Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region

Mohammad Zakir Hossain, Shumpei Unno, Hiroshi Ando, Yuji Masuda, Junichi Kitagawa, Mohammad Zakir Hossain, Shumpei Unno, Hiroshi Ando, Yuji Masuda, Junichi Kitagawa

Abstract

Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

Keywords: astroglia; microglia; neuropathic orofacial pain; orofacial motor activity; satellite glial cells.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The immune response near the site of a nerve injury sensitizes the nerve terminals. Resident mast cells (MC) are activated and release vasodilators that act on blood vessels, leading to infiltration of immune cells, such as neutrophils, monocytes and T-lymphocytes. Monocytes differentiate into macrophages. These immune cells release inflammatory mediators that sensitize terminals of injured and uninjured nerves. Schwann cells (Sch) that cover the myelinated nerves release cytokines (e.g., TNF-α, IL-15) that also facilitate the recruitment and activation of macrophages. ION: Inferior orbital nerve; IAN: Inferior alveolar nerve; MC: Mast cell; T: T-lymphocyte; N: Neutrophil; MN: Monocyte; MAC: Macrophage; TNF-α: Tumor necrosis factor alpha; IL-15: Interleukin 15.
Figure 2
Figure 2
Satellite glial cells (SGCs) surrounding the cell bodies of neurons in the ganglia play an important role in the development of neuropathic pain. Nerve injury leads to the activation and proliferation of SGCs in the sensory ganglia. They interact with neurons through paracrine signaling. ATP, released from SGCs as well as from injured neurons, acts on purinergic receptors, resulting in the mutual activation of neurons and SGCs (indicated in the diagram by straight arrows). Purinergic receptors, P2Y12 and P2X3, are upregulated in the trigeminal ganglion following nerve injury. SGCs express the inwardly rectifying potassium channel, Kir4.1, which helps to maintain extracellular potassium homeostasis. Following nerve injury, expression of Kir4.1 is downregulated in the trigeminal ganglion, thereby increasing extracellular potassium and neuronal excitability. Communication among the SGCs also increases (indicated in the diagram by solid curved arrows), as evidenced by the increase in expression of the common gap junction protein, connexin 43 (Cx43), in the trigeminal ganglion following nerve injury. This communication spreads to the SGCs of nearby neurons, which in turn sensitizes these cells. ATP: Adenosine triphosphate; P2Y12: Purinergic receptor subtype Y12; P2X3: Purinergic receptor subtype X3; Kir4.1: Inwardly rectifying potassium (Kir) channel 4.1. TG: Trigeminal ganglion.
Figure 3
Figure 3
Glial cell involvement in sensory nuclei participates in the development of neuropathic pain. Microglia and astroglia are activated and proliferated in the brainstem sensory nuclei of the trigeminal nerve. Increased primary afferent input following nerve injury causes the release of neurotransmitters and neural and immune mediators, which increase the sensitivity of postsynaptic secondary neurons and activate glial cells. Upon activation, glial cells release mediators (such as ATP, IL-1β, TNF-α and BDNF) that act on secondary neurons and increase their sensitivity. Glutamate–glutamine shuttle activity between astroglia and neurons is increased following nerve injury, thereby increasing the glutamate supply in the synapses between primary and secondary neurons. Cx43 expression increases in astroglia following trigeminal nerve injury, indicating increased communication among the astroglial cells. ATP: Adenosine triphosphate; CGRP: Calcitonin gene-related peptide; BDNF: Brain derived neurotrophic factor; IL-6: Interleukin 6; CCL2: Chemokine ligand 2; IL-1β: Interleukin 1 beta; TNF-α: Tumor necrosis factor alpha; A: Astroglia; M: Microglia.
Figure 4
Figure 4
Temporal profile of microglial and astroglial activation in the motor nucleus of the trigeminal nerve following peripheral nerve injury (inj-V: injury to the trigeminal nerve). Following nerve injury, the numbers of activated microglial and astroglial cells (counted on day 3 and 14 following nerve injury) were increased significantly compared with sham-operated rats. The highest number of activated microglia was observed on day 3 following injury; however, the highest number of activated astroglia was observed on day 14 following injury. The figure is modified from our previous published papers [118,119]. * p < 0.05.
Figure 5
Figure 5
Schematic showing the involvement of glia in the trigeminal motor nucleus in the change in orofacial motor activity following nerve injury. Activated microglia and astroglia are observed in the motor trigeminal nucleus following nerve injury. Similar to sensory nuclei, pro-inflammatory mediators might be released from hyperactive microglia, and these mediators may alter the sensitivity of motor neurons. The astroglial glutamate–glutamine shuttle might also participate in the modulation of motor neuronal activity. BDNF: Brain derived neurotrophic factor; IL-6: Interleukin 6; IL-1β: Interleukin 1 beta; TNF-α: Tumor necrosis factor alpha; Glut: Glutamate; Gln: Glutamine; Gln sth: glutamine synthetase; ADP: Adenosine Diphosphate; Pi: Inorganic phosphate; A: Astroglia; M: Microglia.

References

    1. Duenas M., Ojeda B., Salazar A., Mico J.A., Failde I. A review of chronic pain impact on patients, their social environment and the health care system. J. Pain Res. 2016;9:457–467. doi: 10.2147/JPR.S105892.
    1. Smith J.H., Cutrer F.M. Numbness matters: A clinical review of trigeminal neuropathy. Cephalalgia. 2011;31:1131–1144. doi: 10.1177/0333102411411203.
    1. Benoliel R., Sharav Y. Chronic orofacial pain. Curr. Pain Headache Rep. 2010;14:33–40. doi: 10.1007/s11916-009-0085-y.
    1. Sessle B.J. Acute and chronic craniofacial pain: Brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit. Rev. Oral Biol. Med. 2000;11:57–91. doi: 10.1177/10454411000110010401.
    1. Macfarlane T.V., Blinkhorn A.S., Davies R.M., Ryan P., Worthington H.V., Macfarlane G.J. Orofacial pain: Just another chronic pain? Results from a population-based survey. Pain. 2002;99:453–458. doi: 10.1016/S0304-3959(02)00181-1.
    1. Zakrzewska J.M. Differential diagnosis of facial pain and guidelines for management. Br. J. Anaesth. 2013;111:95–104. doi: 10.1093/bja/aet125.
    1. Maarbjerg S., Di Stefano G., Bendtsen L., Cruccu G. Trigeminal neuralgia-diagnosis and treatment. Cephalalgia. 2017;37:648–657. doi: 10.1177/0333102416687280.
    1. Campbell J.N., Meyer R.A. Mechanisms of neuropathic pain. Neuron. 2006;52:77–92. doi: 10.1016/j.neuron.2006.09.021.
    1. Zakir H.M., Mostafeezur R.M., Suzuki A., Hitomi S., Suzuki I., Maeda T., Seo K., Yamada Y., Yamamura K., Lev S., et al. Expression of trpv1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation. PLoS ONE. 2012:7. doi: 10.1371/journal.pone.0044023.
    1. Iwata K., Imamura Y., Honda K., Shinoda M. Physiological mechanisms of neuropathic pain: The orofacial region. Int. Rev. Neurobiol. 2011;97:227–250.
    1. Sessle B.J. Peripheral and central mechanisms of orofacial inflammatory pain. Int. Rev. Neurobiol. 2011;97:179–206.
    1. Zhuo M., Wu G., Wu L.J. Neuronal and microglial mechanisms of neuropathic pain. Mol. Brain. 2011;4 doi: 10.1186/1756-6606-4-31.
    1. Benoliel R., Svensson P., Heir G.M., Sirois D., Zakrzewska J., Oke-Nwosu J., Torres S.R., Greenberg M.S., Klasser G.D., Katz J., et al. Persistent orofacial muscle pain. Oral. Dis. 2011;17:23–41. doi: 10.1111/j.1601-0825.2011.01790.x.
    1. Benoliel R., Zadik Y., Eliav E., Sharav Y. Peripheral painful traumatic trigeminal neuropathy: Clinical features in 91 cases and proposal of novel diagnostic criteria. J. Orofac. Pain. 2012;26:49–58.
    1. Murray H., Locker D., Mock D., Tenenbaum H.C. Pain and the quality of life in patients referred to a craniofacial pain unit. J. Orofac. Pain. 1996;10:316–323.
    1. Scholz J., Woolf C.J. The neuropathic pain triad: Neurons, immune cells and glia. Nat. Neurosci. 2007;10:1361–1368. doi: 10.1038/nn1992.
    1. Leung L., Cahill C.M. TNF-α and neuropathic pain—A review. J. Neuroinflamm. 2010;7 doi: 10.1186/1742-2094-7-27.
    1. Guo W., Wang H., Watanabe M., Shimizu K., Zou S., LaGraize S.C., Wei F., Dubner R., Ren K. Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J. Neurosci. 2007;27:6006–6018. doi: 10.1523/JNEUROSCI.0176-07.2007.
    1. Ren K., Dubner R. Neuron-glia crosstalk gets serious: Role in pain hypersensitivity. Curr. Opin. Anaesthesiol. 2008;21:570–579. doi: 10.1097/ACO.0b013e32830edbdf.
    1. McCarberg B.H., Billington R. Consequences of neuropathic pain: Quality-of-life issues and associated costs. Am. J. Manag. Care. 2006;12:S263–S268.
    1. Doth A.H., Hansson P.T., Jensen M.P., Taylor R.S. The burden of neuropathic pain: A systematic review and meta-analysis of health utilities. Pain. 2010;149:338–344. doi: 10.1016/j.pain.2010.02.034.
    1. Aggarwal V.R., McBeth J., Zakrzewska J.M., Lunt M., Macfarlane G.J. The epidemiology of chronic syndromes that are frequently unexplained: Do they have common associated factors? Int. J. Epidemiol. 2006;35:468–476. doi: 10.1093/ije/dyi265.
    1. Mueller D., Obermann M., Yoon M.S., Poitz F., Hansen N., Slomke M.A., Dommes P., Gizewski E., Diener H.C., Katsarava Z. Prevalence of trigeminal neuralgia and persistent idiopathic facial pain: A population-based study. Cephalalgia. 2011;31:1542–1548. doi: 10.1177/0333102411424619.
    1. Koopman J.S., Dieleman J.P., Huygen F.J., de Mos M., Martin C.G., Sturkenboom M.C. Incidence of facial pain in the general population. Pain. 2009;147:122–127. doi: 10.1016/j.pain.2009.08.023.
    1. Bouhassira D., Lanteri-Minet M., Attal N., Laurent B., Touboul C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain. 2008;136:380–387. doi: 10.1016/j.pain.2007.08.013.
    1. Dworkin S.F., LeResche L. Research diagnostic criteria for temporomandibular disorders: Review, criteria, examinations and specifications, critique. J. Craniomandib. Disord. 1992;6:301–355.
    1. Yoon M.S., Mueller D., Hansen N., Poitz F., Slomke M., Dommes P., Diener H.C., Katsarava Z., Obermann M. Prevalence of facial pain in migraine: A population-based study. Cephalalgia. 2010;30:92–96. doi: 10.1111/j.1468-2982.2009.01899.x.
    1. Love S., Coakham H.B. Trigeminal neuralgia: Pathology and pathogenesis. Brain. 2001;124:2347–2360. doi: 10.1093/brain/124.12.2347.
    1. Renton T., Yilmaz Z. Profiling of patients presenting with posttraumatic neuropathy of the trigeminal nerve. J. Orofac. Pain. 2011;25:333–344.
    1. Scala A., Checchi L., Montevecchi M., Marini I., Giamberardino M.A. Update on burning mouth syndrome: Overview and patient management. Crit. Rev. Oral Biol. Med. 2003;14:275–291. doi: 10.1177/154411130301400405.
    1. Melis M., Lobo S.L., Ceneviz C., Zawawi K., Al-Badawi E., Maloney G., Mehta N. Atypical odontalgia: A review of the literature. Headache. 2003;43:1060–1074. doi: 10.1046/j.1526-4610.2003.03207.x.
    1. Kost R.G., Straus S.E. Postherpetic neuralgia—Pathogenesis, treatment, and prevention. N. Engl. J. Med. 1996;335:32–42. doi: 10.1056/NEJM199607043350107.
    1. Nixdorf D.R., Moana-Filho E.J., Law A.S., McGuire L.A., Hodges J.S., John M.T. Frequency of persistent tooth pain after root canal therapy: A systematic review and meta-analysis. J. Endod. 2010;36:224–230. doi: 10.1016/j.joen.2009.11.007.
    1. Renton T., Adey-Viscuso D., Meechan J.G., Yilmaz Z. Trigeminal nerve injuries in relation to the local anaesthesia in mandibular injections. Br. Dent. J. 2010;209:209. doi: 10.1038/sj.bdj.2010.978.
    1. Cui J.G., Holmin S., Mathiesen T., Meyerson B.A., Linderoth B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain. 2000;88:239–248. doi: 10.1016/S0304-3959(00)00331-6.
    1. Liu T., van Rooijen N., Tracey D.J. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve injury. Pain. 2000;86:25–32. doi: 10.1016/S0304-3959(99)00306-1.
    1. Anderson L.C., Vakoula A., Veinote R. Inflammatory hypersensitivity in a rat model of trigeminal neuropathic pain. Arch. Oral Biol. 2003;48:161–169. doi: 10.1016/S0003-9969(02)00203-0.
    1. Anderson L.C., Rao R.D. Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Arch. Oral Biol. 2001;46:633–640. doi: 10.1016/S0003-9969(01)00024-3.
    1. Clark A.K., Old E.A., Malcangio M. Neuropathic pain and cytokines: Current perspectives. J. Pain Res. 2013;6:803–814.
    1. Ramesh G., MacLean A.G., Philipp M.T. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat. Inflamm. 2013;2013 doi: 10.1155/2013/480739.
    1. Uceyler N., Tscharke A., Sommer C. Early cytokine expression in mouse sciatic nerve after chronic constriction nerve injury depends on calpain. Brain Behav. Immun. 2007;21:553–560. doi: 10.1016/j.bbi.2006.10.003.
    1. Schafers M., Sommer C. Anticytokine therapy in neuropathic pain management. Expert Rev. Neurother. 2007;7:1613–1627. doi: 10.1586/14737175.7.11.1613.
    1. Cunha T.M., Verri W.A., Jr., Fukada S.Y., Guerrero A.T., Santodomingo-Garzon T., Poole S., Parada C.A., Ferreira S.H., Cunha F.Q. TNF-α and IL-1β mediate inflammatory hypernociception in mice triggered by b1 but not b2 kinin receptor. Eur. J. Pharmacol. 2007;573:221–229. doi: 10.1016/j.ejphar.2007.07.007.
    1. Sasaki N., Kikuchi S., Konno S., Sekiguchi M., Watanabe K. Anti-TNF-α antibody reduces pain-behavioral changes induced by epidural application of nucleus pulposus in a rat model depending on the timing of administration. Spine. 2007;32:413–416. doi: 10.1097/01.brs.0000255097.18246.bc.
    1. Zanella J.M., Burright E.N., Hildebrand K., Hobot C., Cox M., Christoferson L., McKay W.F. Effect of etanercept, a tumor necrosis factor-α inhibitor, on neuropathic pain in the rat chronic constriction injury model. Spine. 2008;33:227–234. doi: 10.1097/BRS.0b013e318162340a.
    1. Toews A.D., Barrett C., Morell P. Monocyte chemoattractant protein 1 is responsible for macrophage recruitment following injury to sciatic nerve. J. Neurosci. Res. 1998;53:260–267. doi: 10.1002/(SICI)1097-4547(19980715)53:2<260::AID-JNR15>;2-A.
    1. Taskinen H.S., Roytta M. Increased expression of chemokines (MCP-1, MIP-1α, RANTES) after peripheral nerve transection. J. Peripher. Nerv. Syst. 2000;5:75–81. doi: 10.1046/j.1529-8027.2000.00009.x.
    1. Orlikowski D., Chazaud B., Plonquet A., Poron F., Sharshar T., Maison P., Raphael J.C., Gherardi R.K., Creange A. Monocyte chemoattractant protein 1 and chemokine receptor CCR2 productions in guillain-barre syndrome and experimental autoimmune neuritis. J. Neuroimmunol. 2003;134:118–127. doi: 10.1016/S0165-5728(02)00393-4.
    1. Watkins L.R., Maier S.F. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 2002;82:981–1011. doi: 10.1152/physrev.00011.2002.
    1. White F.A., Bhangoo S.K., Miller R.J. Chemokines: Integrators of pain and inflammation. Nat. Rev. 2005;4:834–844. doi: 10.1038/nrd1852.
    1. Sun J.H., Yang B., Donnelly D.F., Ma C., LaMotte R.H. MCP-1 enhances excitability of nociceptive neurons in chronically compressed dorsal root ganglia. J. Neurophysiol. 2006;96:2189–2199. doi: 10.1152/jn.00222.2006.
    1. Oh S.B., Tran P.B., Gillard S.E., Hurley R.W., Hammond D.L., Miller R.J. Chemokines and glycoprotein 120 produce pain hypersensitivity by directly exciting primary nociceptive neurons. J. Neurosci. 2001;21:5027–5035.
    1. Abbadie C., Lindia J.A., Cumiskey A.M., Peterson L.B., Mudgett J.S., Bayne E.K., DeMartino J.A., MacIntyre D.E., Forrest M.J. Impaired neuropathic pain responses in mice lacking the chemokine receptor CCR2. Proc. Natl. Acad. Sci. USA. 2003;100:7947–7952. doi: 10.1073/pnas.1331358100.
    1. White F.A., Sun J., Waters S.M., Ma C., Ren D., Ripsch M., Steflik J., Cortright D.N., Lamotte R.H., Miller R.J. Excitatory monocyte chemoattractant protein-1 signaling is up-regulated in sensory neurons after chronic compression of the dorsal root ganglion. Proc. Natl. Acad. Sci. USA. 2005;102:14092–14097. doi: 10.1073/pnas.0503496102.
    1. Qin X., Wan Y., Wang X. CCL2 and CXCL1 trigger calcitonin gene-related peptide release by exciting primary nociceptive neurons. J. Neurosci. Res. 2005;82:51–62. doi: 10.1002/jnr.20612.
    1. Jung H., Miller R.J. Activation of the nuclear factor of activated T-cells (NFAT) mediates upregulation of CCR2 chemokine receptors in dorsal root ganglion (DRG) neurons: A possible mechanism for activity-dependent transcription in DRG neurons in association with neuropathic pain. Mol. Cell. Neurosci. 2008;37:170–177.
    1. Kettenmann H., Verkhratsky A. Neuroglia: The 150 years after. Trends Neurosci. 2008;31:653–659. doi: 10.1016/j.tins.2008.09.003.
    1. Jessen K.R., Mirsky R. Glial cells in the enteric nervous system contain glial fibrillary acidic protein. Nature. 1980;286:736–737. doi: 10.1038/286736a0.
    1. Volterra A., Meldolesi J. Astrocytes, from brain glue to communication elements: The revolution continues. Nat. Rev. Neurosci. 2005;6:626–640. doi: 10.1038/nrn1722.
    1. Silva J.R., Lopes A.H., Talbot J., Cecilio N.T., Rossato M.F., Silva R.L., Souza G.R., Silva C.R., Lucas G., Fonseca B.A., et al. Neuro-immune-glia interactions in the sensory ganglia account for the development of acute herpetic neuralgia. J. Neurosci. 2017 doi: 10.1523/JNEUROSCI.2233-16.2017.
    1. Hanani M. Satellite glial cells in sympathetic and parasympathetic ganglia: In search of function. Brain Res. Rev. 2010;64:304–327. doi: 10.1016/j.brainresrev.2010.04.009.
    1. Cherkas P.S., Huang T.Y., Pannicke T., Tal M., Reichenbach A., Hanani M. The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain. 2004;110:290–298. doi: 10.1016/j.pain.2004.04.007.
    1. Gunjigake K.K., Goto T., Nakao K., Kobayashi S., Yamaguchi K. Activation of satellite glial cells in rat trigeminal ganglion after upper molar extraction. Acta Histochem. Cytochem. 2009;42:143–149. doi: 10.1267/ahc.09017.
    1. Kaji K., Shinoda M., Honda K., Unno S., Shimizu N., Iwata K. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol. Pain. 2016;12 doi: 10.1177/1744806916633704.
    1. Donegan M., Kernisant M., Cua C., Jasmin L., Ohara P.T. Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia. 2013;61:2000–2008. doi: 10.1002/glia.22571.
    1. Ohara P.T., Vit J.P., Bhargava A., Jasmin L. Evidence for a role of connexin 43 in trigeminal pain using rna interference in vivo. J. Neurophysiol. 2008;100:3064–3073. doi: 10.1152/jn.90722.2008.
    1. Capuano A., De Corato A., Lisi L., Tringali G., Navarra P., Dello Russo C. Proinflammatory-activated trigeminal satellite cells promote neuronal sensitization: Relevance for migraine pathology. Mol. Pain. 2009;5 doi: 10.1186/1744-8069-5-43.
    1. Hanani M. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: Implications for chronic pain. Brain Res. 2012;1487:183–191. doi: 10.1016/j.brainres.2012.03.070.
    1. Gu Y., Chen Y., Zhang X., Li G.W., Wang C., Huang L.Y. Neuronal soma-satellite glial cell interactions in sensory ganglia and the participation of purinergic receptors. Neuron Glia Biol. 2010;6:53–62. doi: 10.1017/S1740925X10000116.
    1. Suadicani S.O., Cherkas P.S., Zuckerman J., Smith D.N., Spray D.C., Hanani M. Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Boil. 2010;6:43–51. doi: 10.1017/S1740925X09990408.
    1. Weick M., Cherkas P.S., Hartig W., Pannicke T., Uckermann O., Bringmann A., Tal M., Reichenbach A., Hanani M. P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience. 2003;120:969–977. doi: 10.1016/S0306-4522(03)00388-9.
    1. Villa G., Fumagalli M., Verderio C., Abbracchio M.P., Ceruti S. Expression and contribution of satellite glial cells purinoceptors to pain transmission in sensory ganglia: An update. Neuron Glia Boil. 2010;6:31–42. doi: 10.1017/S1740925X10000086.
    1. Ceruti S., Fumagalli M., Villa G., Verderio C., Abbracchio M.P. Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium. 2008;43:576–590. doi: 10.1016/j.ceca.2007.10.003.
    1. Takeda M., Takahashi M., Matsumoto S. Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci. Biobehav. Rev. 2009;33:784–792. doi: 10.1016/j.neubiorev.2008.12.005.
    1. Katagiri A., Shinoda M., Honda K., Toyofuku A., Sessle B.J., Iwata K. Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats. Mol. Pain. 2012;8 doi: 10.1186/1744-8069-8-23.
    1. Goto T., Oh S.B., Takeda M., Shinoda M., Sato T., Gunjikake K.K., Iwata K. Recent advances in basic research on the trigeminal ganglion. J. Physiol. Sci. 2016;66:381–386. doi: 10.1007/s12576-016-0448-1.
    1. Tang X., Schmidt T.M., Perez-Leighton C.E., Kofuji P. Inwardly rectifying potassium channel kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience. 2016;166:397–407. doi: 10.1016/j.neuroscience.2010.01.005.
    1. Bellot-Saez A., Kekesi O., Morley J.W., Buskila Y. Astrocytic modulation of neuronal excitability through K+ spatial buffering. Neurosci. Biobehav. Rev. 2017;77:87–97. doi: 10.1016/j.neubiorev.2017.03.002.
    1. Vit J.P., Ohara P.T., Bhargava A., Kelley K., Jasmin L. Silencing the kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J. Neurosci. 2008;28:4161–4171. doi: 10.1523/JNEUROSCI.5053-07.2008.
    1. Thalakoti S., Patil V.V., Damodaram S., Vause C.V., Langford L.E., Freeman S.E., Durham P.L. Neuron-glia signaling in trigeminal ganglion: Implications for migraine pathology. Headache. 2007;47:1008–1023; discussion 1024–1025. doi: 10.1111/j.1526-4610.2007.00854.x.
    1. Allen N.J., Barres B.A. Signaling between glia and neurons: Focus on synaptic plasticity. Curr. Opin. Neurobiol. 2005;15:542–548. doi: 10.1016/j.conb.2005.08.006.
    1. Zhao P., Waxman S.G., Hains B.C. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J. Neurosci. 2007;27:8893–8902. doi: 10.1523/JNEUROSCI.2209-07.2007.
    1. Lee M.K., Han S.R., Park M.K., Kim M.J., Bae Y.C., Kim S.K., Park J.S., Ahn D.K. Behavioral evidence for the differential regulation of p-p38 MAPK and p-NF-κB in rats with trigeminal neuropathic pain. Mol. Pain. 2011;7 doi: 10.1186/1744-8069-7-57.
    1. Wei F., Guo W., Zou S., Ren K., Dubner R. Supraspinal glial-neuronal interactions contribute to descending pain facilitation. J. Neurosci. 2008;28:10482–10495. doi: 10.1523/JNEUROSCI.3593-08.2008.
    1. Wen Y.R., Suter M.R., Kawasaki Y., Huang J., Pertin M., Kohno T., Berde C.B., Decosterd I., Ji R.R. Nerve conduction blockade in the sciatic nerve prevents but does not reverse the activation of p38 mitogen-activated protein kinase in spinal microglia in the rat spared nerve injury model. Anesthesiology. 2007;107:312–321. doi: 10.1097/01.anes.0000270759.11086.e7.
    1. Xie W., Strong J.A., Zhang J.M. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience. 2009;160:847–857. doi: 10.1016/j.neuroscience.2009.03.016.
    1. Oka Y., Ibuki T., Matsumura K., Namba M., Yamazaki Y., Poole S., Tanaka Y., Kobayashi S. Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience. 2007;145:530–538. doi: 10.1016/j.neuroscience.2006.10.055.
    1. Cao L., DeLeo J.A. CNS-infiltrating CD4+ T lymphocytes contribute to murine spinal nerve transection-induced neuropathic pain. Eur. J. Immunol. 2008;38:448–458. doi: 10.1002/eji.200737485.
    1. Costigan M., Moss A., Latremoliere A., Johnston C., Verma-Gandhu M., Herbert T.A., Barrett L., Brenner G.J., Vardeh D., Woolf C.J., et al. T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity. J. Neurosci. 2009;29:14415–14422. doi: 10.1523/JNEUROSCI.4569-09.2009.
    1. Hathway G.J., Vega-Avelaira D., Moss A., Ingram R., Fitzgerald M. Brief, low frequency stimulation of rat peripheral c-fibres evokes prolonged microglial-induced central sensitization in adults but not in neonates. Pain. 2009;144:110–118. doi: 10.1016/j.pain.2009.03.022.
    1. Clark A.K., Yip P.K., Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin s. J. Neurosci. 2009;29:6945–6954. doi: 10.1523/JNEUROSCI.0828-09.2009.
    1. Milligan E.D., Watkins L.R. Pathological and protective roles of glia in chronic pain. Nat. Rev. 2009;10:23–36. doi: 10.1038/nrn2533.
    1. Schobitz B., de Kloet E.R., Sutanto W., Holsboer F. Cellular localization of interleukin 6 mRNA and interleukin 6 receptor mRNA in rat brain. Eur. J. Neurosci. 1993;5:1426–1435. doi: 10.1111/j.1460-9568.1993.tb00210.x.
    1. Vallieres L., Rivest S. Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1beta. J. Neurochem. 1997;69:1668–1683. doi: 10.1046/j.1471-4159.1997.69041668.x.
    1. Zhang J., Shi X.Q., Echeverry S., Mogil J.S., De Koninck Y., Rivest S. Expression of ccr2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J. Neurosci. 2007;27:12396–12406. doi: 10.1523/JNEUROSCI.3016-07.2007.
    1. Wang W., Wang W., Mei X., Huang J., Wei Y., Wang Y., Wu S., Li Y. Crosstalk between spinal astrocytes and neurons in nerve injury-induced neuropathic pain. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0006973.
    1. Okada-Ogawa A., Suzuki I., Sessle B.J., Chiang C.Y., Salter M.W., Dostrovsky J.O., Tsuboi Y., Kondo M., Kitagawa J., Kobayashi A., et al. Astroglia in medullary dorsal horn (trigeminal spinal subnucleus caudalis) are involved in trigeminal neuropathic pain mechanisms. J. Neurosci. 2009;29:11161–11171. doi: 10.1523/JNEUROSCI.3365-09.2009.
    1. Kobayashi A., Shinoda M., Sessle B.J., Honda K., Imamura Y., Hitomi S., Tsuboi Y., Okada-Ogawa A., Iwata K. Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats. Mol. Pain. 2011;7 doi: 10.1186/1744-8069-7-12.
    1. Trang T., Beggs S., Wan X., Salter M.W. P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J. Neurosci. 2009;29:3518–3528. doi: 10.1523/JNEUROSCI.5714-08.2009.
    1. Coull J.A., Beggs S., Boudreau D., Boivin D., Tsuda M., Inoue K., Gravel C., Salter M.W., De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–1021. doi: 10.1038/nature04223.
    1. Ma F., Zhang L., Oz H.S., Mashni M., Westlund K.N. Dysregulated TNF α promotes cytokine proteome profile increases and bilateral orofacial hypersensitivity. Neuroscience. 2015;300:493–507. doi: 10.1016/j.neuroscience.2015.05.046.
    1. Shibuta K., Suzuki I., Shinoda M., Tsuboi Y., Honda K., Shimizu N., Sessle B.J., Iwata K. Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain. Brain Res. 2012;1451:74–86. doi: 10.1016/j.brainres.2012.02.023.
    1. Hamilton N.B., Attwell D. Do astrocytes really exocytose neurotransmitters? Nat. Rev. Neurosci. 2010;11:227–238. doi: 10.1038/nrn2803.
    1. Chiang C.Y., Wang J., Xie Y.F., Zhang S., Hu J.W., Dostrovsky J.O., Sessle B.J. Astroglial glutamate-glutamine shuttle is involved in central sensitization of nociceptive neurons in rat medullary dorsal horn. J. Neurosci. 2007;27:9068–9076. doi: 10.1523/JNEUROSCI.2260-07.2007.
    1. Fonseca L.L., Monteiro M.A., Alves P.M., Carrondo M.J., Santos H. Cultures of rat astrocytes challenged with a steady supply of glutamate: New model to study flux distribution in the glutamate-glutamine cycle. Glia. 2005;51:286–296. doi: 10.1002/glia.20209.
    1. Chiang C.Y., Li Z., Dostrovsky J.O., Hu J.W., Sessle B.J. Glutamine uptake contributes to central sensitization in the medullary dorsal horn. Neuroreport. 2008;19:1151–1154. doi: 10.1097/WNR.0b013e3283086781.
    1. Sung B., Lim G., Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J. Neurosci. 2003;23:2899–2910.
    1. Wang H., Cao Y., Chiang C.Y., Dostrovsky J.O., Sessle B.J. The gap junction blocker carbenoxolone attenuates nociceptive behavior and medullary dorsal horn central sensitization induced by partial infraorbital nerve transection in rats. Pain. 2014;155:429–435. doi: 10.1016/j.pain.2013.11.004.
    1. Chiang C.Y., Li Z., Dostrovsky J.O., Sessle B.J. Central sensitization in medullary dorsal horn involves gap junctions and hemichannels. Neuroreport. 2010;21:233–237. doi: 10.1097/WNR.0b013e328336eecb.
    1. Miyoshi K., Obata K., Kondo T., Okamura H., Noguchi K. Interleukin-18-mediated microglia/astrocyte interaction in the spinal cord enhances neuropathic pain processing after nerve injury. J. Neurosci. 2008;28:12775–12787. doi: 10.1523/JNEUROSCI.3512-08.2008.
    1. Stohler C.S. Craniofacial pain and motor function: Pathogenesis, clinical correlates, and implications. Crit. Rev. Oral Biol. Med. 1999;10:504–518. doi: 10.1177/10454411990100040601.
    1. Hodges P.W., Tucker K. Moving differently in pain: A new theory to explain the adaptation to pain. Pain. 2011;152:S90–S98. doi: 10.1016/j.pain.2010.10.020.
    1. Svensson P., Arendt-Nielsen L., Houe L. Sensory-motor interactions of human experimental unilateral jaw muscle pain: A quantitative analysis. Pain. 1996;64:241–249. doi: 10.1016/0304-3959(95)00133-6.
    1. Svensson P., Graven-Nielsen T. Craniofacial muscle pain: Review of mechanisms and clinical manifestations. J. Orofac. Pain. 2001;15:117–145.
    1. Schwartz G., Lund J.P. Modification of rhythmical jaw movements by noxious pressure applied to the periosteum of the zygoma in decerebrate rabbits. Pain. 1995;63:153–161. doi: 10.1016/0304-3959(95)00028-Q.
    1. Ro J.Y., Svensson P., Capra N. Effects of experimental muscle pain on electromyographic activity of masticatory muscles in the rat. Muscle Nerve. 2002;25:576–584. doi: 10.1002/mus.10072.
    1. Yu X.M., Sessle B.J., Vernon H., Hu J.W. Effects of inflammatory irritant application to the rat temporomandibular joint on jaw and neck muscle activity. Pain. 1995;60:143–149. doi: 10.1016/0304-3959(94)00104-M.
    1. Mostafeezur R.M., Shinoda M., Unno S., Zakir H.M., Takatsuji H., Takahashi K., Yamada Y., Yamamura K., Iwata K., Kitagawa J. Involvement of astroglial glutamate-glutamine shuttle in modulation of the jaw-opening reflex following infraorbital nerve injury. Eur. J. Neurosci. 2014;39:2050–2059. doi: 10.1111/ejn.12562.
    1. Mostafeezur R.M., Zakir H.M., Yamada Y., Yamamura K., Iwata K., Sessle B.J., Kitagawa J. The effect of minocycline on the masticatory movements following the inferior alveolar nerve transection in freely moving rats. Mol. Pain. 2012;8:27. doi: 10.1186/1744-8069-8-27.
    1. Hossain M.Z., Shinoda M., Unno S., Ando H., Masuda Y., Iwata K., Kitagawa J. Involvement of microglia and astroglia in modulation of the orofacial motor functions in rats with neuropathic pain. J. Oral Biosci. 2017;59:17–22. doi: 10.1016/j.job.2016.11.003.
    1. Piao Z.G., Cho I.H., Park C.K., Hong J.P., Choi S.Y., Lee S.J., Lee S., Park K., Kim J.S., Oh S.B. Activation of glia and microglial p38 MAPK in medullary dorsal horn contributes to tactile hypersensitivity following trigeminal sensory nerve injury. Pain. 2006;121:219–231. doi: 10.1016/j.pain.2005.12.023.
    1. Ledeboer A., Sloane E.M., Milligan E.D., Frank M.G., Mahony J.H., Maier S.F., Watkins L.R. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain. 2005;115:71–83. doi: 10.1016/j.pain.2005.02.009.
    1. Wang A.L., Yu A.C., Lau L.T., Lee C., Wu M.L., Zhu X., Tso M.O.M. Minocycline inhibits LPS-induced retinal microglia activation. Neurochem. Int. 2005;47:152–158. doi: 10.1016/j.neuint.2005.04.018.
    1. Zanjani T.M., Sabetkasaei M., Mosaffa N., Manaheji H., Labibi F., Farokhi B. Suppression of interleukin-6 by minocycline in a rat model of neuropathic pain. Eur. J. Pharmacol. 2006;538:66–72. doi: 10.1016/j.ejphar.2006.03.063.
    1. Owolabi S.A., Saab C.Y. Fractalkine and minocycline alter neuronal activity in the spinal cord dorsal horn. FEBS Lett. 2006;580:4306–4310. doi: 10.1016/j.febslet.2006.06.087.
    1. Mika J., Rojewska E., Makuch W., Przewlocka B. Minocycline reduces the injury-induced expression of prodynorphin and pronociceptin in the dorsal root ganglion in a rat model of neuropathic pain. Neuroscience. 2010;165:1420–1428. doi: 10.1016/j.neuroscience.2009.11.064.
    1. Nikodemova M., Duncan I.D., Watters J.J. Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IκBα degradation in a stimulus-specific manner in microglia. J. Neurochem. 2006;96:314–323. doi: 10.1111/j.1471-4159.2005.03520.x.
    1. Brundula V., Rewcastle N.B., Metz L.M., Bernard C.C., Yong V.W. Targeting leukocyte MMPS and transmigration: Minocycline as a potential therapy for multiple sclerosis. Brain. 2002;125:1297–1308. doi: 10.1093/brain/awf133.
    1. Popovic N., Schubart A., Goetz B.D., Zhang S.C., Linington C., Duncan I.D. Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann. Neurol. 2002;51:215–223. doi: 10.1002/ana.10092.
    1. Nie H., Zhang H., Weng H.R. Minocycline prevents impaired glial glutamate uptake in the spinal sensory synapses of neuropathic rats. Neuroscience. 2010;170:901–912. doi: 10.1016/j.neuroscience.2010.07.049.
    1. Lee S., Zhao Y.Q., Ribeiro-da-Silva A., Zhang J. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation. Mol. Pain. 2006;6:79. doi: 10.1186/1744-8069-6-79.
    1. Xie Y.F., Zhang S., Chiang C.Y., Hu J.W., Dostrovsky J.O., Sessle B.J. Involvement of glia in central sensitization in trigeminal subnucleus caudalis (medullary dorsal horn) Brain Behav. Immun. 2007;21:634–641. doi: 10.1016/j.bbi.2006.07.008.
    1. Zhu L., Lu J., Tay S.S., Jiang H., He B.P. Induced NG2 expressing microglia in the facial motor nucleus after facial nerve axotomy. Neuroscience. 2010;166:842–851. doi: 10.1016/j.neuroscience.2009.12.057.
    1. Svensson M., Aldskogius H. Evidence for activation of the complement cascade in the hypoglossal nucleus following peripheral nerve injury. J. Neuroimmunol. 1992;40:99–109. doi: 10.1016/0165-5728(92)90217-9.
    1. Galiano M., Liu Z.Q., Kalla R., Bohatschek M., Koppius A., Gschwendtner A., Xu S., Werner A., Kloss C.U., Jones L.L., et al. Interleukin-6 (IL6) and cellular response to facial nerve injury: Effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur. J. Neurosci. 2001;14:327–341. doi: 10.1046/j.0953-816x.2001.01647.x.

Source: PubMed

3
구독하다