Clinical experience of whole-body computed tomography as the initial evaluation tool after extracorporeal cardiopulmonary resuscitation in patients of out-of-hospital cardiac arrest

Kelvin Jeason Yang, Chih-Hsien Wang, Yu-Cheng Huang, Li-Jung Tseng, Yih-Sharng Chen, Hsi-Yu Yu, Kelvin Jeason Yang, Chih-Hsien Wang, Yu-Cheng Huang, Li-Jung Tseng, Yih-Sharng Chen, Hsi-Yu Yu

Abstract

Background: The routine application of whole-body CT after extracorporeal cardiopulmonary resuscitation (ECPR) in out-of-hospital cardiac arrest (OHCA) has not been extensively investigated. We aimed to evaluate the benefit of CT in this context.

Methods: We retrospectively analyzed all OHCA patients who had received ECPR between January 2006 to May 2019. Electronic records were reviewed to filter out patients who had a whole-body CT as their first clinical evaluation after ECPR. CT findings and major hospital outcomes were evaluated.

Results: From January 2006 to May 2019, 700 patients had received ECPR in our institution. We identified 93 OHCA patients who received whole-body CT as the first clinical evaluation after ECPR. 22.6% of those had no acute findings detected on CT requiring immediate treatment. In the remaining 77.4%, CT had findings that might lead to alterations in clinical course. Most important findings were myocardial infarction (57.0%), hypoxic brain injury (29.0%), sternal/rib fractures (16.1%), aortic dissection (7.5%), pulmonary embolism (5.4%), and cardiac tamponade (5.4%). There were no significant differences in ICU/hospitalization days, time on ECMO support, survival and neurological outcomes between those with and without immediate CT. In our OHCA cohort, there were 27 patients with CT evidence of hypoxic brain injury, of whom 22.2% (n = 2) managed to wean from ECMO support, 14.8% (n = 4) survived to discharge, but only 3.7% (n = 1) survived with good neurological outcome. Hypoxic brain injury on CT has a 95% specificity in predicting poor neurological outcome, with a false positive rate of only 3.7%. Logistic regression suggested a potential correlation between CT findings of hypoxic brain injury and poor neurological outcome [Odds ratio (OR) = 12.53 (1.55 to 10.1), p = 0.02)].

Conclusions: Routine whole-body CT after ECPR in OHCA patients appears to have a limited role, as the majority is caused by ACS. However, it may be a useful tool when CPR-related injury or non-ACS causes of OHCA are suspected, as well as in cases where the cause of OHCA is unknown. On the contrary, routine brain CT may be a valuable tool in guiding anticoagulant therapy during ECMO and in aiding outcome prediction.

Keywords: Cardiopulmonary resuscitation; Computed tomography; Extracorporeal cardiopulmonary resuscitation; Extracorporeal membrane oxygenation; Hypoxic brain damage; Out-of-hospital cardiac arrest.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of study patients. ECPR = Extracorporeal cardiopulmonary resuscitation, IHCA = In-hospital cardiac arrest, OHCA = Out-of-hospital cardiac arrest, ECMO = Extracorporeal membrane oxygenation

References

    1. Benjamin EJ, Virani SS, Callaway CW, et al. Heart disease and stroke Statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137:e67–e492. doi: 10.1161/CIR.0000000000000558.
    1. Thiagarajan RR, Barbaro RP, Rycus PT, et al. Extracorporeal life support organization registry international report 2016. ASAIO J. 2017;63:60–67. doi: 10.1097/MAT.0000000000000475.
    1. Chen YS, Lin JW, Yu HY, et al. Cardiopulmonary resuscitation with assisted extracorporeal life-support versus conventional cardiopulmonary resuscitation in adults with in-hospital cardiac arrest: an observational study and propensity analysis. Lancet. 2008;372:554–561. doi: 10.1016/S0140-6736(08)60958-7.
    1. Yu HY, Wang CH, Chi NH, et al. Effect of interplay between age and low-flow duration on neurologic outcomes of extracorporeal cardiopulmonary resuscitation. Intensive Care Med. 2019;45:44–54. doi: 10.1007/s00134-018-5496-y.
    1. Chelly J, Mongardon N, Dumas F, et al. Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian region out of hospital cardiac arrest) registry. Resuscitation. 2012;83:1444–1450. doi: 10.1016/j.resuscitation.2012.08.321.
    1. Nolan JP, Soar J, Cariou A, et al. European resuscitation council and European Society of Intensive Care Medicine Guidelines for post-resuscitation care 2015: section 5 of the European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:202–222. doi: 10.1016/j.resuscitation.2015.07.018.
    1. Wang CH, Chou NK, Becker LB, et al. Improved outcome of extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest--a comparison with that for extracorporeal rescue for in-hospital cardiac arrest. Resuscitation. 2014;85:1219–1224. doi: 10.1016/j.resuscitation.2014.06.022.
    1. Acharya J, Rajamohan AG, Skalski MR, Law M, Kim P, Gibbs W. CT angiography of the head in extracorporeal membrane oxygenation. AJNR Am J Neuroradiol. 2017;38:773–776. doi: 10.3174/ajnr.A5060.
    1. Lee S, Chaturvedi A. Imaging adults on extracorporeal membrane oxygenation (ECMO) Insights Imaging. 2014;5:731–742. doi: 10.1007/s13244-014-0357-x.
    1. Lidegran MK, Ringertz HG, Frenckner BP, Lindén VB. Chest and abdominal CT during extracorporeal membrane oxygenation: clinical benefits in diagnosis and treatment. Acad Radiol. 2005;12:276–285. doi: 10.1016/j.acra.2004.11.027.
    1. Liu KL, Wang YF, Chang YC, et al. Multislice CT scans in patients on extracorporeal membrane oxygenation: emphasis on hemodynamic changes and imaging pitfalls. Korean J Radiol. 2014;15:322–329. doi: 10.3348/kjr.2014.15.3.322.
    1. Deakin CD, Morrison LJ, Morley PT, et al. Part 8: advanced life support: 2010 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Resuscitation. 2010;81(Suppl 1):e93–e174. doi: 10.1016/j.resuscitation.2010.08.027.
    1. Kim YJ, Min SY, Lee DH, et al. The role of post-resuscitation electrocardiogram in patients with ST-segment changes in the immediate post-cardiac arrest period. JACC Cardiovasc Interv. 2017;10:451–459. doi: 10.1016/j.jcin.2016.11.046.
    1. Lidegran M, Palmer K, Jorulf H, Lindén V. CT in the evaluation of patients on ECMO due to acute respiratory failure. Pediatr Radiol. 2002;32:567–574. doi: 10.1007/s00247-002-0756-x.
    1. Lidegran MK, Mosskin M, Ringertz HG, Frenckner BP, Lindén VB. Cranial CT for diagnosis of intracranial complications in adult and pediatric patients during ECMO: clinical benefits in diagnosis and treatment. Acad Radiol. 2007;14:62–71. doi: 10.1016/j.acra.2006.10.004.
    1. Champigneulle B, Haruel PA, Pirracchio R, et al. Major traumatic complications after out-of-hospital cardiac arrest: insights from the Parisian registry. Resuscitation. 2018;128:70–75. doi: 10.1016/j.resuscitation.2018.04.022.
    1. Zotzmann V, Rilinger J, Lang CN, et al. Early full-body computed tomography in patients after extracorporeal cardiopulmonary resuscitation (eCPR) Resuscitation. 2020;146:149–154. doi: 10.1016/j.resuscitation.2019.11.024.
    1. Sampson MA, Colquhoun KB, Hennessy NL. Computed tomography whole body imaging in multi-trauma: 7 years experience. Clin Radiol. 2006;61:365–369. doi: 10.1016/j.crad.2005.12.009.
    1. Lardi C, Egger C, Larribau R, Niquille M, Mangin P, Fracasso T. Traumatic injuries after mechanical cardiopulmonary resuscitation (LUCAS2): a forensic autopsy study. Int J Legal Med. 2015;129:1035–1042. doi: 10.1007/s00414-015-1146-x.
    1. Smekal D, Lindgren E, Sandler H, Johansson J, Rubertsson S. CPR-related injuries after manual or mechanical chest compressions with the LUCAS device: a multicentre study of victims after unsuccessful resuscitation. Resuscitation. 2014;85:1708–1712. doi: 10.1016/j.resuscitation.2014.09.017.
    1. Buschmann CT, Tsokos M. Frequent and rare complications of resuscitation attempts. Intensive Care Med. 2009;35:397–404. doi: 10.1007/s00134-008-1255-9.
    1. Hoke RS, Chamberlain D. Skeletal chest injuries secondary to cardiopulmonary resuscitation. Resuscitation. 2004;63:327–338. doi: 10.1016/j.resuscitation.2004.05.019.
    1. Bedinghaus J, Leshan L, Diehr S. Coronary artery disease prevention: what's different for women? Am Fam Physician. 2001;63:1393–1400.
    1. Baba A, Okuyama Y, Yamazoe S, Mogami T. Acute myocardial infarction on contrast-enhanced computed tomography. Imaging J Clin Med Sciences. 2016;3:004–005. doi: 10.17352/2455-8702.000023.
    1. Hagdrup C, Ulriksen PS, Madsen PL. Acute anterior myocardial infarction seen on conventional iodine-contrast CT. Radiol Case Rep. 2017;12:635–637. doi: 10.1016/j.radcr.2017.05.010.
    1. Katinakis P, Knaapen P, Md G, ARJ G. Computed tomography to detect acute myocardial infarction. Neth J Crit Care. 2012;16:29–30.
    1. Warraich HJ, Benson CC, Khosa F, Leeman DE. Diagnosis of acute myocardial infarction on computed tomography angiogram. Circulation. 2014;129:272–273. doi: 10.1161/CIRCULATIONAHA.113.004304.
    1. Gosalia A, Haramati LB, Sheth MP, Spindola-Franco H. CT detection of acute myocardial infarction. AJR Am J Roentgenol. 2004;182:1563–1566. doi: 10.2214/ajr.182.6.1821563.
    1. Inamasu J, Miyatake S, Nakatsukasa M, Koh H, Yagami T. Loss of gray-white matter discrimination as an early CT sign of brain ischemia/hypoxia in victims of asphyxial cardiac arrest. Emerg Radiol. 2011;18:295–298. doi: 10.1007/s10140-011-0954-7.
    1. Lee YH, Oh YT, Ahn HC, et al. The prognostic value of the grey-to-white matter ratio in cardiac arrest patients treated with extracorporeal membrane oxygenation. Resuscitation. 2016;99:50–55. doi: 10.1016/j.resuscitation.2015.11.009.
    1. Ryu JA, Chung CR, Cho YH, et al. The association of findings on brain computed tomography with neurologic outcomes following extracorporeal cardiopulmonary resuscitation. Crit Care. 2017;21:15. doi: 10.1186/s13054-017-1604-6.
    1. Ryu JA, Lee YH, Chung CR, et al. Prognostic value of computed tomography score in patients after extracorporeal cardiopulmonary resuscitation. Crit Care. 2018;22:323. doi: 10.1186/s13054-018-2101-2.
    1. Callaway CW, Donnino MW, Fink EL, et al. Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(18 Suppl 2):S465–S482. doi: 10.1161/CIR.0000000000000262.
    1. Zingler VC, Krumm B, Bertsch T, et al. Early prediction of neurological outcome after cardiopulmonary resuscitation: a multimodal approach combining neurobiochemical and electrophysiological investigations may provide high prognostic certainty in patients after cardiac arrest. Eur Neurol. 2003;49:79–84. doi: 10.1159/000068503.

Source: PubMed

3
구독하다