pone.0085730
    1. Fike CD, Summar M, Aschner JL. L-citrulline provides a novel strategy for treating chronic pulmonary hypertension in newborn infants. Acta Paediatr. (2014) 103:1019–26. 10.1111/apa.12707
    1. Sharif Kashani B, Tahmaseb Pour P, Malekmohammad M, Behzadnia N, Sheybani-Afshar F, Fakhri M, et al. . Oral l-citrulline malate in patients with idiopathic pulmonary arterial hypertension and Eisenmenger syndrome: a clinical trial. J Cardiol. (2014) 64:231–5. 10.1016/j.jjcc.2014.01.003
    1. Chester M, Seedorf G, Tourneux P, Gien J, Tseng N, Grover T, et al. . Cinaciguat, a soluble guanylate cyclase activator, augments cGMP after oxidative stress and causes pulmonary vasodilation in neonatal pulmonary hypertension. Am J Physiol Cell Mol Physiol. (2011) 301:L755–64. 10.1152/ajplung.00138.2010
    1. Ghofrani HA, Hoeper MM, Halank M, Meyer FJ, Staehler G, Behr J, et al. . Riociguat for chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension: a phase II study. Eur Respir J. (2010) 36:792–9. 10.1183/09031936.00182909
    1. Lakshminrusimha S, Porta NFM, Farrow KN, Chen B, Gugino SF, Kumar VH, et al. . Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn. Pediatr Crit care Med. (2009) 10:106–12. 10.1097/PCC.0b013e3181936aee
    1. Chen B, Lakshminrusimha S, Czech L, Groh BS, Gugino SF, Russell JA, et al. . Regulation of phosphodiesterase 3 in the pulmonary arteries during the perinatal period in sheep. Pediatr Res. (2009) 66:682–7. 10.1203/PDR.0b013e3181bce574
    1. Zobel G, Dacar D, Rödl S, Friehs I. Inhaled nitric oxide versus inhaled prostacyclin and intravenous versus inhaled prostacyclin in acute respiratory failure with pulmonary hypertension in piglets. Pediatr Res. (1995) 38:198–204. 10.1203/00006450-199508000-00011
    1. Shivanna B, Gowda S, Se W, Kj B, Pammi M, Shivanna B, et al. . Prostanoids and their analogues for the treatment of pulmonary hypertension in neonates. Cochrane Database Syst Rev. (2019) 10:CD012963. 10.1002/14651858.CD012963.pub2
    1. Sood BG, Keszler M, Garg M, Klein JM, Ohls R, Ambalavanan N, et al. . Inhaled PGE1 in neonates with hypoxemic respiratory failure: two pilot feasibility randomized clinical trials. Trials. (2014) 15:486. 10.1186/1745-6215-15-486
    1. Pedersen J, Hedegaard ER, Simonsen U, Krüger M, Infanger M, Grimm D. Current and future treatments for persistent pulmonary hypertension in the newborn. Basic Clin Pharmacol Toxicol. (2018) 123:392–406. 10.1111/bcpt.13051
    1. Rashid N, Morin FC, Swartz DD, Ryan RM, Wynn KA, Wang H, et al. . Effects of prostacyclin and milrinone on pulmonary hemodynamics in newborn lambs with persistent pulmonary hypertension induced by ductal ligation. Pediatr Res. (2006) 60:624–9. 10.1203/01.pdr.0000242343.84510.81
    1. Kumar VH, Swartz DD, Rashid N, Lakshminrusimha S, Ma C, Ryan RM, et al. . Prostacyclin and milrinone by aerosolization improve pulmonary hemodynamics in newborn lambs with experimental pulmonary hypertension. J Appl Physiol. (2010) 109:677–84. 10.1152/japplphysiol.01082.2009
    1. Bassler D, Kreutzer K, McNamara P, Kirpalani H. Milrinone for persistent pulmonary hypertension of the newborn. Cochrane Database Syst Rev. (2010) 11:CD007802 10.1002/14651858.CD007802.pub2
    1. James AT, Bee C, Corcoran JD, McNamara PJ, Franklin O, EL-Khuffash AF. Treatment of premature infants with pulmonary hypertension and right ventricular dysfunction with milrinone: a case series. J Perinatol. (2015) 35:268–73. 10.1038/jp.2014.208
    1. Patel N. Use of milrinone to treat cardiac dysfunction in infants with pulmonary hypertension secondary to congenital diaphragmatic hernia: a review of six patients. Neonatology. (2012) 102:130–6. 10.1159/000339108
    1. Ivy DD, Kinsella JP, Abman SH. Physiologic characterization of endothelin A and B receptor activity in the ovine fetal pulmonary circulation. J Clin Invest. (1994) 93:2141–8. 10.1172/JCI117210
    1. Lee KJ, Berkelhamer SK, Kim GA, Taylor JM, O'Shea KM, Steinhorn RH, et al. . Disrupted pulmonary artery cGMP signaling in mice with hyperoxia-induced pulmonary hypertension. Am J Respir Cell Mol Biol. (2014) 50:369–78. 10.1165/rcmb.2013-0118OC
    1. Wedgwood S, McMullan DM, Bekker JM, Fineman JR, Black SM. Role for Endothelin-1–Induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy. Circ Res. (2001) 89:357–64. 10.1161/hh1601.094983
    1. Wedgwood S, Black SM. Role of reactive oxygen species in vascular remodeling associated with pulmonary hypertension. Antioxid Redox Signal. (2003) 5:759–69. 10.1089/152308603770380061
    1. Wedgwood S, Black SM. Molecular mechanisms of nitric oxide-induced growth arrest and apoptosis in fetal pulmonary arterial smooth muscle cells. Nitric Oxide. (2003) 9:201–10. 10.1016/j.niox.2003.11.005
    1. Förstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Clin Pract Cardiovasc Med. (2008) 5:338–49. 10.1038/ncpcardio1211
    1. Kumar P, Kazzi N, Shankaran S. Plasma immunoreactive Endothelin-1 concentrations in infants with persistent pulmonary hypertension of the newborn. Am J Perinatol. (1996) 13:335–41. 10.1055/s-2007-994352
    1. Keller RL, Tacy TA, Hendricks-Munoz K, Xu J, Moon-Grady AJ, Neuhaus J, et al. . Congenital diaphragmatic Hernia: endothelin-1, pulmonary hypertension, and disease severity. Am J Respir Crit Care Med. (2010) 182:555–61. 10.1164/rccm.200907-1126OC
    1. Gien J, Tseng N, Seedorf G, Roe G, Abman SH. Endothelin-1 impairs angiogenesis in vitro through Rho-kinase activation after chronic intrauterine pulmonary hypertension in fetal sheep. Pediatr Res. (2013) 73:252–62. 10.1038/pr.2012.177
    1. Ivy DD, Parker TA, Ziegler JW, Galan HL, Kinsella JP, Tuder RM, et al. . Prolonged endothelin A receptor blockade attenuates chronic pulmonary hypertension in the ovine fetus. J Clin Invest. (1997) 99:1179–86. 10.1172/JCI119274
    1. Gien J, Tseng N, Seedorf G, Kuhn K, Abman SH. Endothelin-1–Rho kinase interactions impair lung structure and cause pulmonary hypertension after bleomycin exposure in neonatal rat pups. Am J Physiol Lung Cell Mol Physiol. (2016) 311:L1090–100. 10.1152/ajplung.00066.2016
    1. Wolf D, Tseng N, Seedorf G, Roe G, Abman SH, Gien J. Endothelin-1 decreases endothelial PPARγ signaling and impairs angiogenesis after chronic intrauterine pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. (2014) 306:361–71. 10.1152/ajplung.00277.2013
    1. More K, Athalye-Jape GK, Rao SC, Patole SK. Endothelin receptor antagonists for persistent pulmonary hypertension in term and late preterm infants. Cochrane Database Syst Rev. (2016) 8:CD010531. 10.1002/14651858.CD010531.pub2
    1. Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, et al. . Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol. (2004) 287:L656–64. 10.1152/ajplung.00090.2003
    1. Wojciak-Stothard B, Tsang LYF, Paleolog E, Hall SM, Haworth SG. Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. (2006) 290:L1173–82. 10.1152/ajplung.00309.2005
    1. Delaney C, Gien J, Grover TR, Roe G, Abman SH, Delaney C, et al. . Pulmonary vascular effects of serotonin and selective serotonin reuptake inhibitors in the late-gestation ovine fetus. Am J Physiol Lung Cell Mol Physiol. (2011) 301:L937–44. 10.1152/ajplung.00198.2011
    1. Jiang X, Wang Y-F, Zhao Q-H, Jiang R, Wu Y, Peng F-H, et al. . Acute hemodynamic response of infused fasudil in patients with pulmonary arterial hypertension: a randomized, controlled, crossover study. Int J Cardiol. (2014) 177:61–5. 10.1016/j.ijcard.2014.09.101
    1. Fukumoto Y, Yamada N, Matsubara H, Mizoguchi M, Uchino K, Yao A, et al. . Double-blind, placebo-controlled clinical trial with a rho-kinase inhibitor in pulmonary arterial hypertension. Circ J. (2013) 77:2619–5. 10.1253/circj.CJ-13-0443
    1. King WT, Day RW. Treatment of pediatric pulmonary hypertension with simvastatin: an observational study. Pediatr Pulmonol. (2011) 46:261–5. 10.1002/ppul.21361
    1. Simon DM, Tsai LW, Ingenito EP, Starcher BC, Mariani TJ. PPARγ deficiency results in reduced lung elastic recoil and abnormalities in airspace distribution. Respir Res. (2010) 11:69. 10.1186/1465-9921-11-69
    1. Hansmann G, de Jesus Perez VA, Alastalo T-P, Alvira CM, Guignabert C, Bekker JM, et al. . An antiproliferative BMP-2/PPARγ/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest. (2008) 118:1846–1857. 10.1172/JCI32503
    1. Byers HM, Dagle JM, Klein JM, Ryckman KK, McDonald EL, Murray JC, et al. . Variations in CRHR1 are associated with persistent pulmonary hypertension of the newborn. Pediatr Res. (2012) 71:162–7. 10.1038/pr.2011.24
    1. Wakino S, Hayashi K, Kanda T, Tatematsu S, Homma K, Yoshioka K, et al. . Peroxisome proliferator-activated receptor γ ligands inhibit Rho/Rho kinase pathway by inducing protein tyrosine phosphatase SHP-2. Circ Res. (2004) 95:e45–55. 10.1161/01.RES.0000142313.68389.92
    1. Sharma M, Afolayan AJ. Redox signaling persistent pulmonary hypertension of the newborn. Adv Exp Med Biol. 967:277–87. 10.1007/978-3-319-63245-2_16
    1. Brennan LA, Steinhorn RH, Wedgwood S, Mata-Greenwood E, Roark EA, Russell JA, et al. . Increased superoxide generation is associated with pulmonary hypertension in fetal lambs: a role for NADPH oxidase. Circ Res. (2003) 92:683–91. 10.1161/
    1. Belik J, Jankov RP, Pan J, Tanswell AK. Peroxynitrite inhibits relaxation and induces pulmonary artery muscle contraction in the newborn rat. Free Radic Biol Med. (2004) 37:1384–92. 10.1016/j.freeradbiomed.2004.07.029
    1. Goss KN, Kumari S, Tetri LH, Barton G, Braun RK, Hacker TA, et al. . Postnatal hyperoxia exposure durably impairs right ventricular function and mitochondrial biogenesis. Am J Respir Cell Mol Biol. (2017) 56:609–19. 10.1165/rcmb.2016-0256OC
    1. Gomez-Arroyo J, Mizuno S, Szczepanek K, Van Tassell B, Natarajan R, dos Remedios CG, et al. . Metabolic gene remodeling and mitochondrial dysfunction in failing right ventricular hypertrophy secondary to pulmonary arterial hypertension. Circ Hear Fail. (2013) 6:136–44. 10.1161/CIRCHEARTFAILURE.111.966127
    1. Sharma V, Berkelhamer S, Lakshminrusimha S. Persistent pulmonary hypertension of the newborn. Matern Heal Neonatol Perinatol. (2015) 1:14. 10.1186/s40748-015-0015-4
    1. Hanouni M, Bernal G, McBride S, Narvaez VRF, Ibe BO. Hypoxia and hyperoxia potentiate PAF receptor-mediated effects in newborn ovine pulmonary arterial smooth muscle cells: significance in oxygen therapy of PPHN. Physiol Rep. (2016) 4:e12840. 10.14814/phy2.12840
    1. Kaluarachchi DC, Smith CJ, Klein JM, Murray JC, Dagle JM, Ryckman KK. Polymorphisms in urea cycle enzyme genes are associated with persistent pulmonary hypertension of the newborn. Pediatr Res. (2018) 83:142–7. 10.1038/pr.2017.143
    1. Steurer MA, Oltman S, Baer RJ, Feuer S, Liang L, Paynter RA, et al. . Altered metabolites in newborns with persistent pulmonary hypertension. Pediatr Res. (2018) 84:272–8. 10.1038/s41390-018-0023-y
    1. Konduri GG, Bakhutashvili I, Eis A, Pritchard K. Oxidant stress from uncoupled nitric oxide synthase impairs vasodilation in fetal lambs with persistent pulmonary hypertension. Am J Physiol Hear Circ Physiol. (2007) 292:1812–20. 10.1152/ajpheart.00425.2006
    1. Teng R-J, Wu T-J. Persistent pulmonary hypertension of the newborn. J Formos Med Assoc. (2013) 112:177–84. 10.1016/j.jfma.2012.11.007
    1. Afolayan AJ, Eis A, Teng RJ, Bakhutashvili I, Kaul S, Davis JM, et al. . Decreases in manganese superoxide dismutase expression and activity contribute to oxidative stress in persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol. (2012) 303:L870–9. 10.1152/ajplung.00098.2012
    1. Farrow KN, Lakshminrusimha S, Reda WJ, Wedgwood S, Czech L, Gugino SF, et al. . Superoxide dismutase restores eNOS expression and function in resistance pulmonary arteries from neonatal lambs with persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. (2008) 295:L979–87. 10.1152/ajplung.90238.2008
    1. Schultz A, Olorundami OA, Teng RJ, Jarzembowski J, Shi ZZ, Kumar SN, et al. . Decreased OLA1 (Obg-Like ATPase-1) expression drives ubiquitin-proteasome pathways to downregulate mitochondrial SOD2 (Superoxide Dismutase) in persistent pulmonary hypertension of the newborn. Hypertension. (2019) 74:957–66. 10.1161/HYPERTENSIONAHA.119.13430
    1. Dakshinamurti S. Pathophysiologic mechanisms of persistent pulmonary hypertension of the newborn. Pediatr Pulmonol. (2005) 503:492–503. 10.1002/ppul.20201
    1. Heart J, Hopper AO, Deming DD, Peverini RL, Job L. Markers of acute lung inflammation are increased in infants with persistent pulmonary hypertension independent of inhaled nitric oxide therapy. Pediatr Res. (1999) 45:201 10.1203/00006450-199904020-01196
    1. Woldesenbet M, Perlman JM. Histologic chorioamnionitis: an occult marker of severe pulmonary hypertension in the term newborn. J Perinatol. (2005) 25:189–192. 10.1038/sj.jp.7211240
    1. Woldesenbet M, Rosenfeld CR, Ramilo O, Johnson-Welch S, Perlman JM. Severe neonatal hypoxic respiratory failure correlates with histological chorioamnionitis and raised concentrations of interleukin 6 (IL6), IL8 and C-reactive protein. Arch Dis Child Fetal Neonatal Ed. (2008) 93:413–8. 10.1136/adc.2007.124503
    1. Polglase GR, Hooper SB, Gill AW, Allison BJ, Crossley KJ, Moss TJM, et al. . Intrauterine inflammation causes pulmonary hypertension and cardiovascular sequelae in preterm lambs. J Appl Physiol. (2010) 108:1757–65. 10.1152/japplphysiol.01336.2009
    1. Baack ML, Forred BJ, Larsen TD, Jensen DN, Wachal AL, Khan MA, et al. . Consequences of a maternal high-fat diet and late gestation diabetes on the developing rat lung. PLoS ONE. (2016) 11:e0160818. 10.1371/journal.pone.0160818
    1. Mayor RS, Finch KE, Zehr J, Morselli E, Neinast MD, Frank AP, et al. . Maternal high-fat diet is associated with impaired fetal lung development. Am J Physiol Cell Mol Physiol. (2015) 309:L360–8. 10.1152/ajplung.00105.2015
    1. Chandrasekar I, Eis A, Konduri GG. Betamethasone attenuates oxidant stress in endothelial cells from fetal lambs with persistent pulmonary hypertension. Pediatr Res. (2008) 63:67–72. 10.1203/PDR.0b013e31815b43ee
    1. Perez M, Lakshminrusimha S, Wedgwood S, Czech L, Gugino SF, Russell JA, et al. . Hydrocortisone normalizes oxygenation and cGMP regulation in lambs with persistent pulmonary hypertension of the newborn. Am J Physiol Lung Cell Mol Physiol. (2012) 302:L595–603. 10.1152/ajplung.00145.2011
    1. Mokra D, Mokry J. Glucocorticoids in the treatment of neonatal meconium aspiration syndrome. Eur J Pediatr. (2011) 170:1495–505. 10.1007/s00431-011-1453-2
    1. López-Alarcón M, Bernabe-García M, del Valle O, González-Moreno G, Martínez-Basilea A, Villegas R. Oral administration of docosahexaenoic acid attenuates interleukin-1β response and clinical course of septic neonates. Nutrition. (2012) 28:384–90. 10.1016/j.nut.2011.07.016
    1. Kajarabille N, Hurtado JA, Peña-Quintana L, Peña M, Ruiz J, Diaz-Castro J, et al. . Omega-3 LCPUFA supplement: a nutritional strategy to prevent maternal and neonatal oxidative stress. Matern Child Nutr. (2017) 13:e12300. 10.1111/mcn.12300
    1. Sharma D, Nkembi A, Aubry E, Houeijeh A, Butruille L, Houfflin-Debarge V, et al. . Maternal PUFA ω-3 supplementation prevents neonatal lung injuries induced by hyperoxia in newborn rats. Int J Mol Sci. (2015) 16:22081–93. 10.3390/ijms160922081
    1. Chambers CD, Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Jones KL, et al. . Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med. (2006) 354:579–87. 10.1056/NEJMoa052744
    1. Fornaro E, Li D, Pan J, Belik J. Prenatal exposure to fluoxetine induces fetal pulmonary hypertension in the rat. Am J Respir Crit Care Med. (2007) 176:1035–40. 10.1164/rccm.200701-163OC
    1. Greene EL, Houghton O, Collinsworth G, Garnovskaya MN, Nagai T, Sajjad T, et al. . 5-HT 2A receptors stimulate mitogen-activated protein kinase via H2O2 generation in rat renal mesangial cells. Am J Physiol Ren Physiol. (2000) 278:650–8. 10.1152/ajprenal.2000.278.4.F650
    1. Hooper CW, Delaney C, Streeter T, Yarboro MT, Poole S, Brown N, et al. . Selective serotonin reuptake inhibitor exposure constricts the mouse ductus arteriosus in utero. Am J Physiol - Hear Circ Physiol. (2016) 311:H572–81. 10.1152/ajpheart.00822.2015
    1. Grover TR, Parker TA, Zenge JP, Markham NE, Kinsella JP, Abman SH. Intrauterine hypertension decreases lung VEGF expression and VEGF inhibition causes pulmonary hypertension in the ovine fetus. Am J Physiol Cell Mol Physiol. (2003) 284:L508–17. 10.1152/ajplung.00135.2002
    1. Lassus P, Turanlahti M, Heikkilä P, Andersson LC, Nupponen I, Sarnesto A AS. Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med. (2001) 164:1981–7. 10.1164/ajrccm.164.10.2012036
    1. Grover TR, Zenge JP, Parker TA, Abman SH. Vascular endothelial growth factor causes pulmonary vasodilation through activation of the phosphatidylinositol-3-kinase-nitric oxide pathway in the late-gestation ovine fetus. Pediatr Res. (2002) 52:907–12. 10.1203/00006450-200212000-00016
    1. Teng R-J, Rana U, Afolayan AJ, Zhao B, Miao QR, Konduri GG. Nogo-B receptor modulates angiogenesis response of pulmonary artery endothelial cells through eNOS coupling. Am J Respir Cell Mol Biol. (2014) 51:169–77. 10.1165/rcmb.2013-0298OC
    1. Tadokoro KS, Rana U, Jing X, Konduri GG, Miao QR, Teng R-J. Nogo-B receptor modulates pulmonary artery smooth muscle cell function in developing lungs. Am J Respir Cell Mol Biol. (2016) 54:892–900. 10.1165/rcmb.2015-0068OC
    1. Yang Q, Sun M, Ramchandran R, Raj JU. IGF-1 signaling in neonatal hypoxia-induced pulmonary hypertension: role of epigenetic regulation. Vascul Pharmacol. (2015) 73:20–31. 10.1016/j.vph.2015.04.005
    1. Madonna R, de Caterina R, Geng Y-J. Epigenetic regulation of insulin-like growth factor signaling: a novel insight into the pathophysiology of neonatal pulmonary hypertension. Vascul Pharmacol. (2015) 73:4–7. 10.1016/j.vph.2015.08.002
    1. Sun M, Ramchandran R, Chen J, Yang Q, Raj JU. Smooth muscle insulin-like growth Factor-1 mediates hypoxia-induced pulmonary hypertension in neonatal mice. Am J Respir Cell Mol Biol. (2016) 55:779–91. 10.1165/rcmb.2015-0388OC

Source: PubMed

3
구독하다