Genome Wide Association Study Identifies the HMGCS2 Locus to be Associated With Chlorthalidone Induced Glucose Increase in Hypertensive Patients

Sonal Singh, Caitrin W McDonough, Yan Gong, Wael A Alghamdi, Meghan J Arwood, Salma A Bargal, Leanne Dumeny, Wen-Yi Li, Mai Mehanna, Bradley Stockard, Guang Yang, Felipe A de Oliveira, Natalie C Fredette, Mohamed H Shahin, Kent R Bailey, Amber L Beitelshees, Eric Boerwinkle, Arlene B Chapman, John G Gums, Stephen T Turner, Rhonda M Cooper-DeHoff, Julie A Johnson, Sonal Singh, Caitrin W McDonough, Yan Gong, Wael A Alghamdi, Meghan J Arwood, Salma A Bargal, Leanne Dumeny, Wen-Yi Li, Mai Mehanna, Bradley Stockard, Guang Yang, Felipe A de Oliveira, Natalie C Fredette, Mohamed H Shahin, Kent R Bailey, Amber L Beitelshees, Eric Boerwinkle, Arlene B Chapman, John G Gums, Stephen T Turner, Rhonda M Cooper-DeHoff, Julie A Johnson

Abstract

Background: Thiazide and thiazide-like diuretics are first-line medications for treating uncomplicated hypertension. However, their use has been associated with adverse metabolic events, including hyperglycemia and incident diabetes mellitus, with incompletely understood mechanisms. Our goal was to identify genomic variants associated with thiazide-like diuretic/chlorthalidone-induced glucose change.

Methods and results: Genome-wide analysis of glucose change after treatment with chlorthalidone was performed by race among the white (n=175) and black (n=135) participants from the PEAR-2 (Pharmacogenomic Evaluation of Antihypertensive Responses-2). Single-nucleotide polymorphisms with P<5×10-8 were further prioritized using in silico analysis based on their expression quantitative trait loci function. Among blacks, an intronic single-nucleotide polymorphism (rs9943291) in the HMGCS2 was associated with increase in glucose levels following chlorthalidone treatment (ß=12.5; P=4.17×10-8). G-allele carriers of HMGCS2 had higher glucose levels (glucose change=+16.29 mg/dL) post chlorthalidone treatment compared with noncarriers of G allele (glucose change=+2.80 mg/dL). This association was successfully replicated in an independent replication cohort of hydrochlorothiazide-treated participants from the PEAR study (ß=5.54; P=0.023). A meta-analysis of the 2 studies was performed by race in Meta-Analysis Helper, where this single-nucleotide polymorphism, rs9943291, was genome-wide significant with a meta-analysis P value of 3.71×10-8. HMGCS2, a part of the HMG-CoA synthase family, is important for ketogenesis and cholesterol synthesis pathways that are essential in glucose homeostasis.

Conclusions: These results suggest that HMGCS2 is a promising candidate gene involved in chlorthalidone and Hydrochlorothiazide (HCTZ)-induced glucose change. This may provide insights into the mechanisms involved in thiazide-induced hyperglycemia that may ultimately facilitate personalized approaches to antihypertensive selection for hypertension treatment.

Clinical trial registration: URL: http://www.clinicaltrials.gov. Unique identifiers: NCT00246519 and NCT01203852.

Keywords: chlorthalidone; diabetes mellitus; genome‐wide association study; glucose; hydrochlorothiazide; hyperglycemia; pharmacogenomics.

© 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

Figures

Figure 1
Figure 1
Distribution of glucose change post‐treatment showing the interindividual variability of the response among PEAR‐2 and PEAR participants. PEAR indicates Pharmacogenomic Evaluation of Antihypertensive Response.
Figure 2
Figure 2
Manhattan plots of glucose change post chlorthalidone treatment among PEAR‐2 black participants. Genome‐wide significance threshold (red line): P<5×10−8. PEAR‐2 indicates Pharmacogenomic Evaluation of Antihypertensive Response‐2.
Figure 3
Figure 3
Glucose change post chlorthalidone treatment among PEAR‐2 blacks (N=135) and PEAR blacks (N=140) post hydrochlorothiazide by HMGCS2 rs9943291 genotype. Glucose change for both studies is adjusted for pretreatment glucose levels, age, sex, and principal components 1 and 2. P values are for contrast of least square adjusted means between genotype groups. PEAR indicates Pharmacogenomic Evaluation of Antihypertensive Response.

References

    1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB; American Heart Association Statistics Committee and Stroke Statistics Subcommittee . Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–e322.
    1. NCD Risk Factor Collaboration (NCD‐RisC) . Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population‐based measurement studies with 19.1 million participants. Lancet. 2016;389:37–55.
    1. James PA, Oparil S, Carter BL, Cushman WC, Dennison‐Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Ogedegbe O, Smith SC, Svetkey LP, Taler SJ, Townsend RR, Wright JT, Narva AS, Ortiz E. 2014 evidence‐based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–520.
    1. Karnes JH, McDonough CW, Gong Y, Vo TT, Langaee TY, Chapman AB, Gums JG, Beitelshees AL, Bailey KR, Del‐Aguila JL, Boerwinkle EA, Pepine CJ, Turner ST, Johnson JA, Cooper‐DeHoff RM. Association of KCNJ1 variation with change in fasting glucose and new onset diabetes during HCTZ treatment. Pharmacogenomics J. 2013;13:430–436.
    1. Karnes JH, Gong Y, Pacanowski MA, McDonough CW, Arwood MJ, Langaee TY, Pepine CJ, Johnson JA, Cooper‐Dehoff RM. Impact of TCF7L2 single nucleotide polymorphisms on hydrochlorothiazide‐induced diabetes. Pharmacogenet Genomics. 2013;23:697–705.
    1. Gong Y, McDonough CW, Beitelshees AL, Karnes JH, O'Connell JR, Turner ST, Chapman AB, Gums JG, Bailey KR, Boerwinkle E, Johnson JA, Cooper‐DeHoff RM. PROX1 gene variant is associated with fasting glucose change after antihypertensive treatment. Pharmacotherapy. 2014;34:123–130.
    1. Karnes JH, Gong Y, Arwood MJ, Gums JG, Hall KL, Limacher MC, Johnson JA, Cooper‐DeHoff RM. Alteration in fasting glucose after prolonged treatment with a thiazide diuretic. Diabetes Res Clin Pract. 2014;104:363–369.
    1. Cooper‐DeHoff RM. Thiazide‐induced dysglycemia: it's time to take notice. Expert Rev Cardiovasc Ther. 2008;6:1291–1294.
    1. Carter BL, Einhorn PT, Brands M, He J, Cutler JA, Whelton PK, Bakris GL, Brancati FL, Cushman WC, Oparil S, Wright JT; Working Group from the National Heart, Lung, and Blood Institute . Thiazide‐induced dysglycemia: call for research from a working group from the National Heart, Lung, and Blood Institute. Hypertension. 2008;52:30–36.
    1. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid‐Lowering Treatment to Prevent Heart Attack Trial . Major outcomes in high‐risk hypertensive patients randomized to angiotensin‐converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid‐Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–2997.
    1. Verdecchia P, Reboldi G, Angeli F, Borgioni C, Gattobigio R, Filippucci L, Norgiolini S, Bracco C, Porcellati C. Adverse prognostic significance of new diabetes in treated hypertensive subjects. Hypertension. 2004;43:963–969.
    1. Pepine CJ, Handberg EM, Cooper‐DeHoff RM, Marks RG, Kowey P, Messerli FH, Mancia G, Cangiano JL, Garcia‐Barreto D, Keltai M, Erdine S, Bristol HA, Kolb HR, Bakris GL, Cohen JD, Parmley WW; INVEST Investigators . A calcium antagonist vs a non‐calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil‐Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290:2805–2816.
    1. Gorden P. Glucose intolerance with hypokalemia. Failure of short‐term potassium depletion in normal subjects to reproduce the glucose and insulin abnormalities of clinical hypokalemia. Diabetes. 1973;22:544–551.
    1. Rowe JW, Tobin JD, Rosa RM, Andres R. Effect of experimental potassium deficiency on glucose and insulin metabolism. Metabolism. 1980;29:498–502.
    1. Sica DA. Diuretic‐related side effects: development and treatment. J Clin Hypertens (Greenwich). 2004;6:532–540.
    1. Zillich AJ, Garg J, Basu S, Bakris GL, Carter BL. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension. 2006;48:219–224.
    1. Eriksson JW, Jansson PA, Carlberg B, Hägg A, Kurland L, Svensson MK, Ahlström H, Ström C, Lönn L, Ojbrandt K, Johansson L, Lind L. Hydrochlorothiazide, but not Candesartan, aggravates insulin resistance and causes visceral and hepatic fat accumulation: the mechanisms for the diabetes preventing effect of Candesartan (MEDICA) Study. Hypertension. 2008;52:1030–1037.
    1. Perez‐Stable E, Caralis PV. Thiazide‐induced disturbances in carbohydrate, lipid, and potassium metabolism. Am Heart J. 1983;106(1 Pt 2):245–251.
    1. Rosendorff C. Why are we still using hydrochlorothiazide? J Clin Hypertens (Greenwich). 2011;13:867–869.
    1. Johnson JA. Pharmacogenomic evaluation of antihypertensive responses (PEAR). NCBI's Database of Genotypes and Phenotypes: dbGaP. 2016. Accession .
    1. Hamadeh IS, Langaee TY, Dwivedi R, Garcia S, Burkley BM, Skaar TC, Chapman AB, Gums JG, Turner ST, Gong Y, Cooper‐DeHoff RM, Johnson JA. Impact of CYP2D6 polymorphisms on clinical efficacy and tolerability of metoprolol tartrate. Clin Pharmacol Ther. 2014;96:175–181.
    1. Johnson JA, Boerwinkle E, Zineh I, Chapman AB, Bailey K, Cooper‐DeHoff RM, Gums J, Curry RW, Gong Y, Beitelshees AL, Schwartz G, Turner ST. Pharmacogenomics of antihypertensive drugs: rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J. 2009;157:442–449.
    1. Gong Y, Wang Z, Beitelshees AL, McDonough CW, Langaee TY, Hall K, Schmidt SO, Curry RW, Gums JG, Bailey KR, Boerwinkle E, Chapman AB, Turner ST, Cooper‐DeHoff RM, Johnson JA. Pharmacogenomic genome‐wide meta‐analysis of blood pressure response to β‐blockers in hypertensive African Americans. Hypertension. 2016;67:556–563.
    1. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome‐wide association studies. Nat Genet. 2006;38:904–909.
    1. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol. 2010;34:816–834.
    1. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome‐wide association studies through pre‐phasing. Nat Genet. 2012;44:955–959.
    1. Aulchenko YS, Struchalin MV, van Duijn CM. ProbABEL package for genome‐wide association analysis of imputed data. BMC Bioinformatics. 2010;11:134.
    1. Moore MJ, Gong Y, Hou W, Hall K, Schmidt SO, Curry RW, Beitelshees AL, Chapman A, Turner ST, Schwartz GL, Bailey K, Boerwinkle E, Gums JG, Cooper‐DeHoff RM, Johnson JA. Predictors for glucose change in hypertensive participants following short‐term treatment with atenolol or hydrochlorothiazide. Pharmacotherapy. 2014;34:1132–1140.
    1. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait‐associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888.
    1. Edwards SL, Beesley J, French JD, Dunning AM. Beyond GWASs: illuminating the dark road from association to function. Am J Hum Genet. 2013;93:779–797.
    1. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40(Database issue):D930–D934.
    1. Machiela MJ, Chanock SJ. LDlink: a web‐based application for exploring population‐specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–3557.
    1. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta‐analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191.
    1. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ. LocusZoom: regional visualization of genome‐wide association scan results. Bioinformatics. 2010;26:2336–2337.
    1. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, Christiansen MW, Fairfax BP, Schramm K, Powell JE, Zhernakova A, Zhernakova DV, Veldink JH, Van den Berg LH, Karjalainen J, Withoff S, Uitterlinden AG, Hofman A, Rivadeneira F, Hoen PA, Reinmaa E, Fischer K, Nelis M, Milani L, Melzer D, Ferrucci L, Singleton AB, Hernandez DG, Nalls MA, Homuth G, Nauck M, Radke D, Völker U, Perola M, Salomaa V, Brody J, Suchy‐Dicey A, Gharib SA, Enquobahrie DA, Lumley T, Montgomery GW, Makino S, Prokisch H, Herder C, Roden M, Grallert H, Meitinger T, Strauch K, Li Y, Jansen RC, Visscher PM, Knight JC, Psaty BM, Ripatti S, Teumer A, Frayling TM, Metspalu A, van Meurs JB, Franke L. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45:1238–1243.
    1. Cooper‐DeHoff RM, Wen S, Beitelshees AL, Zineh I, Gums JG, Turner ST, Gong Y, Hall K, Parekh V, Chapman AB, Boerwinkle E, Johnson JA. Impact of abdominal obesity on incidence of adverse metabolic effects associated with antihypertensive medications. Hypertension. 2010;55:61–68.
    1. Sales V, Patti ME. The ups and downs of insulin resistance and type 2 diabetes: lessons from genomic analyses in humans. Curr Cardiovasc Risk Rep. 2013;7:46–59.
    1. Younossi ZM, Baranova A, Ziegler K, Del Giacco L, Schlauch K, Born TL, Elariny H, Gorreta F, VanMeter A, Younoszai A, Ong JP, Goodman Z, Chandhoke V. A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease. Hepatology. 2005;42:665–674.
    1. Younossi ZM, Gorreta F, Ong JP, Schlauch K, Del Giacco L, Elariny H, Van Meter A, Younoszai A, Goodman Z, Baranova A, Christensen A, Grant G, Chandhoke V. Hepatic gene expression in patients with obesity‐related non‐alcoholic steatohepatitis. Liver Int. 2005;25:760–771.
    1. Arias G, Asins G, Hegardt FG, Serra D. The effect of fasting/refeeding and insulin treatment on the expression of the regulatory genes of ketogenesis in intestine and liver of suckling rats. Arch Biochem Biophys. 1997;340:287–298.
    1. Arias G, Matas R, Asins G, Hegardt FG, Serra D. The effect of fasting and insulin treatment on carnitine palmitoyl transferase I and mitochondrial 3‐hydroxy‐3‐methylglutaryl coenzyme A synthase mRNA levels in liver from suckling rats. Biochem Soc Trans. 1995;23:493S.
    1. Quant PA, Tubbs PK, Brand MD. Glucagon activates mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase in vivo by decreasing the extent of succinylation of the enzyme. Eur J Biochem. 1990;187:169–174.
    1. Thumelin S, Forestier M, Girard J, Pegorier JP. Developmental changes in mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase gene expression in rat liver, intestine and kidney. Biochem J. 1993;292:493–496.
    1. Rodríguez JC, Gil‐Gómez G, Hegardt FG, Haro D. Peroxisome proliferator‐activated receptor mediates induction of the mitochondrial 3‐hydroxy‐3‐methylglutaryl‐CoA synthase gene by fatty acids. J Biol Chem. 1994;269:18767–18772.
    1. Koh EH, Kim MS, Park JY, Kim HS, Youn JY, Park HS, Youn JH, Lee KU. Peroxisome proliferator‐activated receptor (PPAR)‐alpha activation prevents diabetes in OLETF rats: comparison with PPAR‐gamma activation. Diabetes. 2003;52:2331–2337.
    1. Cotter DG, Ercal B, Huang X, Leid JM, d'Avignon DA, Graham MJ, Dietzen DJ, Brunt EM, Patti GJ, Crawford PA. Ketogenesis prevents diet‐induced fatty liver injury and hyperglycemia. J Clin Invest. 2014;124:5175–5190.
    1. Thompson JR, Bell JK, Bratt J, Grant GA, Banaszak LJ. Vmax regulation through domain and subunit changes. The active form of phosphoglycerate dehydrogenase. Biochemistry. 2005;44:5763–5773.
    1. Ginger RS, Askew SE, Ogborne RM, Wilson S, Ferdinando D, Dadd T, Smith AM, Kazi S, Szerencsei RT, Winkfein RJ, Schnetkamp PP, Green MR. SLC24A5 encodes a trans‐Golgi network protein with potassium‐dependent sodium‐calcium exchange activity that regulates human epidermal melanogenesis. J Biol Chem. 2008;283:5486–5495.
    1. Sharon D, Yamamoto H, McGee TL, Rabe V, Szerencsei RT, Winkfein RJ, Prinsen CF, Barnes CS, Andreasson S, Fishman GA, Schnetkamp PP, Berson EL, Dryja TP. Mutated alleles of the rod and cone Na‐Ca+K‐exchanger genes in patients with retinal diseases. Invest Ophthalmol Vis Sci. 2002;43:1971–1979.
    1. Hughes AD. How do thiazide and thiazide‐like diuretics lower blood pressure? J Renin Angiotensin Aldosterone Syst. 2004;5:155–160.
    1. Maranville JC, Cox NJ. Pharmacogenomic variants have larger effect sizes than genetic variants associated with other dichotomous complex traits. Pharmacogenomics J. 2016;16:388–392.

Source: PubMed

3
구독하다