Sensory Feedback in Hand Prostheses: A Prospective Study of Everyday Use

Ulrika Wijk, Ingela K Carlsson, Christian Antfolk, Anders Björkman, Birgitta Rosén, Ulrika Wijk, Ingela K Carlsson, Christian Antfolk, Anders Björkman, Birgitta Rosén

Abstract

Introduction: Sensory feedback in hand prostheses is lacking but wished for. Many amputees experience a phantom hand map on their residual forearm. When the phantom hand map is touched, it is experienced as touch on the amputated hand. A non-invasive sensory feedback system, applicable to existing hand prostheses, can transfer somatotopical sensory information via phantom hand map. The aim was to evaluate how forearm amputees experienced a non-invasive sensory feedback system used in daily life over a 4-week period.

Methods: This longitudinal cohort study included seven forearm amputees. A non-invasive sensory feedback system was used over 4 weeks. For analysis, a mixed method was used, including quantitative tests (ACMC, proprioceptive pointing task, questionnaire) and interviews. A directed content analysis with predefined categories sensory feedback from the prosthesis, agency, body ownership, performance in activity, and suggestions for improvements was applied.

Results: The results from interviews showed that sensory feedback was experienced as a feeling of touch which contributed to an experience of completeness. However, the results from the questionnaire showed that the sense of agency and performance remained unchanged or deteriorated. The ability to feel and manipulate small objects was difficult and a stronger feedback was wished for. Phantom pain was alleviated in four out of five patients.

Conclusion: This is the first time a non-invasive sensory feedback system for hand prostheses was implemented in the home environment. The qualitative and quantitative results diverged. The sensory feedback was experienced as a feeling of touch which contributed to a feeling of completeness, linked to body ownership. The qualitative result was not verified in the quantitative measurements.

Clinical trial registration: Name: Evaluation of a Non-invasive Sensory Feedback System in Hand Prostheses. Date of registration: March 15, 2019. Date the first participant was enrolled: April 1, 2015. ClinicalTrials.gov Identifier: NCT03876405 ORCID ID: https://orcid.org/0000-0002-4140-7478.

Keywords: amputation; amputation stumps; artificial arm; sensory feedback; traumatic amputation; upper limb.

Copyright © 2020 Wijk, Carlsson, Antfolk, Björkman and Rosén.

Figures

FIGURE 1
FIGURE 1
When the silicon bulbs in the fingertips were pressed, the air was transferred via plastic tubes that reached actuators inside the prosthetic socket and gave pressure (mechanotactile feedback) on the skin corresponding with the PHM zones.
FIGURE 2
FIGURE 2
In the Proprioceptive pointing task the participants were asked, with their eyes closed, to mark on a ruler (proximally to distally from their own body) with their index finger on the sound hand, where they estimated the location of: (1) the prosthetic index finger and (2) where they experienced their phantom index finger.
FIGURE 3
FIGURE 3
On the x-axis each question has a column and the questions are grouped according to concept. The y-axis presents each participant and the Likert scale. The answers pre- and post- are illustrated with an arrow for each question and participant; an improvement is illustrated by a green arrow, an impairment by a red arrow, and if there was no change the arrow is blue (Question PLP1–PLP2 for homogeneity in the table, a high value [3] indicates less pain). The six control questions are not presented in the figure. Wilcoxon signed rank test showed a significant positive change regarding Sensory feedback (p = 0.031), a significant negative change regarding Agency (p = 0.023), and Performance in Activity (p = 0.007). No significant changes were seen in the other concept categories in the questionnaire.
FIGURE 4
FIGURE 4
The ACMC-scores for each participant at pre-tests and follow-up.

References

    1. Ackerley R., Kavounoudias A. (2015). The role of tactile afference in shaping motor behaviour and implications for prosthetic innovation. Neuropsychologia 79(Pt B), 192–205. 10.1016/j.neuropsychologia.2015.06.024
    1. Antfolk C., Bjorkman A., Frank S. O., Sebelius F., Lundborg G., Rosen B. (2012). Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin. J. Rehabil. Med. 44 702–707.
    1. Antfolk C., Cipriani C., Carrozza M. C., Balkenius C., Bjorkman A., Lundborg G., et al. (2013a). Transfer of tactile input from an artificial hand to the forearm: experiments in amputees and able-bodied volunteers. Disabil. Rehabil. Assist. Technol. 8 249–254. 10.3109/17483107.2012.713435
    1. Antfolk C., D’Alonzo M., Controzzi M., Lundborg G., Rosen B., Sebelius F., et al. (2013b). Artificial redirection of sensation from prosthetic fingers to the phantom hand map on transradial amputees: vibrotactile versus mechanotactile sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 21 112–120. 10.1109/TNSRE.2012.2217989
    1. Beckerle P., Kõiva R., Kirchner E. A., Bekrater-Bodmann R., Dosen S., Christ O., et al. (2018). Feel-good robotics: requirements on touch for embodiment in assistive robotics. Front. Neurorobot. 12:84. 10.3389/fnbot.2018.00084
    1. Benz H. L., Jia Y., Rose L., Olgac O., Kreutz K., Saha A., et al. (2016). Upper extremity prosthesis user perspectives on unmet needs and innovative technology. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016 287–290. 10.1109/embc.2016.7590696
    1. Biddiss E., Beaton D., Chau T. (2007). Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2 346–357. 10.1080/17483100701714733
    1. Bjorkman A., Weibull A., Olsrud J., Ehrsson H. H., Rosen B., Bjorkman-Burtscher I. M. (2012). Phantom digit somatotopy: a functional magnetic resonance imaging study in forearm amputees. Eur. J. Neurosci. 36 2098–2106. 10.1111/j.1460-9568.2012.08099.x
    1. Bjorkman A., Wijk U., Antfolk C., Bjorkman-Burtscher I., Rosen B. (2016). Sensory qualities of the phantom hand map in the residual forearm of amputees. J. Rehabil. Med. 48 365–370.
    1. Botvinick M., Cohen J. (1998). Rubber hands ‘feel’ touch that eyes see. Nature 391:756. 10.1038/35784
    1. Bremner A. J., Spence C. (2017). The development of tactile perception. Adv. Child Dev. Behav. 52 227–268. 10.1016/bs.acdb.2016.12.002
    1. Carlsson I. K., Edberg A. K., Wann-Hansson C. (2010). Hand-injured patients’ experiences of cold sensitivity and the consequences and adaptation for daily life: a qualitative study. J. Hand Ther. 23 53–61; quiz 62. 10.1016/j.jht.2009.07.008
    1. Carter N., Bryant-Lukosius D., DiCenso A., Blythe J., Neville A. J. (2014). The use of triangulation in qualitative research. Oncol. Nurs. Forum 41 545–547.
    1. Childress D. S. (1980). Closed-loop control in prosthetic systems: historical perspective. Ann. Biomed. Eng. 8 293–303.
    1. Clemente F., D’Alonzo M., Controzzi M., Edin B. B., Cipriani C. (2016). Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 24 1314–1322. 10.1109/tnsre.2015.2500586
    1. Cordella F., Ciancio A. L., Sacchetti R., Davalli A., Cutti A. G., Guglielmelli E., et al. (2016). Literature review on needs of upper limb prosthesis users. Front. Neurosci. 10:209. 10.3389/fnins.2016.00209
    1. Cuberovic I., Gill A., Resnik L. J., Tyler D. J., Graczyk E. L. (2019). Learning of artificial sensation through long-term home use of a sensory-enabled prosthesis. Front. Neurosci. 13:853. 10.3389/fnins.2019.00853
    1. D’Alonzo M., Clemente F., Cipriani C. (2015). Vibrotactile stimulation promotes embodiment of an alien hand in amputees with phantom sensations. IEEE Trans. Neural Syst. Rehabil. Eng. 23 450–457. 10.1109/tnsre.2014.2337952
    1. Dietrich C., Walter-Walsh K., Preissler S., Hofmann G. O., Witte O. W., Miltner W. H., et al. (2012). Sensory feedback prosthesis reduces phantom limb pain: proof of a principle. Neurosci. Lett. 507 97–100. 10.1016/j.neulet.2011.10.068
    1. Ehrsson H. H., Rosen B., Stockselius A., Ragno C., Kohler P., Lundborg G. (2008). Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131(Pt 12), 3443–3452. 10.1093/brain/awn297
    1. Farina D., Amsuss S. (2016). Reflections on the present and future of upper limb prostheses. Expert Rev. Med. Devices 13 321–324. 10.1586/17434440.2016.1159511
    1. Flor H., Nikolajsen L., Staehelin Jensen T. (2006). Phantom limb pain: a case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 7 873–881. 10.1038/nrn1991
    1. Gardner E., Johnson K. (2013). “Touch,” in Principles of Neural Science, 5th Edn, eds Kandel E., JH S., Jessel T., Siegelbaum S., Hudspeth A. (New York, NY: McGraw Hill Medical; ), 498–529.
    1. Graczyk E. L., Resnik L., Schiefer M. A., Schmitt M. S., Tyler D. J. (2018). Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci. Rep. 8:9866. 10.1038/s41598-018-26952-x
    1. Graneheim U. H., Lundman B. (2004). Qualitative content analysis in nursing research: concepts, procedures and measures to achieve trustworthiness. Nurse Educ. Today 24 105–112. 10.1016/j.nedt.2003.10.001
    1. Haggard P. (2017). Sense of agency in the human brain. Nat. Rev. Neurosci. 18 196–207. 10.1038/nrn.2017.14
    1. Hara M., Pozeg P., Rognini G., Higuchi T., Fukuhara K., Yamamoto A., et al. (2015). Voluntary self-touch increases body ownership. Front. Psychol. 6:1509. 10.3389/fpsyg.2015.01509
    1. Hebert J. S., Olson J. L., Morhart M. J., Dawson M. R., Marasco P. D., Kuiken T. A., et al. (2014). Novel targeted sensory reinnervation technique to restore functional hand sensation after transhumeral amputation. IEEE Trans. Neural Syst. Rehabil. Eng. 22 765–773. 10.1109/tnsre.2013.2294907
    1. Hsieh H., Shannon S. E. (2005). Three approaches to qualitative content analysis. Qual. Health Res. 15 1277–1288.
    1. Imaizumi S., Asai T., Koyama S. (2016). Embodied prosthetic arm stabilizes body posture, while unembodied one perturbs it. Conscious. Cogn. 45 75–88. 10.1016/j.concog.2016.08.019
    1. Kalckert A., Ehrsson H. H. (2012). Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Front. Hum. Neurosci. 6:40. 10.3389/fnhum.2012.00040
    1. Kandel E., Schwarz J., Jessell T., Siegelbaum S., Hudspeth A. (2013). Principles of Neural Science. New York, NY: McGraw-Hill.
    1. Lindner H. Y., Langius-Eklof A., Hermansson L. M. (2014). Test-retest reliability and rater agreements of assessment of capacity for myoelectric control version 2.0. J. Rehabil. Res. Dev. 51 635–644. 10.1682/jrrd.2013.09.0197
    1. Lindner H. Y., Linacre J. M., Norling Hermansson L. M. (2009). Assessment of capacity for myoelectric control: evaluation of construct and rating scale. J. Rehabil. Med. 41 467–474.
    1. Markovic M., Schweisfurth M. A., Engels L. F., Bentz T., Wustefeld D., Farina D., et al. (2018a). The clinical relevance of advanced artificial feedback in the control of a multi-functional myoelectric prosthesis. J. Neuroeng. Rehabil. 15:28.
    1. Markovic M., Schweisfurth M. A., Engels L. F., Farina D., Dosen S. (2018b). Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. J. Neuroeng. Rehabil. 15:81.
    1. Mastinu E., Clemente F., Sassu P., Aszmann O., Branemark R., Hakansson B., et al. (2019). Grip control and motor coordination with implanted and surface electrodes while grasping with an osseointegrated prosthetic hand. J. Neuroeng. Rehabil. 16:49.
    1. Murray C. D. (2009). Being like everybody else: the personal meanings of being a prosthesis user. Disabil. Rehabil. 31 573–581. 10.1080/09638280802240290
    1. Murray C. D., Forshaw M. J. (2013). The experience of amputation and prosthesis use for adults: a metasynthesis. Disabil. Rehabil. 35 1133–1142. 10.3109/09638288.2012.723790
    1. Oddo C. M., Raspopovic S., Artoni F., Mazzoni A., Spigler G., Petrini F., et al. (2016). Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5:e09148. 10.7554/eLife.09148
    1. Ortiz-Catalan M., Hakansson B., Branemark R. (2014). An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6:257re6. 10.1126/scitranslmed.3008933
    1. Page D. M., George J. A., Kluger D. T., Duncan C., Wendelken S., Davis T., et al. (2018). Motor control and sensory feedback enhance prosthesis embodiment and reduce phantom pain after long-term hand amputation. Front. Hum. Neurosci. 12:352. 10.3389/fnhum.2018.00352
    1. Pasluosta C., Kiele P., Stieglitz T. (2018). Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. Clin. Neurophysiol. 129 851–862. 10.1016/j.clinph.2017.12.027
    1. Patton M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health Serv. Res. 34(5 Pt 2), 1189–1208.
    1. Petrini F. M., Valle G., Strauss I., Granata G., Di Iorio R., D’Anna E., et al. (2018). Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85 137–154. 10.1002/ana.25384
    1. Petrini F. M., Valle G., Strauss I., Granata G., Di Iorio R., D’Anna E., et al. (2019). Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85 137–154. 10.1002/ana.25384
    1. Pylatiuk C., Schulz S., Doderlein L. (2007). Results of an Internet survey of myoelectric prosthetic hand users. Prosthet. Orthot. Int. 31 362–370. 10.1080/03093640601061265
    1. Ramachandran V. S., Hirstein W. (1998). The perception of phantom limbs. The D. O. Hebb lecture. Brain 121(Pt 9), 1603–1630.
    1. Ramachandran V. S., Rogers-Ramachandran D., Stewart M. (1992). Perceptual correlates of massive cortical reorganization. Science 258 1159–1160.
    1. Raveh E., Portnoy S., Friedman J. (2018). Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. Hum. Mov. Sci. 58 32–40. 10.1016/j.humov.2018.01.008
    1. Rohde M., Di Luca M., Ernst M. O. (2011). The rubber hand illusion: feeling of ownership and proprioceptive drift do not go hand in hand. PLoS One 6:e21659. 10.1371/journal.pone.0021659
    1. Schiefer M., Tan D., Sidek S. M., Tyler D. J. (2016). Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 13:016001 10.1088/1741-2560/13/1/016001
    1. Schiefer M. A., Graczyk E. L., Sidik S. M., Tan D. W., Tyler D. J. (2018). Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks. PLoS One 13:e0207659. 10.1371/journal.pone.0207659
    1. Schoepp K. R., Dawson M. R., Schofield J. S., Carey J. P., Hebert J. S. (2018). Design and integration of an inexpensive wearable mechanotactile feedback system for myoelectric prostheses. IEEE J. Transl. Eng. Health Med. 6:2100711. 10.1109/jtehm.2018.2866105
    1. Schofield J. S., Evans K. R., Carey J. P., Hebert J. S. (2014). Applications of sensory feedback in motorized upper extremity prosthesis: a review. Expert Rev. Med. Devices 11 499–511. 10.1586/17434440.2014.929496
    1. Stephens-Fripp B., Alici G., Mutlu R. (2018). A review of non-invasive sensory feedback methods for transradial prosthetic hands. IEEE Access. 6 6878–6899. 10.1109/ACCESS.2018.2791583
    1. Svensson P., Antfolk C., Malesevic N., Sebelius F. (2020). Characterization of pneumatic touch sensors for a prosthetic hand. IEEE Sens. J. 99:1 10.1109/JSEN.2020.2987054
    1. Svensson P., Wijk U., Bjorkman A., Antfolk C. (2017). A review of invasive and non-invasive sensory feedback in upper limb prostheses. Expert Rev. Med. Devices 14 439–447. 10.1080/17434440.2017.1332989
    1. Tsakiris M., Schutz-Bosbach S., Gallagher S. (2007). On agency and body-ownership: phenomenological and neurocognitive reflections. Conscious. Cogn. 16 645–660. 10.1016/j.concog.2007.05.012
    1. Vaso A., Adahan H. M., Gjika A., Zahaj S., Zhurda T., Vyshka G., et al. (2014). Peripheral nervous system origin of phantom limb pain. Pain 155 1384–1391. 10.1016/j.pain.2014.04.018
    1. Wijk U., Carlsson I. (2015). Forearm amputees’ views of prosthesis use and sensory feedback. J. Hand Ther. 28 269–277; quiz 278. 10.1016/j.jht.2015.01.013
    1. Wijk U., Svensson P., Antfolk C., Carlsson I. K., Bjorkman A., Rosen B. (2019). Touch on predefined areas on the forearm can be associated with specific fingers: towards a new principle for sensory feedback in hand prostheses. J. Rehabil. Med. 51 209–216.
    1. Witteveen H. J., Rietman H. S., Veltink P. H. (2015). Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthet. Orthot. Int. 39 204–212. 10.1177/0309364614522260
    1. World Health Organization (2001). International Classification of Functioning, Disability and Health (ICF). Geneva: World Health Organization.

Source: PubMed

3
구독하다