Biological drug and drug delivery-mediated immunotherapy

Qingqing Xiao, Xiaotong Li, Yi Li, Zhenfeng Wu, Chenjie Xu, Zhongjian Chen, Wei He, Qingqing Xiao, Xiaotong Li, Yi Li, Zhenfeng Wu, Chenjie Xu, Zhongjian Chen, Wei He

Abstract

The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.

Keywords: AAs, amino acids; ACT, adoptive T cell therapy; AHC, Chlamydia pneumonia; ALL, acute lymphoblastic leukemia; AP, ascorbyl palmitate; APCs, antigen-presenting cells; AS, atherosclerosis; ASIT, antigen-specific immunotherapy; Adoptive cell transfer; ApoA–I, apolipoprotein A–I; ApoB LPs, apolipoprotein-B-containing lipoproteins; Atherosclerosis; BMPR-II, bone morphogenetic protein type II receptor; Biologics; Bregs, regulatory B lymphocytes; CAR, chimeric antigen receptor; CCR9–CCL25, CC receptor 9–CC chemokine ligand 25; CD, Crohn's disease; CETP, cholesterol ester transfer protein; CTLA-4, cytotoxic T-lymphocyte-associated protein-4; CX3CL1, CXXXC-chemokine ligand 1; CXCL 16, CXC-chemokine ligand 16; CXCR 2, CXC-chemokine receptor 2; Cancer immunotherapy; CpG ODNs, CpG oligodeoxynucleotides; DAMPs, danger-associated molecular patterns; DCs, dendritic cells; DDS, drug delivery system; DMARDs, disease-modifying antirheumatic drugs; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine; DSS, dextran sulfate sodium; Dex, dexamethasone; Drug delivery; ECM, extracellular matrix; ECs, endothelial cells; EGFR, epidermal growth factor receptor; EPR, enhanced permeability and retention effect; ET-1, endothelin-1; ETAR, endothelin-1 receptor type A; FAO, fatty acid oxidation; GM-CSF, granulocyte–macrophage colony-stimulating factor; HA, hyaluronic acid; HDL, high density lipoprotein; HER2, human epidermal growth factor-2; IBD, inflammatory bowel diseases; ICOS, inducible co-stimulator; ICP, immune checkpoint; IFN, interferon; IL, interleukin; IT-hydrogel, inflammation-targeting hydrogel; Immune targets; Inflammatory diseases; JAK, Janus kinase; LAG-3, lymphocyte-activation gene 3; LDL, low density lipoprotein; LPS, lipopolysaccharide; LTB4, leukotriene B4; MCP-1, monocyte chemotactic protein-1; MCT, monocrotaline; MDSC, myeloid-derived suppressor cell; MHCs, major histocompatibility complexes; MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine; MIF, migration inhibitory factor; MM, multiple myeloma; MMP, matrix metalloproteinase; MOF, metal–organic framework; MPO, myeloperoxidase; MSCs, mesenchymal stem cells; NF-κB, nuclear factor κ-B; NK, natural killer; NPs, nanoparticles; NSAIDs, nonsteroidal anti-inflammatory drugs; PAECs, pulmonary artery endothelial cells; PAH, pulmonary arterial hypertension; PASMCs, pulmonary arterial smooth muscle cells; PBMCs, peripheral blood mononuclear cells; PCSK9, proprotein convertase subtilisin kexin type 9; PD-1, programmed death protein-1; PD-L1, programmed cell death-ligand 1; PLGA, poly lactic-co-glycolic acid; Pulmonary artery hypertension; RA, rheumatoid arthritis; ROS, reactive oxygen species; SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2; SLE, systemic lupus erythematosus; SMCs, smooth muscle cells; Src, sarcoma gene; TCR, T cell receptor; TGF-β, transforming growth factor β; TILs, tumor-infiltrating lymphocytes; TIM-3, T-cell immunoglobulin mucin 3; TLR, Toll-like receptor; TNF, tumor necrosis factor; TRAF6, tumor necrosis factor receptor-associated factor 6; Teff, effector T cell; Th17, T helper 17; Tph, T peripheral helper; Tregs, regulatory T cells; UC, ulcerative colitis; VEC, vascular endothelial cadherin; VEGF, vascular endothelial growth factor; VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation; YCs, yeast-derived microcapsules; bDMARDs, biological DMARDs; hsCRP, high-sensitivity C-reactive protein; mAbs, monoclonal antibodies; mPAP, mean pulmonary artery pressure; nCmP, nanocomposite microparticle; rHDL, recombinant HDL; rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein; scFv, single-chain variable fragment; α1D-AR, α1D-adrenergic receptor.

Conflict of interest statement

The authors have no conflicts of interest to declare.

© 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Immunotherapy for cancer and the used drug delivery systems (DDSs).
Figure 2
Figure 2
Immunotherapy for rheumatoid arthritis (RA) and the used DDSs.
Figure 3
Figure 3
Immunotherapy for inflammatory bowel diseases (IBD) and the used DDSs.
Figure 4
Figure 4
Immunotherapy for atherosclerosis (AS) and the used DDSs.
Figure 5
Figure 5
Immunotherapy for pulmonary arterial hypertension (PAH) and the used DDSs.

References

    1. He W., Kapate N., IV C.W.S., Mitragotri S. Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev. 2020;165-166:15–40.
    1. Garn H., Bahn S., Baune B.T., Binder E.B., Bisgaard H., Chatila T.A. Current concepts in chronic inflammatory diseases: interactions between microbes, cellular metabolism, and inflammation. J Allergy Clin Immunol. 2016;138:47–56.
    1. Galluzzi L., Chan T.A., Kroemer G., Wolchok J.D., López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10
    1. Till S.J., Francis J.N., Nouri-Aria K., Durham S.R. Mechanisms of immunotherapy. J Allergy Clin Immunol. 2004;113:1025–1034.
    1. Tan S.Z., Li D.P., Zhu X. Cancer immunotherapy: pros, cons and beyond. Biomed Pharmacother. 2020;124:109821.
    1. Steffens S., Weber C. Immunotherapy for atherosclerosis—novel concepts. Thromb Haemostasis. 2019;119:515–516.
    1. Ahmed M., Bae Y.-S. Dendritic cell-based immunotherapy for rheumatoid arthritis: from bench to bedside. Immune Netw. 2016;16:44–51.
    1. Catalan-Serra I., Brenna Ø. Immunotherapy in inflammatory bowel disease: novel and emerging treatments. Hum Vaccines Immunother. 2018;14:2597–2611.
    1. Nicolls M.R., Voelkel N.F. The roles of immunity in the prevention and evolution of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2017;195:1292–1299.
    1. Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–723.
    1. Law A.M.K., Lim E., Ormandy C.J., Gallego-Ortega D. The innate and adaptive infiltrating immune systems as targets for breast cancer immunotherapy. Endocr Relat Cancer. 2017;24:R123–R144.
    1. Silva L.C.R., Ortigosa L.C.M., Benard G. Anti-TNF-α agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy. 2010;2:817–833.
    1. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–264.
    1. Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55:105954.
    1. Hara Y., Nagaoka S. Springer Singapore; Singapore: 2019. Nivolumab (Opdivo)
    1. Wills S., Hochmuth L.K., Bauer K.S., Durvalumab Deshmukh R. A newly approved checkpoint inhibitor for the treatment of urothelial carcinoma. Curr Probl Cancer. 2019;43:181–194.
    1. Subklewe M., von Bergwelt-Baildon M., Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus Med Hemotherapy. 2019;46:15–24.
    1. Strohl W.R. Current progress in innovative engineered antibodies. Protein cell. 2018;9:86–120.
    1. Schwartz D.M., Bonelli M., Gadina M., O'Shea J.J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12:25–36.
    1. Sanjabi S., Oh S.A., Li M.O. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb Perspect Biol. 2017;9:a022236.
    1. Mullard A. 2017 FDA drug approvals. Nat Rev Drug Discov. 2018;17:81–85.
    1. Mullard A. 2012 FDA drug approvals. Nat Rev Drug Discov. 2013;12:87–90.
    1. Alsaab H.O., Sau S., Alzhrani R., Tatiparti K., Bhise K., Kashaw S.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.
    1. Agarwala S.S. Practical approaches to immunotherapy in the clinic. Semin Oncol. 2015;42:S20–S27.
    1. Pföhler C., Eichler H., Burgard B., Krecké N., Müller C.S.L., Vogt T. A case of immune thrombocytopenia as a rare side effect of an immunotherapy with PD1-blocking agents for metastatic melanoma. Transfus Med Hemotherapy. 2017;44:426–428.
    1. Vial T., Descotes J. Immune-mediated side-effects of cytokines in humans. Toxicology. 1995;105:31–57.
    1. He W., Xing X.Y., Wang X.L., Wu D., Wu W., Guo J.L. Nanocarrier-mediated cytosolic delivery of biopharmaceuticals. Adv Funct Mater. 2020:1910566. n/a.
    1. Wu W., Li T.L. Unraveling the in vivo fate and cellular pharmacokinetics of drug nanocarriers. Adv Drug Deliv Rev. 2019;143:1–2.
    1. Zhao Z.M., Ukidve A., Krishnan V., Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev. 2019;143:3–21.
    1. Xiao Q.Q., Zhu X., Yuan Y.T., Yin L.F., He W. A drug-delivering-drug strategy for combined treatment of metastatic breast cancer. Nanomed-Nanotechnol. 2018;14:2678–2688.
    1. Jin K., Luo Z.M., Zhang B., Pang Z.Q. Biomimetic nanoparticles for inflammation targeting. Acta Pharm Sin B. 2018;8:23–33.
    1. Mao Y.S., Zou C.F., Jiang Y.J., Fu D.L. Erythrocyte-derived drug delivery systems in cancer therapy. Chin Chem Lett. 2021;32:990–998.
    1. Donahue N.D., Acar H., Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev. 2019;143:68–96.
    1. Su C., Liu Y.Z., Li R.Z., Wu W., Fawcett J.P., Gu J.K. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. Adv Drug Deliv Rev. 2019;143:97–114.
    1. Zhu Y.F., Yu X.R., Thamphiwatana S.D., Zheng Y., Pang Z.Q. Nanomedicines modulating tumor immunosuppressive cells to enhance cancer immunotherapy. Acta Pharm Sin B. 2020;10:2054–2074.
    1. Lu Y., Li Y., Wu W. Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B. 2016;6:106–113.
    1. Corrales L., Glickman L.H., McWhirter S.M., Kanne D.B., Sivick K.E., Katibah G.E. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11:1018–1030.
    1. Berraondo P., Sanmamed M.F., Ochoa M.C., Etxeberria I., Aznar M.A., Pérez-Gracia J.L. Cytokines in clinical cancer immunotherapy. Br J Cancer. 2019;120:6–15.
    1. Quesada J.R., Hersh E.M., Manning J., Reuben J., Keating M., Schnipper E. Treatment of hairy cell leukemia with recombinant alpha-interferon. Blood. 1986;68:493–497.
    1. Rosenberg S.A. IL-2: the first effective immunotherapy for human cancer. J Immunol. 2014;192:5451–5458.
    1. Rosenberg S.A., Lotze M.T., Muul L.M., Chang A.E., Avis F.P., Leitman S. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med. 1987;316:889–897.
    1. Waldmann T.A. Cytokines in cancer immunotherapy. Cold Spring Harb Perspect Biol. 2018;10:a028472.
    1. Palucka K., Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39:38–48.
    1. Jahanafrooz Z., Baradaran B., Mosafer J., Hashemzaei M., Rezaei T., Mokhtarzadeh A. Comparison of DNA and mRNA vaccines against cancer. Drug Discov Today. 2020;25:552–560.
    1. Kimiz-Gebologlu I., Gulce-Iz S., Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep. 2018;45:2935–2940.
    1. Jafari S., Molavi O., Kahroba H., Hejazi M.S., Maleki-Dizaji N., Barghi S. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Cell Mol Life Sci. 2020;77:3693–3710.
    1. Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–3895.
    1. Brunet J.F., Denizot F., Luciani M.F., Roux-Dosseto M., Suzan M., Mattei M.G. A new member of the immunoglobulin superfamily-CTLA-4. Nature. 1987;328:267–270.
    1. Aspeslagh S., Postel-Vinay S., Rusakiewicz S., Soria J.-C., Zitvogel L., Marabelle A. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer. 2016;52:50–66.
    1. Buchbinder E.I., Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39:98–106.
    1. Chambers C.A., Kuhns M.S., Egen J.G., Allison J.P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–594.
    1. Postow M.A., Sidlow R., Hellmann M.D. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–168.
    1. Iwai Y., Okazaki T., Nishimura H., Kawasaki A., Yagita H., Honjo T. Microanatomical localization of PD-1 in human tonsils. Immunol Lett. 2002;83:215–220.
    1. Patsoukis N., Duke-Cohan J.S., Chaudhri A., Aksoylar H.-I., Wang Q., Council A. Interaction of SHP-2 SH2 domains with PD-1 ITSM induces PD-1 dimerization and SHP-2 activation. Commun Biol. 2020;3:128.
    1. Iwai Y., Hamanishi J., Chamoto K., Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24:26.
    1. Parry R.V., Chemnitz J.M., Frauwirth K.A., Lanfranco A.R., Braunstein I., Kobayashi S.V. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–9553.
    1. Lee H.W., Cho K.J., Park J.Y. Current status and future direction of immunotherapy in hepatocellular carcinoma: what do the data suggest?. Immune Netw. 2020;20:e11.
    1. Faruki H., Mayhew G.M., Serody J.S., Hayes D.N., Perou C.M., Lai-Goldman M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol. 2017;12:943–953.
    1. Ö Met, Jensen K.M., Chamberlain C.A., Donia M., Svane I.M. Principles of adoptive T cell therapy in cancer. Semin Immunopathol. 2019;41:49–58.
    1. June C.H., O'Connor R.S., Kawalekar O.U., Ghassemi S., Milone M.C. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–1365.
    1. Andersen R., Borch T.H., Draghi A., Gokuldass A., Rana M.A.H., Pedersen M. T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression. Ann Oncol. 2018;29:1575–1581.
    1. Rapoport A.P., Stadtmauer E.A., Binder-Scholl G.K., Goloubeva O., Vogl D.T., Lacey S.F. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21:914–921.
    1. Newick K., O'Brien S., Moon E., Albelda S.M. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–152.
    1. Zhang J., Wang L. The emerging world of TCR-T cell trials against cancer: a systematic review. Technol Cancer Res Treat. 2019;18 1533033819831068.
    1. Barrett D.M., Grupp S.A., June C.H. Chimeric antigen receptor- and TCR-modified T cells enter main street and wall street. J Immunol. 2015;195:755–761.
    1. Reddy S.T., Rehor A., Schmoekel H.G., Hubbell J.A., Swartz M.A. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Control Release. 2006;112:26–34.
    1. He H.S., Lu Y., Qi J.P., Zhu Q.G., Chen Z.J., Wu W. Adapting liposomes for oral drug delivery. Acta Pharm Sin B. 2019;9:36–48.
    1. Da Silva C.G., Rueda F., Löwik C.W., Ossendorp F., Cruz L.J. Combinatorial prospects of nano-targeted chemoimmunotherapy. Biomaterials. 2016;83:308–320.
    1. Caster J.M., Callaghan C., Seyedin S.N., Henderson K., Sun B., Wang A.Z. Optimizing advances in nanoparticle delivery for cancer immunotherapy. Adv Drug Deliv Rev. 2019;144:3–15.
    1. Mishra P., Nayak B., Dey R.K. PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci. 2016;11:337–348.
    1. Schmid D., Park C.G., Hartl C.A., Subedi N., Cartwright A.N., Puerto R.B. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 2017;8:1747.
    1. Buabeid M.A., Arafa E.A., Murtaza G. Emerging prospects for nanoparticle-enabled cancer immunotherapy. J Immunol Res. 2020;2020:9624532.
    1. Ke X., Howard G.P., Tang H., Cheng B., Saung M.T., Santos J.L. Physical and chemical profiles of nanoparticles for lymphatic targeting. Adv Drug Deliv Rev. 2019;151–152:72–93.
    1. Moon J.J., Huang B., Irvine D.J. Engineering nano- and microparticles to tune immunity. Adv Mater. 2012;24:3724–3746.
    1. Riley R.S., June C.H., Langer R., Mitchell M.J. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18:175–196.
    1. Man F., Gawne P.J., TMdR R. Nuclear imaging of liposomal drug delivery systems: a critical review of radiolabelling methods and applications in nanomedicine. Adv Drug Deliv Rev. 2019;143:134–160.
    1. Peng J.R., Yang Q., Shi K., Xiao Y., Wei X.W., Qian Z.Y. Intratumoral fate of functional nanoparticles in response to microenvironment factor: implications on cancer diagnosis and therapy. Adv Drug Deliv Rev. 2019;143:37–67.
    1. Smith T.T., Stephan S.B., Moffett H.F., McKnight L.E., Ji W., Reiman D. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat Nanotechnol. 2017;12:813–820.
    1. Wang C., Sun W.J., Wright G., Wang A.Z., Gu Z. Inflammation-triggered cancer immunotherapy by programmed delivery of CpG and anti-PD1 antibody. Adv Mater. 2016;28:8912–8920.
    1. Jia Y.P., Ma B.Y., Wei X.W., Qian Z.Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin Chem Lett. 2017;28:691–702.
    1. Yin J.F., Huang Y.X., Hameed S.M., Zhou R.Y., Xie L.J., Ying Y.B. Large scale assembly of nanomaterials: mechanisms and applications. Nanoscale. 2020;12:17571–17589.
    1. Sang W., Zhang Z., Dai Y.L., Chen X.Y. Recent advances in nanomaterial-based synergistic combination cancer immunotherapy. Chem Soc Rev. 2019;48:3771–3810.
    1. He X.S., Gershwin M.E., Ansari A.A. Checkpoint-based immunotherapy for autoimmune diseases – opportunities and challenges. J Autoimmun. 2017;79:1–3.
    1. Wraith D. Antigen-specific immunotherapy. Nature. 2016;530:422–423.
    1. Hilkens C.M., Isaacs J.D. Tolerogenic dendritic cell therapy for rheumatoid arthritis: where are we now?. Clin Exp Immunol. 2013;172:148–157.
    1. Weyand C.M., Goronzy J.J. Immunometabolism in the development of rheumatoid arthritis. Immunol Rev. 2020;294:177–187.
    1. Salomon S., Guignant C., Morel P., Flahaut G., Brault C., Gourguechon C. Th17 and CD24hiCD27+ regulatory B lymphocytes are biomarkers of response to biologics in rheumatoid arthritis. Arthritis Res Ther. 2017;19:33.
    1. Lamas J.R., Mucientes A., Lajas C., Fernández-Gutiérrez B., Lópiz Y., Marco F. Check-control of inflammation displayed by bone marrow mesenchymal stem cells in rheumatoid arthritis patients. Immunotherapy. 2019;11:1107–1116.
    1. Ehrenstein M.R., Evans J.G., Singh A., Moore S., Warnes G., Isenberg D.A. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. J Exp Med. 2004;200:277–285.
    1. Xu L., Song X.L., Su L.L., Zheng Y., Li R., Sun J. New therapeutic strategies based on IL-2 to modulate Treg cells for autoimmune diseases. Int Immunopharm. 2019;72:322–329.
    1. Semerano L., Minichiello E., Bessis N., Boissier M.-C. Novel immunotherapeutic avenues for rheumatoid arthritis. Trends Mol Med. 2016;22:214–229.
    1. Rosser E.C., Blair P.A., Mauri C. Cellular targets of regulatory B cell-mediated suppression. Mol Immunol. 2014;62:296–304.
    1. Veen Wvd, Stanic B., Wirz O.F., Jansen K., Globinska A., Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol. 2016;138:654–665.
    1. Mielle J., Audo R., Hahne M., Macia L., Combe B., Morel J. IL-10 producing B cells ability to induce regulatory T cells is maintained in rheumatoid arthritis. Front Immunol. 2018;9
    1. Daien C.I., Gailhac S., Mura T., Audo R., Combe B., Hahne M. Regulatory B10 cells are decreased in patients with rheumatoid arthritis and are inversely correlated with disease activity. Arthritis Rheum. 2014;66:2037–2046.
    1. Flores-Borja F., Bosma A., Ng D., Reddy V., Ehrenstein M.R., Isenberg D.A. CD19+ CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med. 2013;5 173ra23-ra23.
    1. Mauri C., Gray D., Mushtaq N., Londei M. Prevention of arthritis by interleukin 10–producing B cells. J Exp Med. 2003;197:489–501.
    1. Pozsgay J., Szekanecz Z., Sármay G. Antigen-specific immunotherapies in rheumatic diseases. Adv Drug Deliv Rev. 2017;13:525–537.
    1. Zhao X., Long J., Liang F., Liu N., Sun Y.Y., Xi Y.Z. Vaccination with a novel antigen-specific tolerizing DNA vaccine encoding CCOL2A1 protects rats from experimental rheumatoid arthritis. Hum Gene Ther. 2018;30:69–78.
    1. McInnes I.B., Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–442.
    1. Elemam N.M., Hannawi S., Maghazachi A.A. Role of chemokines and chemokine receptors in rheumatoid arthritis. ImmunoTargets Ther. 2020;9:43–56.
    1. McInnes I.B., Buckley C.D., Isaacs J.D. Cytokines in rheumatoid arthritis-shaping the immunological landscape. Nat Rev Rheumatol. 2016;12:63–68.
    1. Davignon J.-L., Rauwel B., Degboé Y., Constantin A., Boyer J.-F., Kruglov A. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: a review. Arthritis Res Ther. 2018;20:229.
    1. Baseta J.G., Stutman O. TNF regulates thymocyte production by apoptosis and proliferation of the triple negative (CD3−CD4−CD8−) subset. J Immunol. 2000;165:5621–5630.
    1. Huang Z.C., Yang B., Shi Y.Y., Cai B., Li Y., Feng W.H. Anti-TNF-α therapy improves Treg and suppresses Teff in patients with rheumatoid arthritis. Cell Immunol. 2012;279:25–29.
    1. Rao D.A., Gurish M.F., Marshall J.L., Slowikowski K., Fonseka C.Y., Liu Y.Y. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 2017;542:110–114.
    1. Bankó Z., Pozsgay J., Gáti T., Rojkovich B., Ujfalussy I., Sármay G. Regulatory B cells in rheumatoid arthritis: alterations in patients receiving anti-TNF therapy. Clin Immunol. 2017;184:63–69.
    1. Narazaki M., Tanaka T., Kishimoto T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expet Rev Clin Immunol. 2017;13:535–551.
    1. Samarpita S., Kim J.Y., Rasool M.K., Kim K.S. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug. Arthritis Res Ther. 2020;22:16.
    1. Olsen I.C., Lie E., Vasilescu R., Wallenstein G., Strengholt S., Kvien T.K. Assessments of the unmet need in the management of patients with rheumatoid arthritis: analyses from the NOR-DMARD registry. Rheumatology. 2019;58:481–491.
    1. Yamaoka K. Janus kinase inhibitors for rheumatoid arthritis. Curr Opin Chem Biol. 2016;32:29–33.
    1. Fragoulis G.E., McInnes I.B., Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology. 2019;58:i43–i54.
    1. Nakayamada S., Kubo S., Iwata S., Tanaka Y. Chemical JAK inhibitors for the treatment of rheumatoid arthritis. Expet Opin Pharmacother. 2016;17:2215–2225.
    1. Pujol-Autonell I., Mansilla M.-J., Rodriguez-Fernandez S., Cano-Sarabia M., Navarro-Barriuso J., Ampudia R.-M. Liposome-based immunotherapy against autoimmune diseases: therapeutic effect on multiple sclerosis. Nanomedicine. 2017;12:1231–1242.
    1. Song P., Yang C.X., Thomsen J.S., Dagnæs-Hansen F., Jakobsen M., Brüel A. Lipidoid-siRNA nanoparticle-mediated IL-1β gene silencing for systemic arthritis therapy in a mouse model. Mol Ther. 2019;27:1424–1435.
    1. Capini C., Jaturanpinyo M., Chang H.-I., Mutalik S., McNally A., Street S. Antigen-specific suppression of inflammatory arthritis using liposomes. J Immunol. 2009;182:3556–3565.
    1. Kishimoto T.K., Ferrari J.D., LaMothe R.A., Kolte P.N., Griset A.P., O'Neil C. Improving the efficacy and safety of biologic drugs with tolerogenic nanoparticles. Nat Nanotechnol. 2016;11:890–899.
    1. Khan D., Qindeel M., Ahmed N., Khan A.U., Khan S., Au Rehman. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine. 2020;15:603–624.
    1. Mohammadi M., Li Y., Abebe D.G., Xie Y.R., Kandil R., Kraus T. Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J Control Release. 2016;244:269–279.
    1. Lee H., Lee M.Y., Bhang S.H., Kim B.S., Kim Y.S., Ju J.H. Hyaluronate–gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. ACS Nano. 2014;8:4790–4798.
    1. Zou S.J., Wang B.L., Wang C., Wang Q.Q., Zhang L.M. Cell membrane-coated nanoparticles: research advances. Nanomedicine. 2020;15:625–641.
    1. He Y.W., Li R.X., Liang J.M., Zhu Y., Zhang S.Y., Zheng Z.C. Drug targeting through platelet membrane-coated nanoparticles for the treatment of rheumatoid arthritis. Nano Res. 2018;11:6086–6101.
    1. Zhang Q.Z., Dehaini D.N., Zhang Y., Zhou J.L., Chen X.Y., Zhang L.F. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol. 2018;13:1182–1190.
    1. Gorantla S., Singhvi G., Rapalli V.K., Waghule T., Dubey S.K., Saha R.N. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status. Ther Deliv. 2020;11:269–284.
    1. Nogueira E., Gomes A.C., Preto A., Cavaco-Paulo A. Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomed Nanotechnol Biol Med. 2016;12:1113–1126.
    1. Lyu Y.Q., Xiao Q.Q., Yin L.F., Yang L., He W. Potent delivery of an MMP inhibitor to the tumor microenvironment with thermosensitive liposomes for the suppression of metastasis and angiogenesis. Signal Transduct Tar. 2019;4:26.
    1. Duan W.F., Li H. Combination of NF-κB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. J Nanobiotechnol. 2018;16:58.
    1. Graham D.B., Xavier R.J. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature. 2020;578:527–539.
    1. Sun M., He C., Cong Y., Liu Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol. 2015;8:969–978.
    1. Maloy K.J., Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474:298–306.
    1. Cader M.Z., Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut. 2013;62:1653–1664.
    1. Trivedi P.J., Adams D.H. Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; pitfalls and promise. J Crohns Colitis. 2018;12:S641–S652.
    1. Raad M.A., Chams N.H., Sharara A.I. New and evolving immunotherapy in inflammatory bowel disease. Inflammatory Intestinal Diseases. 2016;1:85–95.
    1. Danese S., Vuitton L., Peyrin-Biroulet L. Biologic agents for IBD: practical insights. Nat Rev Gastroenterol Hepatol. 2015;12:537–545.
    1. Griffiths O.R., Landon J., Coxon R.E., Morris K., James P., Adams R. Chapter Five - inflammatory bowel disease and targeted oral anti-TNFα therapy. Adv Protein Chem Str. 2020;119:157–198.
    1. Zhang S.F., Langer R., Traverso G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today. 2017;16:82–96.
    1. Lautenschläger C., Schmidt C., Fischer D., Stallmach A. Drug delivery strategies in the therapy of inflammatory bowel disease. Adv Drug Deliv Rev. 2014;71:58–76.
    1. Vass P., Démuth B., Hirsch E., Nagy B., Andersen S.K., Vigh T. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release. 2019;296:162–178.
    1. Li X., Lu C., Yang Y.Y., Yu C.H., Rao Y.F. Site-specific targeted drug delivery systems for the treatment of inflammatory bowel disease. Biomed Pharmacother. 2020;129:110486.
    1. Friend D.R. New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev. 2005;57:247–265.
    1. Zhang Y.Y., Thanou M.Y., Vllasaliu D. Exploiting disease-induced changes for targeted oral delivery of biologics and nanomedicines in inflammatory bowel disease. Eur J Pharm Biopharm. 2020;155:128–138.
    1. Courthion H., Mugnier T., Rousseaux C., Möller M., Gurny R., Gabriel D. Self-assembling polymeric nanocarriers to target inflammatory lesions in ulcerative colitis. J Control Release. 2018;275:32–39.
    1. Xiao B., Chen Q.B., Zhang Z., Wang L.X., Kang Y.J., Denning T. TNFα gene silencing mediated by orally targeted nanoparticles combined with interleukin-22 for synergistic combination therapy of ulcerative colitis. J Control Release. 2018;287:235–246.
    1. Nguyen T.-H.T., Trinh N.-T., Tran H.N., Tran H.T., Le P.Q., Ngo D.-N. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J Control Release. 2021;331:515–524.
    1. Hua S.S., Marks E., Schneider J.J., Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomed Nanotechnol Biol Med. 2015;11:1117–1132.
    1. Laroui H., Dalmasso G., Nguyen H.T.T., Yan Y.T., Sitaraman S.V., Merlin D. Drug-loaded nanoparticles targeted to the colon with polysaccharide hydrogel reduce colitis in a mouse model. Gastroenterology. 2010;138 843-U77.
    1. Knipe J.M., Strong L.E., Peppas N.A. Enzyme- and pH-responsive microencapsulated manogels for oral delivery of siRNA to induce TNF-alpha knockdown in the intestine. Biomacromolecules. 2016;17:788–797.
    1. Xiao B., Xu Z.G., Viennois E., Zhang Y.C., Zhang Z., Zhang M.Z. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol Ther. 2017;25:1628–1640.
    1. Zhang S.F., Ermann J., Succi M.D., Zhou A., Hamilton M.J., Cao B. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci Transl Med. 2015;7 300ra128.
    1. Vong L.B., Mo J., Abrahamsson B., Nagasaki Y. Specific accumulation of orally administered redox nanotherapeutics in the inflamed colon reducing inflammation with dose–response efficacy. J Control Release. 2015;210:19–25.
    1. Li C.W., Zhao Y., Cheng J., Guo J.W., Zhang Q.X., Zhang X.J. A proresolving peptide nanotherapy for site-specific treatment of inflammatory bowel disease by regulating proinflammatory microenvironment and gut microbiota. Adv Sci. 2019;6:1900610.
    1. Li S.S., Xie A.Q., Li H., Zou X., Zhang Q.X. A self-assembled, ROS-responsive janus-prodrug for targeted therapy of inflammatory bowel disease. J Control Release. 2019;316:66–78.
    1. Naeem M., Oshi M.A., Kim J., Lee J., Cao J.F., Nurhasni H. pH-triggered surface charge-reversal nanoparticles alleviate experimental murine colitis via selective accumulation in inflamed colon regions. Nanomed Nanotechnol Biol Med. 2018;14:823–834.
    1. Xiao B., Laroui H., Ayyadurai S., Viennois E., Charania M.A., Zhang Y.C. Mannosylated bioreducible nanoparticle-mediated macrophage-specific TNF-α RNA interference for IBD therapy. Biomaterials. 2013;34:7471–7482.
    1. Zeeshan M., Ali H., Khan S., Khan S.A., Weigmann B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int J Pharm. 2019;558:201–214.
    1. Lee Y., Sugihara K., Gillilland M.G., Jon S., Kamada N., Moon J.J. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat Mater. 2020;19:118–126.
    1. Vafaei S.Y., Esmaeili M., Amini M., Atyabi F., Ostad S.N., Dinarvand R. Self assembled hyaluronic acid nanoparticles as a potential carrier for targeting the inflamed intestinal mucosa. Carbohydr Polym. 2016;144:371–381.
    1. Sun Y., Duan B.C., Chen H.H., Xu X.J. A novel strategy for treating inflammatory bowel disease by targeting delivery of methotrexate through glucan particles. Adv Healthc Mater. 2020;9:1901805.
    1. Zhang M.Z., Xu C.L., Liu D.D., Han M.K., Wang L.X., Merlin D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J Crohns Colitis. 2018;12:217–229.
    1. Beloqui A., Coco R., Memvanga P.B., Ucakar B., des Rieux A., Préat V. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm. 2014;473:203–212.
    1. Singh A.K., Cabral C., Kumar R., Ganguly R., Rana H.K., Gupta A. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients. 2019;11:2216.
    1. Wang X.Y., Yan J.J., Wang L.Z., Pan D.H., Yang R.L., Xu Y.P. Rational design of polyphenol-poloxamer nanovesicles for targeting inflammatory bowel disease therapy. Chem Mater. 2018;30:4073–4080.
    1. Kesharwani S.S., Ahmad R., Bakkari M.A., Rajput M.K.S., Dachineni R., Valiveti C.K. Site-directed non-covalent polymer-drug complexes for inflammatory bowel disease (IBD): formulation development, characterization and pharmacological evaluation. J Control Release. 2018;290:165–179.
    1. Huang Z., Gan J.J., Jia L.X., Guo G.X., Wang C.M., Zang Y.H. An orally administrated nucleotide-delivery vehicle targeting colonic macrophages for the treatment of inflammatory bowel disease. Biomaterials. 2015;48:26–36.
    1. Antonino R.S.C.M.Q., Nascimento T.L., de Oliveira Junior E.R., Souza L.G., Batista A.C., Lima E.M. Thermoreversible mucoadhesive polymer-drug dispersion for sustained local delivery of budesonide to treat inflammatory disorders of the GI tract. J Control Release. 2019;303:12–23.
    1. Brusini R., Varna M., Couvreur P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv Drug Deliv Rev. 2020;157:161–178.
    1. Teng C., Lin C.S., Huang F.F., Xing X.Y., Chen S.Y., Ye L. Intracellular codelivery of anti-inflammatory drug and anti-miR 155 to treat inflammatory disease. Acta Pharm Sin B. 2020;10:1521–1533.
    1. Zhao Y.G., Yang Y.T., Zhang J.X., Wang R., Cheng B.Y., Kalambhe D. Lactoferrin-mediated macrophage targeting delivery and patchouli alcohol-based therapeutic strategy for inflammatory bowel diseases. Acta Pharm Sin B. 2020;10:1966–1976.
    1. Cai Z.J., Zhang W., Yang F., Yu L., Yu Z., Pan J.H. Immunosuppressive exosomes from TGF-β1 gene-modified dendritic cells attenuate Th17-mediated inflammatory autoimmune disease by inducing regulatory T cells. Cell Res. 2012;22:607–610.
    1. Cybulsky M.I., Gimbrone M.A. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science. 1991;251:788–791.
    1. Gisterå A., Hansson G.K. The immunology of atherosclerosis. Nat Rev Nephrol. 2017;13:368–380.
    1. Lievens D., von Hundelshausen P. Platelets in atherosclerosis. J Thromb Haemostasis. 2011;106:827–838.
    1. Newland S.A., Mohanta S., Clément M., Taleb S., Walker J.A., Nus M. Type-2 innate lymphoid cells control the development of atherosclerosis in mice. Nat Commun. 2017;8:1–11.
    1. Borén J., Williams K.J. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016;27:473–483.
    1. Park Y.M., Febbraio M., Silverstein R.L. CD36 modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest. 2009;119:136–145.
    1. Van Gils J.M., Derby M.C., Fernandes L.R., Ramkhelawon B., Ray T.D., Rayner K.J. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat Immunol. 2012;13:136–143.
    1. Moore K.J., Sheedy F.J., Fisher E.A. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709–721.
    1. Lichtman A.H., Binder C.J., Tsimikas S., Witztum J.L. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J Clin Invest. 2013;123:27–36.
    1. Hansson G.K., Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12:204.
    1. Taleb S. Inflammation in atherosclerosis. Arch Cardiovasc Dis. 2016;109:708–715.
    1. Tousoulis D., Oikonomou E., Economou E.K., Crea F., Kaski J.C. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J. 2016;37:1723–1732.
    1. Lüscher T.F. Novel mechanisms of atherosclerosis and cardiovascular repair. Eur Heart J. 2016;37:1709–1711.
    1. Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–1131.
    1. Ridker P.M., MacFadyen J.G., Everett B.M., Libby P., Thuren T., Glynn R.J. Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial. Lancet. 2018;391:319–328.
    1. Ridker P.M., Libby P., MacFadyen J.G., Thuren T., Ballantyne C., Fonseca F. Modulation of the interleukin-6 signalling pathway and incidence rates of atherosclerotic events and all-cause mortality: analyses from the canakinumab anti-inflammatory thrombosis outcomes study (CANTOS) Eur Heart J. 2018;39:3499–3507.
    1. Rouwet E., Lutgens E. 2016 Jeffrey M. Hoeg award lecture: immune checkpoints in atherosclerosis: toward immunotherapy for atheroprotection. Atertio Thromb Vasc Biol. 2018;38:1678–1688.
    1. Doesch A.O., Zhao L., Gleissner C.A., Akhavanpoor M., Rohde D., Okuyucu D. Inhibition of B7-1 (CD80) by RhuDex® reduces lipopolysaccharide-mediated inflammation in human atherosclerotic lesions. Drug Des Dev Ther. 2014;8:447.
    1. Meletta R., Herde A.M., Dennler P., Fischer E., Schibli R., Krämer S.D. Preclinical imaging of the co-stimulatory molecules CD80 and CD86 with indium-111-labeled belatacept in atherosclerosis. EJNMMI Res. 2016;6:1.
    1. Müller A., Mu L.J., Meletta R., Beck K., Rancic Z., Drandarov K. Towards non-invasive imaging of vulnerable atherosclerotic plaques by targeting co-stimulatory molecules. Int J Cardiol. 2014;174:503–515.
    1. Lutgens E., Lievens D., Beckers L., Wijnands E., Soehnlein O., Zernecke A. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med. 2010;207:391–404.
    1. Schönbeck U., Sukhova G., Shimizu K., Mach F., Libby P. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. P Natl Acad Sci USA. 2000;97:7458–7463.
    1. Mach F., Schönbeck U., Sukhova G.K., Atkinson E., Libby P. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature. 1998;394:200–203.
    1. Lutgens E., Gorelik L., Daemen M.J., de Muinck E.D., Grewal I.S., Koteliansky V.E. Requirement for CD154 in the progression of atherosclerosis. Nat Med. 1999;5:1313–1316.
    1. Zernecke A., Weber C. Chemokines in atherosclerosis: proceedings resumed. Arterioscl Throm Vas. 2014;34:742–750.
    1. EPCvd Vorst, Döring Y., Weber C. Chemokines and their receptors in atherosclerosis. J Mol Med. 2015;93:963–971.
    1. Noels H., Weber C., Koenen R.R. Chemokines as therapeutic targets in cardiovascular disease. Arterioscl Throm Vas. 2019;39:583–592.
    1. Jones K., Maguire J., Davenport A. Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J Pharmacol. 2011;162:1453–1469.
    1. Hamesch K., Subramanian P., Li X.F., Dembowsky K., Chevalier E., Weber C. The CXCR4 antagonist POL5551 is equally effective as sirolimus in reducing neointima formation without impairing re-endothelialisation. J Thromb Haemostasis. 2012;107:356–368.
    1. Karshovska E., Zagorac D., Zernecke A., Weber C., Schober A. A small molecule CXCR4 antagonist inhibits neointima formation and smooth muscle progenitor cell mobilization after arterial injury. J Thromb Haemostasis. 2008;6:1812–1815.
    1. Lutgens E., Atzler D., Doring Y., Duchene J., Steffens S., Weber C. Immunotherapy for cardiovascular disease. Eur Heart J. 2019;40:3937–3946.
    1. Shirai T., Nazarewicz R.R., Wallis B.B., Yanes R.E., Watanabe R., Hilhorst M. The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease. J Exp Med. 2016;213:337–354.
    1. Moon J.S., Hisata S., Park M.A., DeNicola G.M., Ryter S.W., Nakahira K. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 2015;12:102–115.
    1. Vats D., Mukundan L., Odegaard J.I., Zhang L., Smith K.L., Morel C.R. Oxidative metabolism and PGC-1β attenuate macrophage-mediated inflammation. Cell Metabol. 2006;4:13–24.
    1. Michalek R.D., Gerriets V.A., Jacobs S.R., Macintyre A.N., MacIver N.J., Mason E.F. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186:3299–3303.
    1. GJvd Windt, Everts B., Chang C.-H., Curtis J.D., Freitas T.C., Amiel E. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012;36:68–78.
    1. Ren B., Van Kampen E., Van Berkel T.J., Cruickshank S.M., Van Eck M. Hematopoietic arginase 1 deficiency results in decreased leukocytosis and increased foam cell formation but does not affect atherosclerosis. Atherosclerosis. 2017;256:35–46.
    1. Cole J.E., Astola N., Cribbs A.P., Goddard M.E., Park I., Green P. Indoleamine 2, 3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. P Natl Acad Sci Usa. 2015;112:13033–13038.
    1. Peterson A.S., Fong L.G., Young S.G. Errata. PCSK9 function and physiology. J Lipid Res. 2008;49:1595–1599.
    1. Grooth GJd, Klerkx A.H., Stroes E.S., Stalenhoef A.F., Kastelein J.J., Kuivenhoven J.A. A review of CETP and its relation to atherosclerosis. J Lipid Res. 2004;45:1967–1974.
    1. Koren M.J., Lundqvist P., Bolognese M., Neutel J.M., Monsalvo M.L., Yang J.Y. Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol. 2014;63:2531–2540.
    1. Crossey E., Amar M.J., Sampson M., Peabody J., Schiller J.T., Chackerian B. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33:5747–5755.
    1. Rittershaus C.W., Miller D.P., Thomas L.J., Picard M.D., Honan C.M., Emmett C.D. Vaccine-induced antibodies inhibit CETP activity in vivo and reduce aortic lesions in a rabbit model of atherosclerosis. Arterioscl Throm Vas. 2000;20:2106–2112.
    1. Ait-Oufella H., Salomon B.L., Potteaux S., Robertson A.-K.L., Gourdy P., Zoll J. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178–180.
    1. Tv Es, GHv Puijvelde, Foks A., Habets K., Bot I., Gilboa E. Vaccination against Foxp3+ regulatory T cells aggravates atherosclerosis. Atherosclerosis. 2010;209:74–80.
    1. Ou H.X., Guo B.B., Liu Q., Li Y.K., Yang Z., Feng W.J. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin. 2018;39:1249–1258.
    1. Beldman T.J., Malinova T.S., Desclos E., Grootemaat A.E., Misiak A.L.S., van der Velden S. Nanoparticle-aided characterization of arterial endothelial architecture during atherosclerosis progression and metabolic therapy. ACS Nano. 2019;13:13759–13774.
    1. Momtazi-Borojeni A.A., Jaafari M.R., Badiee A., Banach M., Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223.
    1. Kiaie N., Gorabi A.M., Penson P.E., Watts G., Johnston T.P., Banach M. A new approach to the diagnosis and treatment of atherosclerosis: the era of the liposome. Drug Discov Today. 2020;25:58–72.
    1. Seijkens T.T.P., van Tiel C.M., Kusters P.J.H., Atzler D., Soehnlein O., Zarzycka B. Targeting CD40-induced TRAF6 signaling in macrophages reduces atherosclerosis. J Am Coll Cardiol. 2018;71:527–542.
    1. Peters E.B., Tsihlis N.D., Karver M.R., Chin S.M., Musetti B., Ledford B.T. Atheroma niche-responsive nanocarriers for immunotherapeutic delivery. Adv Healthc Mater. 2019;8:1801545.
    1. Song Y.N., Huang Z.Y., Liu X., Pang Z.Q., Chen J., Yang H.B. Platelet membrane-coated nanoparticle-mediated targeting delivery of rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE−/−) mice. Nanomed-Nanotechnol. 2019;15:13–24.
    1. Yi S.J., Allen S.D., Liu Y.G., Ouyang B.Z., Li X., Augsornworawat P. Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano. 2016;10:11290–11303.
    1. Schönbeck U., Libby P. CD40 signaling and plaque instability. Circ Res. 2001;89:1092–1103.
    1. Lameijer M., Binderup T., van Leent M.M.T., Senders M.L., Fay F., Malkus J. Efficacy and safety assessment of a TRAF6-targeted nanoimmunotherapy in atherosclerotic mice and non-human primates. Nat Biomed Eng. 2018;2:279–292.
    1. Ye Z.S., Zhong L., Zhu S.N., Wang Y.N., Zheng J., Wang S.J. The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway. Cell Death Dis. 2019;10:1–15.
    1. Subramanian M., Thorp E., Hansson G.K., Tabas I. Treg-mediated suppression of atherosclerosis requires MYD88 signaling in DCs. J Clin Invest. 2013;123:179–188.
    1. Foks A.C., Lichtman A.H., Kuiper J. Treating atherosclerosis with regulatory T cells. Atertio Thromb Vasc Biol. 2015;35:280–287.
    1. Paulson K.E., Zhu S.N., Chen M., Nurmohamed S., Jongstra-Bilen J., Cybulsky M.I. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ Res. 2010;106:383–390.
    1. Weber C., Meiler S., Döring Y., Koch M., Drechsler M., Megens R.T. CCL17-expressing dendritic cells drive atherosclerosis by restraining regulatory T cell homeostasis in mice. J Clin Invest. 2011;121:2898–2910.
    1. Niessner A., Weyand C.M. Dendritic cells in atherosclerotic disease. Clin Immunol. 2010;134:25–32.
    1. Yi S.J., Zhang X.H., Sangji M.H., Liu Y.G., Allen S.D., Xiao B.X. Surface engineered polymersomes for enhanced modulation of dendritic cells during cardiovascular immunotherapy. Adv Funct Mater. 2019;29:1904399.
    1. Benne N., van Duijn J., Vigario F.L., Leboux R.J., van Veelen P., Kuiper J. Anionic 1, 2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. J Control Release. 2018;291:135–146.
    1. Li C.W., Dou Y., Chen Y.D., Qi Y.T., Li L.L., Han S.L. Site-specific microRNA-33 antagonism by pH-responsive nanotherapies for treatment of atherosclerosis via regulating cholesterol efflux and adaptive immunity. Adv Funct Mater. 2020:2002131.
    1. Bermúdez V., Rojas-Quintero J., Velasco M. The quest for immunotherapy in atherosclerosis: CANTOS study, interleukin-1β and vascular inflammation. J Thorac Dis. 2017;10:64–69.
    1. Yin L.Q., Peng C.P., Tang Y., Yuan Y.C., Liu J.X., Xiang T.T. Biomimetic oral targeted delivery of bindarit for immunotherapy of atherosclerosis. Biomater Sci. 2020;8:3640–3648.
    1. Deshpande V., Krishnan R., Philip S., Faludi I., Ponnusamy T., Thota L.N.R. Oral administration of recombinant mycobacterium smegmatis expressing a tripeptide construct derived from endogenous and microbial antigens prevents atherosclerosis in ApoE−/− mice. Cardiovasc Ther. 2016;34:314–324.
    1. Thota L.N., Ponnusamy T., Lu X., Mundkur L. Long-term efficacy and safety of immunomodulatory therapy for atherosclerosis. Cardiovasc Drugs Ther. 2019;33:385–398.
    1. Sato-Okabayashi Y., Isoda K., Heissig B., Kadoguchi T., Akita K., Kitamura K. Low-dose oral cyclophosphamide therapy reduces atherosclerosis progression by decreasing inflammatory cells in a murine model of atherosclerosis. IJC Heart & Vasculature. 2020;28:100529.
    1. Beltrán-López J.I., Romero-Maldonado A., Monreal-Escalante E., Bañuelos-Hernández B., Paz-Maldonado L.M., Rosales-Mendoza S. Chlamydomonas reinhardtii chloroplasts express an orally immunogenic protein targeting the p210 epitope implicated in atherosclerosis immunotherapies. Plant Cell Rep. 2016;35:1133–1141.
    1. Arevalo-Villalobos J.I., Alonso D.O.G., Rosales-Mendoza S. Using carrot cells as biofactories and oral delivery vehicles of LTB-Syn: a low-cost vaccine candidate against synucleinopathies. J Biotechnol. 2020;309:75–80.
    1. Schermuly R.T., Ghofrani H.A., Wilkins M.R., Grimminger F. Mechanisms of disease: pulmonary arterial hypertension. Nat Rev Cardiol. 2011;8:443.
    1. Li C., Liu P.P., Song R., Zhang Y.Q., Lei S., Wu S.J. Immune cells and autoantibodies in pulmonary arterial hypertension. Acta Biochim Biophys Sin. 2017;49:1047–1057.
    1. Chu Y.B., XiangLi X.Y., Xiao W. Regulatory T cells protect against hypoxia-induced pulmonary arterial hypertension in mice. Mol Med Rep. 2015;11:3181–3187.
    1. Zhu R., Chen L., Xiong Y.Q., Wang N.N., Xie X.C., Hong Y.Q. An upregulation of CD8+ CD25+ Foxp3+ T cells with suppressive function through interleukin 2 pathway in pulmonary arterial hypertension. Exp Cell Res. 2017;358:182–187.
    1. Qiu H.H., He Y., Ouyang F., Jiang P., Guo S.H., Guo Y. The role of regulatory T Cells in pulmonary arterial hypertension. J Am Heart Assoc. 2019;8
    1. Yang K., Blanco D.B., Neale G., Vogel P., Avila J., Clish C.B. Homeostatic control of metabolic and functional fitness of Treg cells by LKB1 signalling. Nature. 2017;548:602–606.
    1. Whitehouse G., Gray E., Mastoridis S., Merritt E., Kodela E., Yang J.H. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors. P Natl Acad Sci Usa. 2017;114:7083–7088.
    1. Wang H., Hou L., Kwak D., Fassett J., Xu X., Chen A. Increasing regulatory T cells with interleukin-2 and interleukin-2 antibody complexes attenuates lung inflammation and heart failure progression. Hypertension. 2016;68:114–122.
    1. Marinho A., Carvalho C., Boleixa D., Bettencourt A., Leal B., Guimarães J. Vitamin D supplementation effects on FoxP3 expression in T cells and FoxP3+/IL-17A ratio and clinical course in systemic lupus erythematosus patients: a study in a Portuguese cohort. Immunol Res. 2017;65:197–206.
    1. Tabares P., Berr S., Römer P.S., Chuvpilo S., Matskevich A.A., Tyrsin D. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. Eur J Immunol. 2014;44:1225–1236.
    1. Ferreira L.M., Muller Y.D., Bluestone J.A., Tang Q. Next-generation regulatory T cell therapy. Nat Rev Drug Discov. 2019;18:749–769.
    1. Bluestone J.A., Buckner J.H., Fitch M., Gitelman S.E., Gupta S., Hellerstein M.K. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7:315ra18.
    1. Dall'Era M., Pauli M.L., Remedios K., Taravati K., Sandova P.M., Putnam A.L. Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. Arthritis Rheum. 2019;71:431–440.
    1. Zamanian R., Badesch D., Chung L., Domsic R., Medsger T., Pinckney A. Late Breaking Abstract-Safety and efficacy of B-cell depletion with rituximab for the treatment of systemic sclerosis-associated pulmonary arterial hypertension. Eur Respir J. 2019;54:RCT1884.
    1. Bryant A.J., Fu Ch, Lu Y., Brantly M.L., Mehrad B., Moldawer L.L. A checkpoint on innate myeloid cells in pulmonary arterial hypertension. Pulm Circ. 2018;9 2045894018823528.
    1. Nicolls M.R., Voelkel N.F. The roles of immunity in the prevention and evolution of pulmonary arterial hypertension. A perspective. Am J Respir Crit Care Med. 2017;195:1292–1299.
    1. Humbert M., Monti G., Brenot F., Sitbon O., Portier A., Grangeot-Keros L. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med. 1995;151:1628–1631.
    1. Kim K.S., Jung H., Shin I.K., Choi B.R., Kim D.H. Induction of interleukin-1 beta (IL-1β) is a critical component of lung inflammation during influenza A (H1N1) virus infection. J Med Virol. 2015;87:1104–1112.
    1. Groth A., Vrugt B., Brock M., Speich R., Ulrich S., Huber L.C. Inflammatory cytokines in pulmonary hypertension. Respir Res. 2014;15:47.
    1. Hernández-Sánchez J., Harlow L., Church C., Gaine S., Knightbridge E., Bunclark K. Clinical trial protocol for TRANSFORM-UK: a therapeutic open-label study of tocilizumab in the treatment of pulmonary arterial hypertension. Respir Res. 2017;8 2045893217735820.
    1. Wang Q., Zuo X.R., Wang Y.Y., Xie W.P., Wang H., Zhang M.J. Monocrotaline-induced pulmonary arterial hypertension is attenuated by TNF-α antagonists via the suppression of TNF-α expression and NF-κB pathway in rats. Vasc Pharmacol. 2013;58:71–77.
    1. Nakaoka Y., Inagaki T., Shirai M. Springer Singapore; Singapore: 2020. Inflammatory cytokines in the pathogenesis of pulmonary arterial hypertension.
    1. Mamazhakypov A., Viswanathan G., Lawrie A., Schermuly R.T., Rajagopal S. The role of chemokines and chemokine receptors in pulmonary arterial hypertension. Br J Pharmacol. 2019;195:1–18.
    1. Tian W., Jiang X.G., Tamosiuniene R., Sung Y.K., Qian J., Dhillon G. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med. 2013;5
    1. Li S.J., Zhai C., Shi W.H., Feng W., Xie X.M., Pan Y.L. Leukotriene B4 induces proliferation of rat pulmonary arterial smooth muscle cells via modulating GSK-3β/β-catenin pathway. Eur J Pharmacol. 2020;867:172823.
    1. Galié N., Manes A., Branzi A. The endothelin system in pulmonary arterial hypertension. Cardiovasc Res. 2004;61:227–237.
    1. Dai Y., Chen X., Song X.X., Chen X.J., Ma W.R., Lin J.B. Immunotherapy of endothelin-1 receptor type a for pulmonary arterial hypertension. J Am Coll Cardiol. 2019;73:2567–2580.
    1. Li C., Yan X.L., Wu D.Y., Zhang K., Liang X., Pan Y.J. Vaccine targeted alpha 1D-adrenergic receptor for hypertension. Hypertension. 2019;74:1551–1562.
    1. Lee Y., Pai S.B., Bellamkonda R.V., Thompson D.H., Singh J. Cerivastatin nanoliposome as a potential disease modifying approach for the treatment of pulmonary arterial hypertension. J Pharmacol Exp Therapeut. 2018;366:66–74.
    1. Dhoble S., Patravale V. Development of anti-angiogenic erlotinib liposomal formulation for pulmonary hypertension: a QbD approach. Drug Deliv Transl Re. 2019;9:980–996.
    1. Kimura S., Egashira K., Chen L., Nakano K., Iwata E., Miyagawa M. Nanoparticle-mediated delivery of nuclear factor B decoy into lungs ameliorates monocrotaline-induced pulmonary arterial hypertension. Hypertension. 2009;53:877–883.
    1. Chen L., Nakano K., Kimura S., Matoba T., Iwata E., Miyagawa M. Nanoparticle-mediated delivery of pitavastatin into lungs ameliorates the development and induces regression of monocrotaline-induced pulmonary artery hypertension. Hypertension. 2011;57:343–350.
    1. Emami F., Yazdi S.J.M., Na D.H. Poly(lactic acid)/poly (lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J Pharm Sci. 2019;49:427–442.
    1. Lee W.-H., Loo C.-Y., Traini D., Young P.M. Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci. 2015;10:481–489.
    1. Long L., Ormiston M.L., Yang X.D., Southwood M., Gräf S., Machado R.D. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension. Nat Med. 2015;21:777–785.
    1. Spiekerkoetter E., Tian X.F., Cai J., Hopper R.K., Sudheendra D., Li C.G. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 2013;123:3600–3613.
    1. Spiekerkoetter E., Sung Y.K., Sudheendra D., Bill M., Aldred M.A., van de Veerdonk M.C. Low-dose FK506 (tacrolimus) in end-stage pulmonary arterial hypertension. Am J Respir Crit Care Med. 2015;192:254–257.
    1. Spiekerkoetter E., Sung Y.K., Sudheendra D., Scott V., Del Rosario P., Bill M. Randomised placebo-controlled safety and tolerability trial of FK506 (tacrolimus) for pulmonary arterial hypertension. Eur Respir J. 2017;50:1602449.
    1. Wang Z.M., Cuddigan J.L., Gupta S.K., Meenach S.A. Nanocomposite microparticles (nCmP) for the delivery of tacrolimus in the treatment of pulmonary arterial hypertension. Int J Pharm. 2016;512:305–313.
    1. Yang Y.C., Lin F., Xiao Z.Q., Sun B., Wei Z.Y., Liu B.Y. Investigational pharmacotherapy and immunotherapy of pulmonary arterial hypertension: an update. Biomed Pharmacother. 2020;129:110355.
    1. Pauken K.E., Dougan M., Rose N.R., Lichtman A.H., Sharpe A.H. Adverse events following cancer immunotherapy: obstacles and opportunities. Trends Immunol. 2019;40:511–523.
    1. Jiang X.T., Xu J., Liu M.F., Xing H., Wang Z.M., Huang L. Adoptive CD8+ T cell therapy against cancer: challenges and opportunities. Cancer Lett. 2019;462:23–32.
    1. Qi J.P., Hu X.W., Dong X.C., Lu Y., Lu H.P., Zhao W.L. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool. Adv Drug Deliv Rev. 2019;143:206–225.
    1. Anselmo A.C., Gokarn Y., Mitragotri S. Non-invasive delivery strategies for biologics. Nat Rev Drug Discov. 2019;18:19–40.

Source: PubMed

3
구독하다