Relationship between anti-thyroid peroxidase antibody positivity and pregnancy-related and fetal outcomes in Euthyroid women: a single-center cohort study

Ning Yuan, Jianbin Sun, Zhi Li, Sanbao Chai, Xiaomei Zhang, Linong Ji, Ning Yuan, Jianbin Sun, Zhi Li, Sanbao Chai, Xiaomei Zhang, Linong Ji

Abstract

Background: Thyroid autoimmunity (TAI) and subclinical hypothyroidism (SCH) have been associated with poor pregnancy and fetal outcomes. However, whether euthyroid women with anti-thyroid peroxidase antibody (TPOAb) positivity have a higher risk of poor pregnancy and fetal outcomes is debatable. Therefore, this study aimed to investigate the association between TPOAb positivity and pregnancy-related and fetal outcomes in euthyroid women.

Methods: In total, 938 pregnant women participated in this prospective cohort study. The euthyroid group included 837 pregnant women and the TPOAb-positive group included 101 euthyroid pregnant women. Serum TPOAb, thyroglobulin antibody (TGAb), thyroid-stimulating hormone (TSH), and free thyroxine (FT4) levels were assessed. Pregnancy and fetal outcomes included gestational diabetes mellitus, spontaneous abortion, premature rupture of membranes, hypertensive disorders of pregnancy, preterm birth, fetal distress, low birth weight, fetal macrosomia, and small for gestational age infant.

Results: Logistic regression analysis showed TPOAb positivity was not associated with an increased risk of poor pregnancy or fetal outcomes in euthyroid women. However, TPOAb-positive euthyroid women pregnant with a female fetus were independently associated with preterm births (OR: 4.511, 95% CI: 1.075-18.926) after adjustment for potential confounding factors.

Conclusions: TPOAb positivity was not found to be associated with poor pregnancy-related or fetal outcomes in euthyroid women. However, in euthyroid women with a female fetus, TPOAb positivity was strongly associated with preterm births. The risk of preterm birth in the euthyroid women with TPOAb positivity should be emphasized in clinical practice.

Trial registration: ClinicalTrials.gov Identifier: NCT02966405 . Registered on October 24th 2016 - Retrospectively registered.

Keywords: Euthyroid; Pregnancy and fetal outcomes; Thyroid peroxidase antibodies.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of patient selection. TSH, thyroid-stimulating hormone; FT4, free thyroxine; SCH, subclinical hypothyroidism; TGAb, thyroglobulin antibody; TPOAb, thyroid peroxidase antibody
Fig. 2
Fig. 2
Subject’s pregnancy and fetal outcomes in the Euthyroid group and the Euthyroid women with TPOAb positivity group. GDM, gestational diabetes; PROM, premature rupture of membranes; HDP, hypertensive disorders of pregnancy; SGA, small for gestational age

References

    1. Liu H, Shan Z, Li C, Mao J, Xie X, Wang W, et al. Maternal subclinical hypothyroidism, thyroid autoimmunity, and the risk of miscarriage: a prospective cohort study. Thyroid. 2014;24(11):1642–1649. doi: 10.1089/thy.2014.0029.
    1. Wilson KL, Casey BM, McIntire DD, Halvorson LM, Cunningham FG. Subclinical thyroid disease and the incidence of hypertension in pregnancy. Obstet Gynecol. 2012;119(2 Pt 1):315–320. doi: 10.1097/AOG.0b013e318240de6a.
    1. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017 guidelines of the American Thyroid Association for the diagnosis and Management of Thyroid Disease during Pregnancy and the postpartum. Thyroid. 2017;27(3):315–389. doi: 10.1089/thy.2016.0457.
    1. Chen C, Xu H, Chen Y, Chen Y, Li Q, Hu J, et al. Iodized salt intake and its association with urinary iodine, thyroid peroxidase antibodies, and thyroglobulin antibodies among urban Chinese. Thyroid. 2017;27(12):1566–1573. doi: 10.1089/thy.2017.0385.
    1. Lee YK, Shin DY, Shin H, Lee EJ. Sex-specific genetic influence on thyroid-stimulating hormone and free thyroxine levels, and interactions between measurements: KNHANES 2013–2015. PLoS One. 2018;13(11):e0207446. doi: 10.1371/journal.pone.0207446.
    1. Chen L, Hu R. Thyroid autoimmunity and miscarriage: a meta-analysis. Clin Endocrinol. 2011;74(4):513–519. doi: 10.1111/j.1365-2265.2010.03974.x.
    1. The Consortium on T, Pregnancy-Study Group on Preterm B. Association of Thyroid Function Test Abnormalities and Thyroid Autoimmunity with Preterm Birth: a systematic review and meta-analysis. JAMA. 2019; 322(7):632–641.
    1. Brown AS, Surcel HM, Hinkka-Yli-Salomaki S, Cheslack-Postava K, Bao Y, Sourander A. Maternal thyroid autoantibody and elevated risk of autism in a national birth cohort. Prog Neuro-Psychopharmacol Biol Psychiatry. 2015;57:86–92. doi: 10.1016/j.pnpbp.2014.10.010.
    1. Li Y, Shan Z, Teng W, Yu X, Li Y, Fan C, et al. Abnormalities of maternal thyroid function during pregnancy affect neuropsychological development of their children at 25–30 months. Clin Endocrinol. 2010;72(6):825–829. doi: 10.1111/j.1365-2265.2009.03743.x.
    1. Esplin MSBD, Silver R, Stagnaro-Green A. Thyroid autoantibodies are not associated with recurrent pregnancy loss. Am J Obstet Gynecol. 1998;179(6 Pt 1):1583–1586. doi: 10.1016/S0002-9378(98)70029-8.
    1. Haddow JEC-GJ, McClain MR, Palomaki GE, Neveux LM, Lambert-Messerlian G, Canick JA, Malone FD, Porter TF, Nyberg DA, Bernstein PS, D'Alton ME. Thyroperoxidase and thyroglobulin antibodies in early pregnancy and preterm delivery. Obstet Gynecol. 2010;116(1):58–62. doi: 10.1097/AOG.0b013e3181e10b30.
    1. Gupta Y, Kalra B, Baruah MP, Singla R, Kalra S. Updated guidelines on screening for gestational diabetes. Int J Women's Health. 2015;7:539–550. doi: 10.2147/IJWH.S82046.
    1. Nguyen BT, Chang EJ, Bendikson KA. Advanced paternal age and the risk of spontaneous abortion: an analysis of the combined 2011–2013 and 2013–2015 National Survey of Family Growth. Am J Obstet Gynecol. 2019;221(5):476.e471–476.e477. doi: 10.1016/j.ajog.2019.05.028.
    1. Brown Mark A, Magee Laura A, Kenny Louise C, Karumanchi SA, McCarthy Fergus P, Saito S, et al. Hypertensive disorders of pregnancy. Hypertension. 2018;72(1):24–43. doi: 10.1161/HYPERTENSIONAHA.117.10803.
    1. Lowe SA, Bowyer L, Lust K, McMahon LP, Morton M, North RA, et al. SOMANZ guidelines for the management of hypertensive disorders of pregnancy 2014. Aust N Z J Obstet Gynaecol. 2015;55(5):e1–e29. doi: 10.1111/ajo.12399.
    1. Bullens LM, Smith JS, Truijens SEM, van der Hout-van der Jagt MB, van Runnard Heimel PJ, Oei SG. Maternal hemoglobin level and its relation to fetal distress, mode of delivery, and short-term neonatal outcome: a retrospective cohort study. J Matern Fetal Neonatal Med. 2019:1–7.
    1. Palatnik A, Grobman WA, Miller ES. Is a history of preeclampsia associated with an increased risk of a small for gestational age infant in a future pregnancy? Am J Obstet Gynecol. 2016;215(3):355.e351–355.e356. doi: 10.1016/j.ajog.2016.03.011.
    1. Abbassi-Ghanavati M, Casey BM, Spong CY, McIntire DD, Halvorson LM, Cunningham FG. Pregnancy Outcomes in Women With Thyroid Peroxidase Antibodies. Obstet Gynecol. 2010;116(2).
    1. Tingi E, Syed AA, Kyriacou A, Mastorakos G, Kyriacou A. Benign thyroid disease in pregnancy: a state of the art review. J Clin Transl Endocrinol. 2016;6:37–49.
    1. Thangaratinam S, Tan A, Knox E, Kilby MD, Franklyn J, Coomarasamy A. Association between thyroid autoantibodies and miscarriage and preterm birth: meta-analysis of evidence. BMJ. 2011;342:d2616. doi: 10.1136/bmj.d2616.
    1. Chen L-M, Zhang Q, Si G-X, Chen Q-S. Ye E-l, Yu L-C et al. associations between thyroid autoantibody status and abnormal pregnancy outcomes in euthyroid women. Endocrine. 2015;48(3):924–928. doi: 10.1007/s12020-014-0420-x.
    1. Lee SK, Beltempo M, McMillan DD, Seshia M, Singhal N, Dow K, et al. Outcomes and care practices for preterm infants born at less than 33 weeks’ gestation: a quality-improvement study. Can Med Assoc J. 2020;192(4):E81. doi: 10.1503/cmaj.190940.
    1. Palatnik A, Grobman WA. The relationship between first-trimester subchorionic hematoma, cervical length, and preterm birth. Am J Obstet Gynecol. 2015;213(3):403.e401–403.e404. doi: 10.1016/j.ajog.2015.05.019.
    1. Sheehan PM, Nankervis A, Araujo Júnior E, Da Silva Costa F. Maternal thyroid disease and preterm birth: systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(11):4325–4331. doi: 10.1210/jc.2015-3074.
    1. Han Y, Mao L-J, Ge X, Huang K, Yan S-Q, Ren L-L, et al. Impact of maternal thyroid autoantibodies positivity on the risk of early term birth: Ma’anshan birth cohort study. Endocrine. 2018;60(2):329–338. doi: 10.1007/s12020-018-1576-6.
    1. Xiaoyan H, Pingping W, Zengfang W, Xiaoqin H, Donghua X, Bin W. ENDOCRINOLOGY IN PREGNANCY: thyroid antibodies and risk of preterm delivery: a meta-analysis of prospective cohort studies. Eur J Endocrinol 2012; 167(4):455–464.
    1. Rao M, Zeng Z, Zhou F, Wang H, Liu J, Wang R, et al. Effect of levothyroxine supplementation on pregnancy loss and preterm birth in women with subclinical hypothyroidism and thyroid autoimmunity: a systematic review and meta-analysis. Hum Reprod Update. 2019;25(3):344–361. doi: 10.1093/humupd/dmz003.
    1. Sun X, Hou N, Wang H, Ma L, Sun J, Liu Y. A meta-analysis of pregnancy outcomes with levothyroxine treatment in Euthyroid women with thyroid autoimmunity. J Clin Endocrinol Metab. 2019;105(4):1009–1019. doi: 10.1210/clinem/dgz217.
    1. Plowden TC, Schisterman EF, Sjaarda LA, Perkins NJ, Silver R, Radin R, et al. Thyroid-stimulating hormone, anti–thyroid antibodies,and pregnancy outcomes. Am J Obstet Gynecol. 2017;217(6):697.e691–697.e697. doi: 10.1016/j.ajog.2017.09.001.
    1. Bliddal S, Boas M, Hilsted L, Friis-Hansen L, Juul A, Larsen T, et al. Increase in thyroglobulin antibody and thyroid peroxidase antibody levels, but not preterm birth-rate, in pregnant Danish women upon iodine fortification. Eur J Endocrinol. 2017;176(5):603–612. doi: 10.1530/EJE-16-0987.
    1. Korevaar TIM, Steegers EAP, Pop VJ, Broeren MA, Chaker L, de Rijke YB, et al. Thyroid autoimmunity impairs the thyroidal response to human chorionic gonadotropin: two population-based prospective cohort studies. J Clin Endocrinol Metab. 2016;102(1):69–77.
    1. Oztas E, Erkenekli K, Ozler S, Aktas A, Buyukkagnıcı U, Uygur D, et al. First trimester interleukin-6 levels help to predict adverse pregnancy outcomes in both thyroid autoantibody positive and negative patients. J Obstet Gynaecol Res. 2015;41(11):1700–1707. doi: 10.1111/jog.12799.
    1. Vogel I, Goepfert AR, Thorsen P, Skogstrand K, Hougaard DM, Curry AH, et al. Early second-trimester inflammatory markers and short cervical length and the risk of recurrent preterm birth. J Reprod Immunol. 2007;75(2):133–140. doi: 10.1016/j.jri.2007.02.008.
    1. Walker MG, Fitzgerald B, Keating S, Ray JG, Windrim R, Kingdom JCP. Sex-specific basis of severe placental dysfunction leading to extreme preterm delivery. Placenta. 2012;33(7):568–571. doi: 10.1016/j.placenta.2012.03.011.
    1. On behalf of the Global Pregnancy C. Schalekamp-Timmermans S, Arends LR, Alsaker E, Chappell L, Hansson S, et al. Fetal sex-specific differences in gestational age at delivery in pre-eclampsia: a meta-analysis. Int J Epidemiol. 2016;46(2):632–642.
    1. Mitchell AM, Palettas M, Christian LM. Fetal sex is associated with maternal stimulated cytokine production, but not serum cytokine levels, in human pregnancy. Brain Behav Immun. 2017;60:32–37. doi: 10.1016/j.bbi.2016.06.015.
    1. Zeitlin J, Ancel P-Y, Larroque B, Kaminski M. The Eg. Fetal sex and indicated very preterm birth: results of the EPIPAGE study. Am J Obstet Gynecol. 2004;190(5):1322–1325. doi: 10.1016/j.ajog.2003.10.703.
    1. Saki F, Dabbaghmanesh MH, Ghaemi SZ, Forouhari S, Omrani GR, Bakhshayeshkaram M. Thyroid autoimmunity in pregnancy and its influences on maternal and fetal outcome in Iran (a prospective study) Endocr Res. 2015;40(3):139–145. doi: 10.3109/07435800.2014.966384.
    1. Reynolds SA, Roberts JM, Bodnar LM, Haggerty CL, Youk AO, Catov JM. Newborns of Preeclamptic women show evidence of sex-specific disparity in fetal growth. Gend Med. 2012;9(6):424–435. doi: 10.1016/j.genm.2012.10.013.
    1. Fink G, Andrews KG, Brentani H, Grisi S, Scoleze Ferrer AP, Brentani A. Overall and sex-specific associations between fetal adversity and child development at age 1 year: evidence from Brazil. Am J Epidemiol. 2018;187(11):2324–2331. doi: 10.1093/aje/kwy141.
    1. Plowden TC, Schisterman EF, Sjaarda LA, Zarek SM, Perkins NJ, Silver R, et al. Subclinical hypothyroidism and thyroid autoimmunity are not associated with fecundity, pregnancy loss, or live birth. J Clin Endocrinol Metab. 2016;101(6):2358–2365. doi: 10.1210/jc.2016-1049.
    1. Sitoris G, Veltri F, Kleynen P, Cogan A, Belhomme J, Rozenberg S, et al. The impact of thyroid disorders on clinical pregnancy outcomes in a real-world study setting. Thyroid. 2019;30(1):106–115. doi: 10.1089/thy.2019.0199.
    1. Yang Y, Li Q, Wang Q, Ma X. Thyroid antibodies and gestational diabetes mellitus: a meta-analysis. Fertil Steril. 2015;104(3):665–671.e663. doi: 10.1016/j.fertnstert.2015.06.003.
    1. Yu S, Wang D, Cheng X, Zhang Q, Wang M, Guo H, et al. Establishing reference intervals for urine and serum iodine levels: a nationwide multicenter study of a euthyroid Chinese population. Clin Chim Acta. 2020;502:34–40. doi: 10.1016/j.cca.2019.11.038.

Source: PubMed

3
구독하다