Liraglutide Activates Type 2 Deiodinase and Enhances β3-Adrenergic-Induced Thermogenesis in Mouse Adipose Tissue

Fernanda C B Oliveira, Eduarda J Bauer, Carolina M Ribeiro, Sidney A Pereira, Bruna T S Beserra, Simone M Wajner, Ana L Maia, Francisco A R Neves, Michella S Coelho, Angelica A Amato, Fernanda C B Oliveira, Eduarda J Bauer, Carolina M Ribeiro, Sidney A Pereira, Bruna T S Beserra, Simone M Wajner, Ana L Maia, Francisco A R Neves, Michella S Coelho, Angelica A Amato

Abstract

Aims: Liraglutide is a long-acting glucagon-like peptide 1 (GLP-1) receptor agonist used as an anti-hyperglycemic agent in type 2 diabetes treatment and recently approved for obesity management. Weight loss is attributed to appetite suppression, but therapy may also increase energy expenditure. To further investigate the effect of GLP-1 signaling in thermogenic fat, we assessed adipose tissue oxygen consumption and type 2 deiodinase (D2) activity in mice treated with liraglutide, both basally and after β3-adrenergic treatment.

Methods: Male C57BL/6J mice were randomly assigned to receive liraglutide (400 μg/kg, n=12) or vehicle (n=12). After 16 days, mice in each group were co-treated with the selective β3-adrenergic agonist CL316,243 (1 mg/kg, n=6) or vehicle (n=6) for 5 days. Adipose tissue depots were assessed for gene and protein expression, oxygen consumption, and D2 activity.

Results: Liraglutide increased interscapular brown adipose tissue (iBAT) oxygen consumption and enhanced β3-adrenergic-induced oxygen consumption in iBAT and inguinal white adipose tissue (ingWAT). These effects were accompanied by upregulation of UCP-1 protein levels in iBAT and ingWAT. Notably, liraglutide increased D2 activity without significantly upregulating its mRNA levels in iBAT and exhibited additive effects to β3-adrenergic stimulation in inducing D2 activity in ingWAT.

Conclusions: Liraglutide exhibits additive effects to those of β3-adrenergic stimulation in thermogenic fat and increases D2 activity in BAT, implying that it may activate this adipose tissue depot by increasing intracellular thyroid activation, adding to the currently known mechanisms of GLP-1A-induced weight loss.

Keywords: GLP-1 receptor agonist; adipose tissue; liraglutide; type 2 deiodinase; β3-adrenergic stimulation.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Oliveira, Bauer, Ribeiro, Pereira, Beserra, Wajner, Maia, Neves, Coelho and Amato.

Figures

Figure 1
Figure 1
Effect of liraglutide and β3-AR stimulation on fasting blood glucose, body weight, fat mass, and food intake. (A) Study design: male C57BL/6J received liraglutide (400 μg/kg/d) or control for 21 days, ± the β3-adrenergic agonist CL 316,243 (CL) during the last 5 days of treatment. (B) Fasting blood glucose levels after liraglutide and CL treatment, (C) body weight before and during liraglutide and CL treatment, (D) body weight change after liraglutide and CL treatment, (E) energy intake before and during liraglutide and CL treatment, (F) mean daily energy intake during liraglutide and CL treatment, (G) caloric efficiency, and (H) iBAT, (I) ingWAT, and (J) epiWAT mass. #p < 0.05 liraglutide-treated mice (Lira and Lira + CL) vs vehicle by Two-way ANOVA followed by Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs control or indicated group, by One-way ANOVA followed by Tukey’s multiple comparison test. Data presented as mean ± SEM, n=5-6 for each experimental group. CL, CL316,243; epiWAT, epidydimal white adipose tissue; iBAT, interscapular brown adipose tissue; ingWAT, inguinal white adipose tissue; Lira, liraglutide.
Figure 2
Figure 2
Additive effects of liraglutide and β3-AR stimulation in activating iBAT. (A) iBAT immunostaining for UCP-1 (magnification: X10; scale bar: 100 μm), (B) iBAT UCP-1 mRNA levels, (C) iBAT oxygen consumption. *p < 0.05, ***p < 0.001, ****p < 0.0001 vs control or indicated group, by One-way ANOVA followed by Tukey’s multiple comparison test. Data presented as mean ± SEM, n=5-6 for each experimental group. CL, CL316,243; iBAT, interscapular brown adipose tissue; Lira, liraglutide.
Figure 3
Figure 3
Additive effects of liraglutide and β3-AR stimulation in inducing browning of ingWAT. (A) ingWAT immunostaining for UCP-1 (magnification: X10; scale bar: 200 μm), (B) adipocyte diameter, (C) ingWAT UCP-1 mRNA levels, (D) ingWAT oxygen consumption. *p < 0.05, **p < 0.001, ***p < 0.001, vs control or indicated group, by One-way ANOVA followed by Tukey’s multiple comparison test. Data presented as mean ± SEM, n=5-6 for each experimental group. CL, CL316,243; ingWAT, inguinal white adipose tissue; Lira, liraglutide.
Figure 4
Figure 4
Effect of liraglutide treatment on D2 activity in adipose tissue. (A) D2 activity in iBAT, (B) mRNA levels of D2, thyroid hormone transporters and thyroid hormone receptors in iBAT, (C) D2 activity in ingWAT, (D) mRNA levels of D2, thyroid hormone transporters and thyroid hormone receptors in ingWAT. *p < 0.05, **p < 0.01 vs control by One-way ANOVA followed by Tukey’s multiple comparison test. Data presented as mean ± SEM, n=5-6 for each experimental group. CL, CL316,243; iBAT, interscapular brown adipose tissue; ingWAT, inguinal white adipose tissue; Lira, liraglutide.

References

    1. Andersen A, Lund A, Knop FK, Vilsbøll T. Glucagon-Like Peptide 1 in Health and Disease. Nat Rev Endocrinol (2018) 14(7):390–403. doi: 10.1038/s41574-018-0016-2
    1. Knudsen LB, Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front Endocrinol (Lausanne) (2019) 10:155. doi: 10.3389/fendo.2019.00155
    1. FDA . Saxenda (Liraglutide 3.0 Mg) Prescribing Information. Springer Field, Maryland: Food and Drug Administration; (2014).
    1. Vendrell J, El Bekay R, Peral B, García-Fuentes E, Megia A, Macias-Gonzalez M, et al. . Study of the Potential Association of Adipose Tissue GLP-1 Receptor With Obesity and Insulin Resistance. Endocrinology (2011) 152(11):4072–9. doi: 10.1210/en.2011-1070
    1. Challa TD, Beaton N, Arnold M, Rudofsky G, Langhans W, Wolfrum C. Regulation of Adipocyte Formation by GLP-1/GLP-1R Signaling. J Biol Chem (2012) 287(9):6421–30. doi: 10.1074/jbc.M111.310342
    1. Ejarque M, Guerrero-Pérez F, de la Morena N, Casajoana A, Virgili N, López-Urdiales R, et al. . Role of Adipose Tissue GLP-1R Expression in Metabolic Improvement After Bariatric Surgery in Patients With Type 2 Diabetes. Sci Rep (2019) 9(1):6274. doi: 10.1038/s41598-019-42770-1
    1. Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. . GLP-1 Agonism Stimulates Brown Adipose Tissue Thermogenesis and Browning Through Hypothalamic AMPK. Diabetes (2014) 63(10):3346–58. doi: 10.2337/db14-0302
    1. Xu F, Lin B, Zheng X, Chen Z, Cao H, Xu H, et al. . GLP-1 Receptor Agonist Promotes Brown Remodelling in Mouse White Adipose Tissue Through SIRT1. Diabetologia (2016) 59(5):1059–69. doi: 10.1007/s00125-016-3896-5
    1. Lynch L, Hogan AE, Duquette D, Lester C, Banks A, LeClair K, et al. . iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy. Cell Metab (2016) 24(3):510–9. doi: 10.1016/j.cmet.2016.08.003
    1. Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC, et al. . Thyroid Hormone–Sympathetic Interaction and Adaptive Thermogenesis are Thyroid Hormone Receptor Isoform–Specific. J Clin Invest (2001) 108(1):97–105. doi: 10.1172/jci12584
    1. Kooijman S, van den Heuvel JK, Rensen PCN. Neuronal Control of Brown Fat Activity. Trends Endocrinol Metab (2015) 26(11):657–68. doi: 10.1016/j.tem.2015.09.008
    1. Silva JE, Larsen PR. Adrenergic Activation of Triiodothyronine Production in Brown Adipose Tissue. Nature (1983) 305(5936):712–3. doi: 10.1038/305712a0
    1. Pelletier P, Gauthier K, Sideleva O, Samarut J, Silva JE. Mice Lacking the Thyroid Hormone Receptor-Alpha Gene Spend More Energy in Thermogenesis, Burn More Fat, and are Less Sensitive to High-Fat Diet-Induced Obesity. Endocrinology (2008) 149(12):6471–86. doi: 10.1210/en.2008-0718
    1. Hu Y, Yu J, Cui X, Zhang Z, Li Q, Guo W, et al. . Combination Usage of AdipoCount and Image-Pro Plus/ImageJ Software for Quantification of Adipocyte Sizes. Front Endocrinol (Lausanne) (2021) 12:642000. doi: 10.3389/fendo.2021.642000
    1. Schmittgen TD, Livak KJ. Analyzing Real-Time PCR Data by the Comparative C(T) Method. Nat Protoc (2008) 3(6):1101–8. doi: 10.1038/nprot.2008.73
    1. Luongo C, Dentice M, Salvatore D. Deiodinases and Their Intricate Role in Thyroid Hormone Homeostasis. Nat Rev Endocrinol (2019) 15(8):479–88. doi: 10.1038/s41574-019-0218-2
    1. Percie du Sert N, Ahluwalia A, Alam S, Avey MT, Baker M, Browne WJ, et al. . Reporting Animal Research: Explanation and Elaboration for the ARRIVE Guidelines 2.0. PloS Biol (2020) 18(7):e3000411. doi: 10.1371/journal.pbio.3000411
    1. Ikeda K, Maretich P, Kajimura S. The Common and Distinct Features of Brown and Beige Adipocytes. Trends Endocrinol Metab (2018) 29(3):191–200. doi: 10.1016/j.tem.2018.01.001
    1. de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim S-W, Harney JW, et al. . The Type 2 Iodothyronine Deiodinase is Essential for Adaptive Thermogenesis in Brown Adipose Tissue. J Clin Invest (2001) 108(9):1379–85. doi: 10.1172/JCI13803
    1. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, et al. . A Randomized, Controlled Trial of 3.0 Mg of Liraglutide in Weight Management. N Engl J Med (2015) 373(1):11–22. doi: 10.1056/NEJMoa1411892
    1. Raun K, von Voss P, Gotfredsen CF, Golozoubova V, Rolin B, Knudsen LB. Liraglutide, a Long-Acting Glucagon-Like Peptide-1 Analog, Reduces Body Weight and Food Intake in Obese Candy-Fed Rats, Whereas a Dipeptidyl Peptidase-IV Inhibitor, Vildagliptin, Does Not. Diabetes (2007) 56(1):8–15. doi: 10.2337/db06-0565
    1. Halim MA, Degerblad M, Sundbom M, Karlbom U, Holst JJ, Webb DL, et al. . Glucagon-Like Peptide-1 Inhibits Prandial Gastrointestinal Motility Through Myenteric Neuronal Mechanisms in Humans. J Clin Endocrinol Metab (2018) 103(2):575–85. doi: 10.1210/jc.2017-02006
    1. Nakatani Y, Maeda M, Matsumura M, Shimizu R, Banba N, Aso Y, et al. . Effect of GLP-1 Receptor Agonist on Gastrointestinal Tract Motility and Residue Rates as Evaluated by Capsule Endoscopy. Diabetes Metab (2017) 43(5):430–7. doi: 10.1016/j.diabet.2017.05.009
    1. Koehler JA, Baggio LL, Yusta B, Longuet C, Rowland KJ, Cao X, et al. . GLP-1R Agonists Promote Normal and Neoplastic Intestinal Growth Through Mechanisms Requiring Fgf7. Cell Metab (2015) 21(3):379–91. doi: 10.1016/j.cmet.2015.02.005
    1. Madsen MSA, Holm JB, Pallejà A, Wismann P, Fabricius K, Rigbolt K, et al. . Metabolic and Gut Microbiome Changes Following GLP-1 or Dual GLP-1/GLP-2 Receptor Agonist Treatment in Diet-Induced Obese Mice. Sci Rep (2019) 9(1):15582. doi: 10.1038/s41598-019-52103-x
    1. Janssen LGM, Nahon KJ, Bracké KFM, van den Broek D, Smit R, Sardjoe Mishre ASD, et al. . Twelve Weeks of Exenatide Treatment Increases [(18)F]fluorodeoxyglucose Uptake by Brown Adipose Tissue Without Affecting Oxidative Resting Energy Expenditure in Nondiabetic Males. Metabolism (2020) 106:154167. doi: 10.1016/j.metabol.2020.154167
    1. Nilaweera KN, Speakman JR. Regulation of Intestinal Growth in Response to Variations in Energy Supply and Demand. Obes Rev (2018) 19 Suppl;1:61–72. doi: 10.1111/obr.12780
    1. Redman LM, Smith SR, Burton JH, Martin CK, Il’yasova D, Ravussin E. Metabolic Slowing and Reduced Oxidative Damage With Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab (2018) 27(4):805–15.e804. doi: 10.1016/j.cmet.2018.02.019
    1. Leibel RL, Hirsch J. Diminished Energy Requirements in Reduced-Obese Patients. Metabolism (1984) 33(2):164–70. doi: 10.1016/0026-0495(84)90130-6
    1. Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, et al. . Effects of Dietary Composition on Energy Expenditure During Weight-Loss Maintenance. Jama (2012) 307(24):2627–34. doi: 10.1001/jama.2012.6607
    1. Jacobsson A, Mühleisen M, Cannon B, Nedergaard J. The Uncoupling Protein Thermogenin During Acclimation: Indications for Pretranslational Control. Am J Physiol (1994) 267(4 Pt 2):R999–1007. doi: 10.1152/ajpregu.1994.267.4.R999
    1. Nedergaard J, Cannon B. UCP1 mRNA Does Not Produce Heat. Biochim Biophys Acta (2013) 1831(5):943–9. doi: 10.1016/j.bbalip.2013.01.009
    1. Xiao C, Goldgof M, Gavrilova O, Reitman ML. Anti-Obesity and Metabolic Efficacy of the Beta3-Adrenergic Agonist, CL316243, in Mice at Thermoneutrality Compared to 22 Degrees C. Obes (Silver Spring) (2015) 23(7):1450–9. doi: 10.1002/oby.21124
    1. Villanueva-Penacarrillo ML, Marquez L, Gonzalez N, Diaz-Miguel M, Valverde I. Effect of GLP-1 on Lipid Metabolism in Human Adipocytes. Horm Metab Res (2001) 33(2):73–7. doi: 10.1055/s-2001-12428
    1. El Bekay R, Coin-Araguez L, Fernandez-Garcia D, Oliva-Olivera W, Bernal-Lopez R, Clemente-Postigo M, et al. . Effects of Glucagon-Like Peptide-1 on the Differentiation and Metabolism of Human Adipocytes. Br J Pharmacol (2016) 173(11):1820–34. doi: 10.1111/bph.13481
    1. Zhu E, Yang Y, Zhang J, Li Y, Li C, Chen L, et al. . Liraglutide Suppresses Obesity and Induces Brown Fat-Like Phenotype via Soluble Guanylyl Cyclase Mediated Pathway In Vivo and In Vitro . Oncotarget (2016) 7(49):81077–89. doi: 10.18632/oncotarget.13189
    1. Kooijman S, Wang Y, Parlevliet ET, Boon MR, Edelschaap D, Snaterse G, et al. . Central GLP-1 Receptor Signalling Accelerates Plasma Clearance of Triacylglycerol and Glucose by Activating Brown Adipose Tissue in Mice. Diabetologia (2015) 58(11):2637–46. doi: 10.1007/s00125-015-3727-0
    1. Pyke C, Knudsen LB. The Glucagon-Like Peptide-1 Receptor–or Not? Endocrinology (2013) 154(1):4–8. doi: 10.1210/en.2012-2124
    1. Aroor A, Nistala R. Tissue-Specific Expression of GLP1R in Mice: Is the Problem of Antibody Nonspecificity Solved? Diabetes (2014) 63(4):1182–4. doi: 10.2337/db13-1937
    1. Ast J, Arvaniti A, Fine NHF, Nasteska D, Ashford FB, Stamataki Z, et al. . Super-Resolution Microscopy Compatible Fluorescent Probes Reveal Endogenous Glucagon-Like Peptide-1 Receptor Distribution and Dynamics. Nat Commun (2020) 11(1):467. doi: 10.1038/s41467-020-14309-w
    1. Cantini G, Di Franco A, Samavat J, Forti G, Mannucci E, Luconi M. Effect of Liraglutide on Proliferation and Differentiation of Human Adipose Stem Cells. Mol Cell Endocrinol (2015) 402:43–50. doi: 10.1016/j.mce.2014.12.021
    1. Kim Chung le T, Hosaka T, Yoshida M, Harada N, Sakaue H, Sakai T, et al. . Exendin-4, a GLP-1 Receptor Agonist, Directly Induces Adiponectin Expression Through Protein Kinase A Pathway and Prevents Inflammatory Adipokine Expression. Biochem Biophys Res Commun (2009) 390(3):613–8. doi: 10.1016/j.bbrc.2009.10.015
    1. Gnad T, Scheibler S, von Kügelgen I, Scheele C, Kilić A, Glöde A, et al. . Adenosine Activates Brown Adipose Tissue and Recruits Beige Adipocytes via A2A Receptors. Nature (2014) 516(7531):395–9. doi: 10.1038/nature13816
    1. Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, et al. . A Secreted Slit2 Fragment Regulates Adipose Tissue Thermogenesis and Metabolic Function. Cell Metab (2016) 23(3):454–66. doi: 10.1016/j.cmet.2016.01.008
    1. Jiang C, Zhai M, Yan D, Li D, Li C, Zhang Y, et al. . Dietary Menthol-Induced TRPM8 Activation Enhances WAT “Browning” and Ameliorates Diet-Induced Obesity. Oncotarget (2017) 8(43):75114–26. doi: 10.18632/oncotarget.20540
    1. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. . Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation. Nature (2006) 439(7075):484–9. doi: 10.1038/nature04330
    1. Calvo RM, Obregon MJ. Presence and Regulation of D1 and D2 Deiodinases in Rat White Adipose Tissue. Metabolism (2011) 60(9):1207–10. doi: 10.1016/j.metabol.2011.01.014
    1. Mullur R, Liu YY, Brent GA. Thyroid Hormone Regulation of Metabolism. Physiol Rev (2014) 94(2):355–82. doi: 10.1152/physrev.00030.2013
    1. Bernal J, Guadaño-Ferraz A, Morte B. Thyroid Hormone Transporters–Functions and Clinical Implications. Nat Rev Endocrinol (2015) 11(7):406–17. doi: 10.1038/nrendo.2015.66

Source: PubMed

3
구독하다