Motor neurons and the generation of spinal motor neuron diversity

Nicolas Stifani, Nicolas Stifani

Abstract

Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.

Keywords: central nervous system; development; lower motor neuron; motor neurons; spinal cord; spinal motor neuron; transcription factors.

Figures

Figure 1
Figure 1
Muscle innervation. Schematic of muscle fibers on the longitudinal section (adapted from Purves and Williams, 2004). Alpha MN (red) innervates (incoming arrow) extrafusal muscle fibers (EF, brown) whereas gamma MN (purple) connects to intrafusal fibers (IF, blue) within the muscle spindle (MS, light gray) surrounded by the outer capsule (OC, dark gray). Sensory neurons (green) carry information from the intrafusal fibers to the central nervous system (outgoing arrow).
Figure 2
Figure 2
Characteristics of alpha and gamma MNs. Schematic showing the principal characteristics of alpha and gamma MNs (adapted from Kanning et al., 2010). Within the ventral spinal cord (SC light gray), MN pools (dashed lines) are composed of gamma MNs (blue) as well as three type of alpha MNs: αFF (light brown), αFFR (dark brown), αSFR (green). Alpha MNs have a larger diameter than gamma MNs. Beta MNs are not represented for simplicity. The proportion of alpha MN subtypes varies between MN pools. In the periphery, a muscle is composed of three types of extrafusal fibers: fast-twitch fatigable muscle fibers (light brown, IIb) are innervated by αFF MNs, fast-twitch fatigue-resistant muscle fibers (dark brown, IIa) are innervated by alpha αFFR MNs and slow-twitch fatigue-resistant muscle fibers (green, I) are innervated by αSFR MNs. Intrafusal muscle fibers (blue) reside within a muscle spindle (gray) and are exclusively innervated by gamma MNs. A single MN innervate multiple fibers all of the same type; however, for the schematic simplicity only one fiber is represented.
Figure 3
Figure 3
Detailed innervation of a muscle spindle. Schematic of an adult muscle spindle (MS, light gray) on the longitudinal section (adapted from Maier, 1997). Alpha MN (red) exclusively innervates (incoming arrow) extrafusal fibers (EF, brown). Beta MNs (green-brown) innervate both EF and intrafusal fibers (IF, blue). Gamma MNs are divided into two subtypes: static (blue) connecting to nuclear chain (CH, light blue) and nuclear bag 2 (B2, dark blue) fibers and dynamic (purple) connecting to nuclear bag 1 fibers (B1, intermediate blue). Sensory afferent axons Ia (light green) and II (pink) convey information (outgoing arrows) to sensory neurons located in the dorsal root ganglia. The outer capsule (OC) is a dedicated membrane isolating the muscle spindle from the extrafusal fibers. A single MN innervate multiple fibers all of the same type; however, for the schematic simplicity only one fiber is represented.
Figure 4
Figure 4
The spinal cord reflex circuitry. Schematic of a myotatic reflex illustrating the spinal cord (SC) circuitry (adapted from Purves and Williams, 2004). Sensory neuron (SN, blue) located in the dorsal root ganglia (DRG) transmits a stretch stimulus sensed by the muscle spindle (MS, gray) to an interneuron (IN, purple) as well as directly to motor neurons (MNs, dark and light green). In turn, MNs stimulate the contraction of extensor muscle (red) and ensure the concomitant relaxation of the antagonist flexor muscle located in the limb.
Figure 5
Figure 5
Early anatomy and inductive signals in the neural tube. (A) Schematic of the anatomy of the neural tube after neurulation (adapted from Purves and Williams, 2004). The ectoderm (light blue) is positioned on the external side whereas neural crest (orange) resides underneath. The notochord (gray) induces the differentiation of the floor plate (red). The somites (green) give rise to muscles and bones. (B) Schematic summarizing signals involved in the dorso-ventral pattering of the mouse neural tube shown in transverse section (adapted from Dessaud et al., 2008). Wnt and BMP secreted by the roof plate (blue) as well as retinoic acid (RA) produced by the somites (green) cooperate with Shh expressed by the floor plate and the notochord (red) to pattern the neural tube.
Figure 6
Figure 6
Generation of ventral spinal progenitor domains. Schematic summarizing the mechanisms of progenitor domain formation in the ventral spinal cord (adapted from Ulloa and Marti, 2010). Opposing gradients of Shh (red) and Wnt/BMP proteins (blue) are transduced into Gli protein activity. Gli activators (GliA, brown) in the most ventral region induce the expression of Class-II proteins (light brown) whereas Gli repressors (GliR, dark gray-blue) induce Class-I proteins (light blue) in the dorsal portion of the ventral spinal cord. This initial expression pattern is subsequently refined by cross-repressive interactions between pairs of Class-I and Class-II proteins to generate five exclusive progenitor domains (p0, p1, p2, p3, and pMN). V0, V1, V2, V3, interneurons arise from the p0, p1, p2, and p3 respectively whereas all MNs derive from the pMN progenitors.
Figure 7
Figure 7
Segmental organization of spinal motor columns. Schematic summarizing the segmental distribution of spinal motor columns (adapted from Dasen and Jessell, 2009). While the medial motor column (MMC, brown) is present all along the rostro-caudal axis, the spinal accessory column (SAC, purple) is restricted to the five first cervical segments (C1–C5). The phrenic motor column (PMC, red) is confined between C3 and C5. The preganglionic column (PGC, orange) extends through the thoracic segments until the second lumbar segments (L2) as well as well as between sacral segments 2 and 4 (S2–S4). The hypaxial motor column (HMC, light blue) is exclusive of the thoracic segment where as the lateral motor column (LMC, dark and light green) is located at limb levels: brachial (C5-T1) and lumbar segments (L1–L5).
Figure 8
Figure 8
Organization of SpMNs at cervical, brachial/lumbar and thoracic levels. Schematic summarizing the characteristics of spinal motor columns at cervical (A), brachial/lumbar (B) and thoracic (C) levels (adapted from Dasen and Jessell, 2009). MMC MNs (brown) are located medially and connect to the axial musculature (Epaxial). PMC MNs (red) have an inter-medio-lateral position and connect to the diaphragm. SAC MNs (purple) exit the CNS via the lateral exit point (LEP) and connect to mastoid and neck muscles. LMC MNs (green) are divided into two divisions medial (m, dark green) and lateral (l, light green). LMCm MNs connect to the ventral (v) part of the limb whereas LMCl MNs innervate the dorsal (d) region. HMC MNs (light blue) are located in the medio-lateral region and connect to the body wall and intercostal muscles (Hypaxial). PGC MNs (orange) are positioned dorso-laterally and innervate to the sympathetic chain ganglia (SCG) and chromaffin cells of the adrenal gland (AdrG). Proteins expressed by each column are depicted with their respective color code.
Figure 9
Figure 9
Steps of MN axonal targeting. Schematic summarizing the steps of MN axonal targeting (adapted from Dasen and Jessell, 2009). The first step termed “CNS exit” reflect the choice of developing MNs to exit the CNS via the ventral root (vMNs, blue) or through the lateral exit point (LEP) (dMNs, red). The second choice labeled “Columns” return to the motor column: MMC MNs (brown) target to epaxial musculature whereas LMC MNs (green) project to the limb. The third step named “Divisions” refers to the choice made by the medial and lateral divisions of the LMC. LMCl MNs (light green) invade the dorsal part of the limb (d) whereas LMCm (dark green) MNs target to the ventral region (v). The fourth step termed “Pool intrinsic” refers to the selection of a specific muscle target (red) and is controlled by intrinsic cues. The last step named “Pool extrinsic” illustrates the induction of specific protein expression upon a signal from the muscle target, which coordinates the terminal arborization of MN axons. Proteins involved in each step are indicated.
Figure 10
Figure 10
Guiding cues of SpMN axonal targeting. Schematic summarizing guiding cues important for MN axonal targeting. (A) Ventral exiting MNs (vMN, blue) express CxcR4 and are attracted (plus signs) by CxcL12 expressed by the mesenchyme (dark green). Dorsal MNs (dMN, purple) express DCC and are repelled (minus sign) away from the midline expressing Ntn1 (light green). (B) MMC MNs (brown) expressing both FgfR1 and EphA3/4 are attracted by Fgf secreted by the dermomyotome but repelled by Ephrin-As expressed by the dorsal root ganglion. LMC MNs (green) target to the limb and pause before further growth. This pause is mediated by Npn1-Sema3A repellent signaling expressed by LMC MNs and the limb respectively. (C) LMCm MN (dark green) axons express EphB1 and Npn2 and are constrained into the ventral limb by Sema3F and Ephrin-Bs expressed by the dorsal limb mesenchyme (dark brown). Conversely, LMCl MN (light green) axons express Ephrin-As and EphA4 and are restricted to the dorsal part of the limb by a combination of Ephrin-As repulsive signal from the ventral limb mesenchyme (light brown) and EphAs (red) attractive signal from the dorsal part of the limb.

References

    1. Agalliu D., Takada S., Agalliu I., Mcmahon A. P., Jessell T. M. (2009). Motor neurons with axial muscle projections specified by Wnt4/5 signaling. Neuron 61, 708–720 10.1016/j.neuron.2008.12.026
    1. Alaynick W. A., Jessell T. M., Pfaff S. L. (2011). SnapShot: spinal cord development. Cell 146, 178–178 e1. 10.1016/j.cell.2011.06.038
    1. Aldskogius H., Berens C., Kanaykina N., Liakhovitskaia A., Medvinsky A., Sandelin M., et al. (2009). Regulation of boundary cap neural crest stem cell differentiation after transplantation. Stem Cells 27, 1592–1603 10.1002/stem.77
    1. Allan D. W., Greer J. J. (1997a). Development of phrenic motoneuron morphology in the fetal rat. J. Comp. Neurol. 382, 469–479
    1. Allan D. W., Greer J. J. (1997b). Embryogenesis of the phrenic nerve and diaphragm in the fetal rat. J. Comp. Neurol. 382, 459–468
    1. Alvarez-Medina R., Cayuso J., Okubo T., Takada S., Marti E. (2008). Wnt canonical pathway restricts graded Shh/Gli patterning activity through the regulation of Gli3 expression. Development 135, 237–247 10.1242/dev.012054
    1. Amiel J., Dubreuil V., Ramanantsoa N., Fortin G., Gallego J., Brunet J. F., et al. (2009). PHOX2B in respiratory control: lessons from congenital central hypoventilation syndrome and its mouse models. Respir. Physiol. Neurobiol. 168, 125–132 10.1016/j.resp.2009.03.005
    1. Arber S. (2008). FoxP1: conducting the Hox symphony in spinal motor neurons. Nat. Neurosci. 11, 1122–1124 10.1038/nn1008-1122
    1. Arber S., Han B., Mendelsohn M., Smith M., Jessell T. M., Sockanathan S. (1999). Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron 23, 659–674 10.1016/S0896-6273(01)80026-X
    1. Ashrafi S., Lalancette-Hebert M., Friese A., Sigrist M., Arber S., Shneider N. A., et al. (2012). Wnt7A identifies embryonic gamma-motor neurons and reveals early postnatal dependence of gamma-motor neurons on a muscle spindle-derived signal. J. Neurosci. 32, 8725–8731 10.1523/JNEUROSCI.1160-12.2012
    1. Audouard E., Schakman O., Rene F., Huettl R. E., Huber A. B., Loeffler J. P., et al. (2012). The Onecut transcription factor HNF-6 regulates in motor neurons the formation of the neuromuscular junctions. PLoS ONE 7:e50509 10.1371/journal.pone.0050509
    1. Balaskas N., Ribeiro A., Panovska J., Dessaud E., Sasai N., Page K. M., et al. (2012). Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148, 273–284 10.1016/j.cell.2011.10.047
    1. Bandyopadhyay U., Fenton W. A., Horwich A. L., Nagy M. (2014). Production of RNA for transcriptomic analysis from mouse spinal cord motor neuron cell bodies by laser capture microdissection. J. Vis. Exp. 13:e51168 10.3791/51168
    1. Bel-Vialar S., Itasaki N., Krumlauf R. (2002). Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 129, 5103–5115
    1. Bessou P., Emonet-Denand F., Laporte Y. (1965). Motor fibres innervating extrafusal and intrafusal muscle fibres in the cat. J. Physiol. 180, 649–672
    1. Bonanomi D., Chivatakarn O., Bai G., Abdesselem H., Lettieri K., Marquardt T., et al. (2012). Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell 148, 568–582 10.1016/j.cell.2012.01.024
    1. Bonanomi D., Pfaff S. L. (2010). Motor axon pathfinding. Cold Spring Harb. Perspect. Biol. 2:a001735 10.1101/cshperspect.a001735
    1. Bravo-Ambrosio A., Kaprielian Z. (2011). Crossing the border: molecular control of motor axon exit. Int. J. Mol. Sci. 12, 8539–8561 10.3390/ijms12128539
    1. Brichta A. M., Callister R. J., Peterson E. H. (1987). Quantitative analysis of cervical musculature in rats: histochemical composition and motor pool organization. I. Muscles of the spinal accessory complex. J. Comp. Neurol. 255, 351–368 10.1002/cne.902550304
    1. Briscoe J., Pierani A., Jessell T. M., Ericson J. (2000). A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 10.1016/S0092-8674(00)80853-3
    1. Bryan R. N., Trevino D. L., Willis W. D. (1972). Evidence for a common location of alpha and gamma motoneurons. Brain Res. 38, 193–196 10.1016/0006-8993(72)90602-6
    1. Bueker E. D. (1944). Differentiation of the lateral motor column in the avian spinal cord. Science 100:169 10.1126/science.100.2591.169
    1. Burke R. E., Levine D. N., Tsairis P., Zajac F. E. 3rd. (1973). Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J. Physiol. 234, 723–748
    1. Buss R. R., Gould T. W., Ma J., Vinsant S., Prevette D., Winseck A., et al. (2006). Neuromuscular development in the absence of programmed cell death: phenotypic alteration of motoneurons and muscle. J. Neurosci. 26, 13413–13427 10.1523/JNEUROSCI.3528-06.2006
    1. Cameron W. E., He F., Kalipatnapu P., Jodkowski J. S., Guthrie R. D. (1991). Morphometric analysis of phrenic motoneurons in the cat during postnatal development. J. Comp. Neurol. 314, 763–776 10.1002/cne.903140409
    1. Cao X., Pfaff S. L., Gage F. H. (2007). A functional study of miR-124 in the developing neural tube. Genes Dev. 21, 531–536 10.1101/gad.1519207
    1. Castellani V., Kania A. (2012). Breathless without Hox. Nat. Neurosci. 15, 1607–1609 10.1038/nn.3272
    1. Chakkalakal J. V., Nishimune H., Ruas J. L., Spiegelman B. M., Sanes J. R. (2010). Retrograde influence of muscle fibers on their innervation revealed by a novel marker for slow motoneurons. Development 137, 3489–3499 10.1242/dev.053348
    1. Chandrasekhar A. (2004). Turning heads: development of vertebrate branchiomotor neurons. Dev. Dyn. 229, 143–161 10.1002/dvdy.10444
    1. Chen J. A., Huang Y. P., Mazzoni E. O., Tan G. C., Zavadil J., Wichterle H. (2011a). Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. Neuron 69, 721–735 10.1016/j.neuron.2011.01.014
    1. Chen J. A., Wichterle H. (2012). Apoptosis of limb innervating motor neurons and erosion of motor pool identity upon lineage specific dicer inactivation. Front. Neurosci. 6:69 10.3389/fnins.2012.00069
    1. Chen Y., Sasai N., Ma G., Yue T., Jia J., Briscoe J., et al. (2011b). Sonic Hedgehog dependent phosphorylation by CK1alpha and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol. 9:e1001083 10.1371/journal.pbio.1001083
    1. Cho H. H., Cargnin F., Kim Y., Lee B., Kwon R. J., Nam H., et al. (2014). Isl1 directly controls a cholinergic neuronal identity in the developing forebrain and spinal cord by forming cell type-specific complexes. PLoS Genet. 10:e1004280 10.1371/journal.pgen.1004280
    1. Choi J. Y., Hoover J. E. (1996). The organization of acromiodeltoid and spinodeltoid motor nuclei in rat spinal cord. Brain Res. 738, 146–149 10.1016/0006-8993(96)00958-4
    1. Dasen J. S. (2009). Transcriptional networks in the early development of sensory-motor circuits. Curr. Top. Dev. Biol. 87, 119–148 10.1016/S0070-2153(09)01204-6
    1. Dasen J. S., De Camilli A., Wang B., Tucker P. W., Jessell T. M. (2008). Hox repertoires for motor neuron diversity and connectivity gated by a single accessory factor, FoxP1. Cell 134, 304–316 10.1016/j.cell.2008.06.019
    1. Dasen J. S., Jessell T. M. (2009). Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88, 169–200 10.1016/S0070-2153(09)88006-X
    1. Dasen J. S., Liu J. P., Jessell T. M. (2003). Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 425, 926–933 10.1038/nature02051
    1. Dasen J. S., Tice B. C., Brenner-Morton S., Jessell T. M. (2005). A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell 123, 477–491 10.1016/j.cell.2005.09.009
    1. Dechiara T. M., Vejsada R., Poueymirou W. T., Acheson A., Suri C., Conover J. C., et al. (1995). Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83, 313–322 10.1016/0092-8674(95)90172-8
    1. De Marco Garcia N. V., Jessell T. M. (2008). Early motor neuron pool identity and muscle nerve trajectory defined by postmitotic restrictions in Nkx6.1 activity. Neuron 57, 217–231 10.1016/j.neuron.2007.11.033
    1. Dessaud E., Mcmahon A. P., Briscoe J. (2008). Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135, 2489–2503 10.1242/dev.009324
    1. Dillon A. K., Fujita S. C., Matise M. P., Jarjour A. A., Kennedy T. E., Kollmus H., et al. (2005). Molecular control of spinal accessory motor neuron/axon development in the mouse spinal cord. J. Neurosci. 25, 10119–10130 10.1523/JNEUROSCI.3455-05.2005
    1. Dubreuil V., Barhanin J., Goridis C., Brunet J. F. (2009). Breathing with phox2b. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2477–2483 10.1098/rstb.2009.0085
    1. Dudanova I., Kao T. J., Herrmann J. E., Zheng B., Kania A., Klein R. (2012). Genetic evidence for a contribution of EphA:ephrinA reverse signaling to motor axon guidance. J. Neurosci. 32, 5209–5215 10.1523/JNEUROSCI.5707-11.2012
    1. Durston A. J., Timmermans J. P., Hage W. J., Hendriks H. F., De Vries N. J., Heideveld M., et al. (1989). Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140–144 10.1038/340140a0
    1. Eccles J. C., Eccles R. M., Iggo A., Lundberg A. (1960). Electrophysiological studies on gamma motoneurones. Acta Physiol. Scand. 50, 32–40 10.1111/j.1748-1716.1960.tb02070.x
    1. Eccles J. C., Eccles R. M., Lundberg A. (1957). The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J. Physiol. 137, 22–50
    1. Edwards I. J., Bruce G., Lawrenson C., Howe L., Clapcote S. J., Deuchars S. A., et al. (2013). Na+/K+ ATPase alpha1 and alpha3 isoforms are differentially expressed in alpha- and gamma-motoneurons. J. Neurosci. 33, 9913–9919 10.1523/JNEUROSCI.5584-12.2013
    1. Enjin A., Rabe N., Nakanishi S. T., Vallstedt A., Gezelius H., Memic F., et al. (2010). Identification of novel spinal cholinergic genetic subtypes disclose Chodl and Pitx2 as markers for fast motor neurons and partition cells. J. Comp. Neurol. 518, 2284–2304 10.1002/cne.22332
    1. Ensini M., Tsuchida T. N., Belting H. G., Jessell T. M. (1998). The control of rostrocaudal pattern in the developing spinal cord: specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm. Development 125, 969–982
    1. Ericson J., Briscoe J., Rashbass P., Van Heyningen V., Jessell T. M. (1997). Graded sonic hedgehog signaling and the specification of cell fate in the ventral neural tube. Cold Spring Harb. Symp. Quant. Biol. 62, 451–466 10.1101/SQB.1997.062.01.053
    1. Ericson J., Morton S., Kawakami A., Roelink H., Jessell T. M. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 10.1016/S0092-8674(00)81386-0
    1. Ericson J., Thor S., Edlund T., Jessell T. M., Yamada T. (1992). Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science 256, 1555–1560 10.1126/science.1350865
    1. Fetcho J. R. (1987). A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates. Brain Res. Rev. 12, 243–280 10.1016/0165-0173(87)90001-4
    1. Francius C., Clotman F. (2010). Dynamic expression of the onecut transcription factors HNF-6, OC-2 and OC-3 during spinal motor neuron development. Neuroscience 165, 116–129 10.1016/j.neuroscience.2009.09.076
    1. Francius C., Clotman F. (2014). Generating spinal motor neuron diversity: a long quest for neuronal identity. Cell. Mol. Life Sci. 71, 813–829 10.1007/s00018-013-1398-x
    1. Friese A., Kaltschmidt J. A., Ladle D. R., Sigrist M., Jessell T. M., Arber S. (2009). Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc. Natl. Acad. Sci. U.S.A. 106, 13588–13593 10.1073/pnas.0906809106
    1. Fukuhara K., Imai F., Ladle D. R., Katayama K., Leslie J. R., Arber S., et al. (2013). Specificity of monosynaptic sensory-motor connections imposed by repellent Sema3E-PlexinD1 signaling. Cell Rep. 5, 748–758 10.1016/j.celrep.2013.10.005
    1. Gallarda B. W., Bonanomi D., Muller D., Brown A., Alaynick W. A., Andrews S. E., et al. (2008). Segregation of axial motor and sensory pathways via heterotypic trans-axonal signaling. Science 320, 233–236 10.1126/science.1153758
    1. Golden M. G., Dasen J. S. (2012). Polycomb repressive complex 1 activities determine the columnar organization of motor neurons. Genes Dev. 26, 2236–2250 10.1101/gad.199133.112
    1. Gould T. W., Enomoto H. (2009). Neurotrophic modulation of motor neuron development. Neuroscientist 15, 105–116 10.1177/1073858408324787
    1. Gould T. W., Oppenheim R. W. (2004). The function of neurotrophic factor receptors expressed by the developing adductor motor pool in vivo. J. Neurosci. 24, 4668–4682 10.1523/JNEUROSCI.0580-04.2004
    1. Gould T. W., Yonemura S., Oppenheim R. W., Ohmori S., Enomoto H. (2008). The neurotrophic effects of glial cell line-derived neurotrophic factor on spinal motoneurons are restricted to fusimotor subtypes. J. Neurosci. 28, 2131–2146 10.1523/JNEUROSCI.5185-07.2008
    1. Gu W. X., Kania A. (2010). Examining the combinatorial model of motor neuron survival by expression profiling of trophic factors and their receptors in the embryonic Gallus gallus. Dev. Dyn. 239, 965–979 10.1002/dvdy.22215
    1. Guizard N., Coupe P., Stifani N., Stifani S., Collins D. L. (2010). Robust 3D reconstruction and mean-shift clustering of motoneurons from serial histological images. Med. Imag. Augment. Real. 6326, 191–199 10.1007/978-3-642-15699-1_20
    1. Gutman C. R., Ajmera M. K., Hollyday M. (1993). Organization of motor pools supplying axial muscles in the chicken. Brain Res. 609, 129–136 10.1016/0006-8993(93)90865-K
    1. Haase G., Dessaud E., Garces A., De Bovis B., Birling M., Filippi P., et al. (2002). GDNF acts through PEA3 to regulate cell body positioning and muscle innervation of specific motor neuron pools. Neuron 35, 893–905 10.1016/S0896-6273(02)00864-4
    1. Hamburger V. (1975). Cell death in the development of the lateral motor column of the chick embryo. J. Comp. Neurol. 160, 535–546 10.1002/cne.901600408
    1. Hamburger V. (1992). History of the discovery of neuronal death in embryos. J. Neurobiol. 23, 1116–1123 10.1002/neu.480230904
    1. Hammerle B., Tejedor F. J. (2007). A novel function of DELTA-NOTCH signalling mediates the transition from proliferation to neurogenesis in neural progenitor cells. PLoS ONE 2:e1169 10.1371/journal.pone.0001169
    1. Helmbacher F., Dessaud E., Arber S., Delapeyriere O., Henderson C. E., Klein R., et al. (2003). Met signaling is required for recruitment of motor neurons to PEA3-positive motor pools. Neuron 39, 767–777 10.1016/S0896-6273(03)00493-8
    1. Helmbacher F., Schneider-Maunoury S., Topilko P., Tiret L., Charnay P. (2000). Targeting of the EphA4 tyrosine kinase receptor affects dorsal/ventral pathfinding of limb motor axons. Development 127, 3313–3324
    1. Henderson C. E. (1996). Role of neurotrophic factors in neuronal development. Curr. Opin. Neurobiol. 6, 64–70 10.1016/S0959-4388(96)80010-9
    1. Henderson C. E., Phillips H. S., Pollock R. A., Davies A. M., Lemeulle C., Armanini M., et al. (1994). GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266, 1062–1064 10.1126/science.7973664
    1. Hirsch M. R., Glover J. C., Dufour H. D., Brunet J. F., Goridis C. (2007). Forced expression of Phox2 homeodomain transcription factors induces a branchio-visceromotor axonal phenotype. Dev. Biol. 303, 687–702 10.1016/j.ydbio.2006.12.006
    1. Hollyday M., Hamburger V. (1977). An autoradiographic study of the formation of the lateral motor column in the chick embryo. Brain Res. 132, 197–208 10.1016/0006-8993(77)90416-4
    1. Hollyday M., Hamburger V., Farris J. M. (1977). Localization of motor neuron pools supplying identified muscles in normal and supernumerary legs of chick embryo. Proc. Natl. Acad. Sci. U.S.A. 74, 3582–3586 10.1073/pnas.74.8.3582
    1. Hollyday M., Jacobson R. D. (1990). Location of motor pools innervating chick wing. J. Comp. Neurol. 302, 575–588 10.1002/cne.903020313
    1. Huber A. B., Kania A., Tran T. S., Gu C., De Marco Garcia N., Lieberam I., et al. (2005). Distinct roles for secreted semaphorin signaling in spinal motor axon guidance. Neuron 48, 949–964 10.1016/j.neuron.2005.12.003
    1. Huettl R. E., Soellner H., Bianchi E., Novitch B. G., Huber A. B. (2011). Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb. PLoS Biol. 9:e1001020 10.1371/journal.pbio.1001020
    1. Iulianella A., Sharma M., Durnin M., Vanden Heuvel G. B., Trainor P. A. (2008). Cux2 (Cutl2) integrates neural progenitor development with cell-cycle progression during spinal cord neurogenesis. Development 135, 729–741 10.1242/dev.013276
    1. Ivanhoe C. B., Reistetter T. A. (2004). Spasticity: the misunderstood part of the upper motor neuron syndrome. Am. J. Phys. Med. Rehabil. 83, S3–S9 10.1097/01.PHM.0000141125.28611.3E
    1. Jacobson M., Rao M. S. (2005). Developmental Neurobiology. New York, NY: Kluwer Academic/Plenum
    1. Jacobson S., Marcus E. M. (2007). Neuroanatomy for the Neuroscientist. New York, NY; London: Springer
    1. Jessell T. M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29 10.1038/35049541
    1. Jung H., Lacombe J., Mazzoni E. O., Liem K. F., Jr., Grinstein J., Mahony S., et al. (2010). Global control of motor neuron topography mediated by the repressive actions of a single hox gene. Neuron 67, 781–796 10.1016/j.neuron.2010.08.008
    1. Jung H., Mazzoni E. O., Soshnikova N., Hanley O., Venkatesh B., Duboule D., et al. (2014). Evolving hox activity profiles govern diversity in locomotor systems. Dev. Cell 29, 171–187 10.1016/j.devcel.2014.03.008
    1. Kania A. (2014a). Concocting cholinergy. PLoS Genet. 10:e1004313 10.1371/journal.pgen.1004313
    1. Kania A. (2014b). Spinal motor neuron migration and the significance of topographic organization in the nervous system. Adv. Exp. Med. Biol. 800, 133–148 10.1007/978-94-007-7687-6_8
    1. Kania A., Jessell T. M. (2003). Topographic motor projections in the limb imposed by LIM homeodomain protein regulation of ephrin-A:EphA interactions. Neuron 38, 581–596 10.1016/S0896-6273(03)00292-7
    1. Kania A., Johnson R. L., Jessell T. M. (2000). Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102, 161–173 10.1016/S0092-8674(00)00022-2
    1. Kanning K. C., Kaplan A., Henderson C. E. (2010). Motor neuron diversity in development and disease. Annu. Rev. Neurosci. 33, 409–440 10.1146/annurev.neuro.051508.135722
    1. Kao T. J., Kania A. (2011). Ephrin-mediated cis-attenuation of Eph receptor signaling is essential for spinal motor axon guidance. Neuron 71, 76–91 10.1016/j.neuron.2011.05.031
    1. Kao T. J., Law C., Kania A. (2012). Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin. Cell Dev. Biol. 23, 83–91 10.1016/j.semcdb.2011.10.016
    1. Kessel M., Gruss P. (1991). Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67, 89–104 10.1016/0092-8674(91)90574-I
    1. Kobayashi N., Homma S., Okada T., Masuda T., Sato N., Nishiyama K., et al. (2013). Elucidation of target muscle and detailed development of dorsal motor neurons in chick embryo spinal cord. J. Comp. Neurol. 521, 2987–3002 10.1002/cne.23326
    1. Kramer E. R., Knott L., Su F., Dessaud E., Krull C. E., Helmbacher F., et al. (2006). Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron 50, 35–47 10.1016/j.neuron.2006.02.020
    1. Lacombe J., Hanley O., Jung H., Philippidou P., Surmeli G., Grinstein J., et al. (2013). Genetic and functional modularity of Hox activities in the specification of limb-innervating motor neurons. PLoS Genet. 9:e1003184 10.1371/journal.pgen.1003184
    1. Ladle D. R., Frank E. (2002). The role of the ETS gene PEA3 in the development of motor and sensory neurons. Physiol. Behav. 77, 571–576 10.1016/S0031-9384(02)00907-1
    1. Ladle D. R., Pecho-Vrieseling E., Arber S. (2007). Assembly of motor circuits in the spinal cord: driven to function by genetic and experience-dependent mechanisms. Neuron 56, 270–283 10.1016/j.neuron.2007.09.026
    1. Lamballe F., Genestine M., Caruso N., Arce V., Richelme S., Helmbacher F., et al. (2011). Pool-specific regulation of motor neuron survival by neurotrophic support. J. Neurosci. 31, 11144–11158 10.1523/JNEUROSCI.2198-11.2011
    1. Lance-Jones C., Landmesser L. (1980). Motoneurone projection patterns in the chick hind limb following early partial reversals of the spinal cord. J. Physiol. 302, 581–602
    1. Lance-Jones C., Omelchenko N., Bailis A., Lynch S., Sharma K. (2001). Hoxd10 induction and regionalization in the developing lumbosacral spinal cord. Development 128, 2255–2268
    1. Landmesser L. (1978). The distribution of motoneurones supplying chick hind limb muscles. J. Physiol. 284, 371–389
    1. Landmesser L. T. (2001). The acquisition of motoneuron subtype identity and motor circuit formation. Int. J. Dev. Neurosci. 19, 175–182 10.1016/S0736-5748(00)00090-3
    1. Laumonnerie C., Da Silva R. V., Kania A., Wilson S. I. (2014). Netrin 1 and Dcc signalling are required for confinement of central axons within the central nervous system. Development 141, 594–603 10.1242/dev.099606
    1. Lee R. H., Heckman C. J. (1998). Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. J. Neurophysiol. 80, 583–593
    1. Lee S. K., Jurata L. W., Funahashi J., Ruiz E. C., Pfaff S. L. (2004). Analysis of embryonic motoneuron gene regulation: derepression of general activators function in concert with enhancer factors. Development 131, 3295–3306 10.1242/dev.01179
    1. Lee S. K., Lee B., Ruiz E. C., Pfaff S. L. (2005). Olig2 and Ngn2 function in opposition to modulate gene expression in motor neuron progenitor cells. Genes Dev. 19, 282–294 10.1101/gad.1257105
    1. Lee S. K., Pfaff S. L. (2003). Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38, 731–745 10.1016/S0896-6273(03)00296-4
    1. Lee S., Lee B., Joshi K., Pfaff S. L., Lee J. W., Lee S. K. (2008). A regulatory network to segregate the identity of neuronal subtypes. Dev. Cell 14, 877–889 10.1016/j.devcel.2008.03.021
    1. Lee S., Lee B., Lee J. W., Lee S. K. (2009). Retinoid signaling and neurogenin2 function are coupled for the specification of spinal motor neurons through a chromatin modifier CBP. Neuron 62, 641–654 10.1016/j.neuron.2009.04.025
    1. Lei Q., Jeong Y., Misra K., Li S., Zelman A. K., Epstein D. J., et al. (2006). Wnt signaling inhibitors regulate the transcriptional response to morphogenetic Shh-Gli signaling in the neural tube. Dev. Cell 11, 325–337 10.1016/j.devcel.2006.06.013
    1. Li M., Sendtner M., Smith A. (1995). Essential function of LIF receptor in motor neurons. Nature 378, 724–727 10.1038/378724a0
    1. Lieberam I., Agalliu D., Nagasawa T., Ericson J., Jessell T. M. (2005). A Cxcl12-CXCR4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons. Neuron 47, 667–679 10.1016/j.neuron.2005.08.011
    1. Lin J. H., Saito T., Anderson D. J., Lance-Jones C., Jessell T. M., Arber S. (1998). Functionally related motor neuron pool and muscle sensory afferent subtypes defined by coordinate ETS gene expression. Cell 95, 393–407 10.1016/S0092-8674(00)81770-5
    1. Liu J. P. (2006). The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord. Development 133, 2865–2874 10.1242/dev.02478
    1. Liu J. P., Laufer E., Jessell T. M. (2001). Assigning the positional identity of spinal motor neurons: rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and retinoids. Neuron 32, 997–1012 10.1016/S0896-6273(01)00544-X
    1. Livet J., Sigrist M., Stroebel S., De Paola V., Price S. R., Henderson C. E., et al. (2002). ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools. Neuron 35, 877–892 10.1016/S0896-6273(02)00863-2
    1. Lu Q. R., Sun T., Zhu Z., Ma N., Garcia M., Stiles C. D., et al. (2002). Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 10.1016/S0092-8674(02)00678-5
    1. Luria V., Krawchuk D., Jessell T. M., Laufer E., Kania A. (2008). Specification of motor axon trajectory by ephrin-B:EphB signaling: symmetrical control of axonal patterning in the developing limb. Neuron 60, 1039–1053 10.1016/j.neuron.2008.11.011
    1. Machado C. B., Kanning K. C., Kreis P., Stevenson D., Crossley M., Nowak M., et al. (2014). Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons. Development 141, 784–794 10.1242/dev.097188
    1. Maier A. (1997). Development and regeneration of muscle spindles in mammals and birds. Int. J. Dev. Biol. 41, 1–17
    1. Marti E., Bumcrot D. A., Takada R., Mcmahon A. P. (1995a). Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375, 322–325 10.1038/375322a0
    1. Marti E., Takada R., Bumcrot D. A., Sasaki H., Mcmahon A. P. (1995b). Distribution of Sonic hedgehog peptides in the developing chick and mouse embryo. Development 121, 2537–2547
    1. Mazzoni E. O., Mahony S., Closser M., Morrison C. A., Nedelec S., Williams D. J., et al. (2013a). Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity. Nat. Neurosci. 16, 1219–1227 10.1038/nn.3467
    1. Mazzoni E. O., Mahony S., Peljto M., Patel T., Thornton S. R., Mccuine S., et al. (2013b). Saltatory remodeling of Hox chromatin in response to rostrocaudal patterning signals. Nat. Neurosci. 16, 1191–1198 10.1038/nn.3490
    1. Mehler M. F., Mabie P. C., Zhang D., Kessler J. A. (1997). Bone morphogenetic proteins in the nervous system. Trends Neurosci. 20, 309–317 10.1016/S0166-2236(96)01046-6
    1. Mizuguchi R., Sugimori M., Takebayashi H., Kosako H., Nagao M., Yoshida S., et al. (2001). Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 10.1016/S0896-6273(01)00413-5
    1. Morikawa Y., Komori T., Hisaoka T., Senba E. (2009). Detailed expression pattern of Foxp1 and its possible roles in neurons of the spinal cord during embryogenesis. Dev. Neurosci. 31, 511–522 10.1159/000243715
    1. Muhr J., Graziano E., Wilson S., Jessell T. M., Edlund T. (1999). Convergent inductive signals specify midbrain, hindbrain, and spinal cord identity in gastrula stage chick embryos. Neuron 23, 689–702 10.1016/S0896-6273(01)80028-3
    1. Muller D., Cherukuri P., Henningfeld K., Poh C. H., Wittler L., Grote P., et al. (2014). Dlk1 promotes a fast motor neuron biophysical signature required for peak force execution. Science 343, 1264–1266 10.1126/science.1246448
    1. Niederreither K., Mccaffery P., Drager U. C., Chambon P., Dolle P. (1997). Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 10.1016/S0925-4773(96)00653-3
    1. Niewiadomski P., Kong J. H., Ahrends R., Ma Y., Humke E. W., Khan S., et al. (2014). Gli protein activity is controlled by multisite phosphorylation in vertebrate hedgehog signaling. Cell Rep. 6, 168–181 10.1016/j.celrep.2013.12.003
    1. Nornes H. O., Carry M. (1978). Neurogenesis in spinal cord of mouse: an autoradiographic analysis. Brain Res. 159, 1–6 10.1016/0006-8993(78)90105-1
    1. Novitch B. G., Chen A. I., Jessell T. M. (2001). Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 10.1016/S0896-6273(01)00407-X
    1. Novitch B. G., Wichterle H., Jessell T. M., Sockanathan S. (2003). A requirement for retinoic acid-mediated transcriptional activation in ventral neural patterning and motor neuron specification. Neuron 40, 81–95 10.1016/j.neuron.2003.08.006
    1. Oppenheim R. W. (1986). The absence of significant postnatal motoneuron death in the brachial and lumbar spinal cord of the rat. J. Comp. Neurol. 246, 281–286 10.1002/cne.902460211
    1. Oppenheim R. W. (1991). Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453–501 10.1146/annurev.ne.14.030191.002321
    1. Oppenheim R. W. (1996). Neurotrophic survival molecules for motoneurons: an embarrassment of riches. Neuron 17, 195–197 10.1016/S0896-6273(00)80151-8
    1. Oppenheim R. W., Houenou L. J., Johnson J. E., Lin L. F., Li L., Lo A. C., et al. (1995). Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344–346 10.1038/373344a0
    1. Oppenheim R. W., Houenou L. J., Parsadanian A. S., Prevette D., Snider W. D., Shen L. (2000). Glial cell line-derived neurotrophic factor and developing mammalian motoneurons: regulation of programmed cell death among motoneuron subtypes. J. Neurosci. 20, 5001–5011
    1. Otaegi G., Pollock A., Hong J., Sun T. (2011a). MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J. Neurosci. 31, 809–818 10.1523/JNEUROSCI.4330-10.2011
    1. Otaegi G., Pollock A., Sun T. (2011b). An optimized sponge for microrNA miR-9 affects spinal motor neuron development in vivo. Front. Neurosci. 5:146 10.3389/fnins.2011.00146
    1. Pabst O., Herbrand H., Arnold H. H. (1998). Nkx2-9 is a novel homeobox transcription factor which demarcates ventral domains in the developing mouse CNS. Mech. Dev. 73, 85–93 10.1016/S0925-4773(98)00035-5
    1. Pabst O., Rummelies J., Winter B., Arnold H. H. (2003). Targeted disruption of the homeobox gene Nkx2.9 reveals a role in development of the spinal accessory nerve. Development 130, 1193–1202 10.1242/dev.00346
    1. Palmesino E., Rousso D. L., Kao T. J., Klar A., Laufer E., Uemura O., et al. (2010). Foxp1 and lhx1 coordinate motor neuron migration with axon trajectory choice by gating reelin signalling. PLoS Biol. 8:446 10.1371/journal.pbio.1000446
    1. Park S., Lee C., Sabharwal P., Zhang M., Meyers C. L., Sockanathan S. (2013). GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science 339, 324–328 10.1126/science.1231921
    1. Pattyn A., Hirsch M., Goridis C., Brunet J. F. (2000). Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358
    1. Periz G., Yan Y., Bitzer Z. T., Sockanathan S. (2010). GDP-bound Galphai2 regulates spinal motor neuron differentiation through interaction with GDE2. Dev. Biol. 341, 213–221 10.1016/j.ydbio.2010.02.032
    1. Pettmann B., Henderson C. E. (1998). Neuronal cell death. Neuron 20, 633–647 10.1016/S0896-6273(00)81004-1
    1. Pfaff S. L. (2008). Developmental neuroscience: hox and fox. Nature 455, 295–297 10.1038/455295a
    1. Phelan K. A., Hollyday M. (1990). Axon guidance in muscleless chick wings: the role of muscle cells in motoneuronal pathway selection and muscle nerve formation. J. Neurosci. 10, 2699–2716
    1. Philippidou P., Dasen J. S. (2013). Hox genes: choreographers in neural development, architects of circuit organization. Neuron 80, 12–34 10.1016/j.neuron.2013.09.020
    1. Philippidou P., Walsh C. M., Aubin J., Jeannotte L., Dasen J. S. (2012). Sustained Hox5 gene activity is required for respiratory motor neuron development. Nat. Neurosci. 15, 1636–1644 10.1038/nn.3242
    1. Pierani A., Brenner-Morton S., Chiang C., Jessell T. M. (1999). A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97, 903–915 10.1016/S0092-8674(00)80802-8
    1. Poulsen K. T., Armanini M. P., Klein R. D., Hynes M. A., Phillips H. S., Rosenthal A. (1994). TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13, 1245–1252 10.1016/0896-6273(94)90062-0
    1. Prakash Y. S., Mantilla C. B., Zhan W. Z., Smithson K. G., Sieck G. C. (2000). Phrenic motoneuron morphology during rapid diaphragm muscle growth. J. Appl. Physiol. 89, 563–572
    1. Prasad A., Hollyday M. (1991). Development and migration of avian sympathetic preganglionic neurons. J. Comp. Neurol. 307, 237–258 10.1002/cne.903070207
    1. Purves D., Williams S. M. (2004). Neuroscience. Sunderland, MA: Sinauer Associates
    1. Quirk J., Van Den Heuvel M., Henrique D., Marigo V., Jones T. A., Tabin C., et al. (1997). The smoothened gene and hedgehog signal transduction in Drosophila and vertebrate development. Cold Spring Harb. Symp. Quant. Biol. 62, 217–226 10.1101/SQB.1997.062.01.027
    1. Rafuse V. F., Milner L. D., Landmesser L. T. (1996). Selective innervation of fast and slow muscle regions during early chick neuromuscular development. J. Neurosci. 16, 6864–6877
    1. Rao M., Sockanathan S. (2005). Transmembrane protein GDE2 induces motor neuron differentiation in vivo. Science 309, 2212–2215 10.1126/science.1117156
    1. Rexed B. (1954). A cytoarchitectonic atlas of the spinal cord in the cat. J. Comp. Neurol. 100, 297–379 10.1002/cne.901000205
    1. Richardson W. D., Smith H. K., Sun T., Pringle N. P., Hall A., Woodruff R. (2000). Oligodendrocyte lineage and the motor neuron connection. Glia 29, 136–142 10.1002/(SICI)1098-1136(20000115)29:2%3C136::AID-GLIA6%;2-G
    1. Roelink H., Augsburger A., Heemskerk J., Korzh V., Norlin S., Ruiz i Altaba A., et al. (1994). Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76, 761–775 10.1016/0092-8674(94)90514-2
    1. Romanes G. J. (1941). The development and significance of the cell columns in the ventral horn of the cervical and upper thoracic spinal cord of the rabbit. J. Anat. 76, 112–130
    1. Rousso D. L., Gaber Z. B., Wellik D., Morrisey E. E., Novitch B. G. (2008). Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 59, 226–240 10.1016/j.neuron.2008.06.025
    1. Rousso D. L., Pearson C. A., Gaber Z. B., Miquelajauregui A., Li S., Portera-Cailliau C., et al. (2012). Foxp-mediated suppression of N-cadherin regulates neuroepithelial character and progenitor maintenance in the CNS. Neuron 74, 314–330 10.1016/j.neuron.2012.02.024
    1. Roy A., Francius C., Rousso D. L., Seuntjens E., Debruyn J., Luxenhofer G., et al. (2012). Onecut transcription factors act upstream of Isl1 to regulate spinal motoneuron diversification. Development 139, 3109–3119 10.1242/dev.078501
    1. Ryan J. M., Cushman J., Jordan B., Samuels A., Frazer H., Baier C. (1998). Topographic position of forelimb motoneuron pools is conserved in vertebrate evolution. Brain Behav. Evol. 51, 90–99 10.1159/000006531
    1. Sabharwal P., Lee C., Park S., Rao M., Sockanathan S. (2011). GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling. Neuron 71, 1058–1070 10.1016/j.neuron.2011.07.028
    1. Saito S., Kidd G. J., Trapp B. D., Dawson T. M., Bredt D. S., Wilson D. A., et al. (1994). Rat spinal cord neurons contain nitric oxide synthase. Neuroscience 59, 447–456 10.1016/0306-4522(94)90608-4
    1. Scardigli R., Schuurmans C., Gradwohl G., Guillemot F. (2001). Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31, 203–217 10.1016/S0896-6273(01)00358-0
    1. Schubert W., Kaprielian Z. (2001). Identification and characterization of a cell surface marker for embryonic rat spinal accessory motor neurons. J. Comp. Neurol. 439, 368–383 10.1002/cne.1356
    1. Shah V., Drill E., Lance-Jones C. (2004). Ectopic expression of Hoxd10 in thoracic spinal segments induces motoneurons with a lumbosacral molecular profile and axon projections to the limb. Dev. Dyn. 231, 43–56 10.1002/dvdy.20103
    1. Sharma K., Leonard A. E., Lettieri K., Pfaff S. L. (2000). Genetic and epigenetic mechanisms contribute to motor neuron pathfinding. Nature 406, 515–519 10.1038/35020078
    1. Sharma K., Sheng H. Z., Lettieri K., Li H., Karavanov A., Potter S., et al. (1998). LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817–828 10.1016/S0092-8674(00)81704-3
    1. Shirasaki R., Lewcock J. W., Lettieri K., Pfaff S. L. (2006). FGF as a target-derived chemoattractant for developing motor axons genetically programmed by the LIM code. Neuron 50, 841–853 10.1016/j.neuron.2006.04.030
    1. Shirasaki R., Pfaff S. L. (2002). Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 10.1146/annurev.neuro.25.112701.142916
    1. Shneider N. A., Brown M. N., Smith C. A., Pickel J., Alvarez F. J. (2009). Gamma motor neurons express distinct genetic markers at birth and require muscle spindle-derived GDNF for postnatal survival. Neural Dev. 4:42 10.1186/1749-8104-4-42
    1. Smith C. L., Hollyday M. (1983). The development and postnatal organization of motor nuclei in the rat thoracic spinal cord. J. Comp. Neurol. 220, 16–28 10.1002/cne.902200104
    1. Snider W. D. (1994). Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77, 627–638 10.1016/0092-8674(94)90048-5
    1. Sockanathan S., Jessell T. M. (1998). Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94, 503–514 10.1016/S0092-8674(00)81591-3
    1. Sockanathan S., Perlmann T., Jessell T. M. (2003). Retinoid receptor signaling in postmitotic motor neurons regulates rostrocaudal positional identity and axonal projection pattern. Neuron 40, 97–111 10.1016/S0896-6273(03)00532-4
    1. Sommer L., Ma Q., Anderson D. J. (1996). neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell. Neurosci. 8, 221–241 10.1006/mcne.1996.0060
    1. Song A., Ashwell K. W., Tracey D. J. (2000). Development of the rat phrenic nucleus and its connections with brainstem respiratory nuclei. Anat. Embryol. 202, 159–177 10.1007/s004290000096
    1. Song M. R., Sun Y., Bryson A., Gill G. N., Evans S. M., Pfaff S. L. (2009). Islet-to-LMO stoichiometries control the function of transcription complexes that specify motor neuron and V2a interneuron identity. Development 136, 2923–2932 10.1242/dev.037986
    1. Soundararajan P., Fawcett J. P., Rafuse V. F. (2010). Guidance of postural motoneurons requires MAPK/ERK signaling downstream of fibroblast growth factor receptor 1. J. Neurosci. 30, 6595–6606 10.1523/JNEUROSCI.4932-09.2010
    1. Stepien A. E., Tripodi M., Arber S. (2010). Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68, 456–472 10.1016/j.neuron.2010.10.019
    1. Stifani N., Freitas A. R., Liakhovitskaia A., Medvinsky A., Kania A., Stifani S. (2008). Suppression of interneuron programs and maintenance of selected spinal motor neuron fates by the transcription factor AML1/Runx1. Proc. Natl. Acad. Sci. U.S.A. 105, 6451–6456 10.1073/pnas.0711299105
    1. Stifani S., Ma Q. (2009). ‘Runxs and regulations’ of sensory and motor neuron subtype differentiation: implications for hematopoietic development. Blood Cells Mol. Dis. 43, 20–26 10.1016/j.bcmd.2009.03.001
    1. Stone D. M., Hynes M., Armanini M., Swanson T. A., Gu Q., Johnson R. L., et al. (1996). The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 10.1038/384129a0
    1. Stone R. J., Stone J. A. (2009). Atlas of Skeletal Muscles. Boston, MA: McGraw-Hill Higher Education
    1. Straznicky C., Tay D. (1983). The localization of motoneuron pools innervating wing muscles in the chick. Anat. Embryol. (Berl.) 166, 209–218 10.1007/BF00305083
    1. Streit A., Lee K. J., Woo I., Roberts C., Jessell T. M., Stern C. D. (1998). Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507–519
    1. Sullivan G. E. (1962). Anatomy and embryology of the wing musculature of the domestic fowl (gallus). Aust. J. Zool. 10, 458–518 10.1071/ZO9620458
    1. Tanabe Y., William C., Jessell T. M. (1998). Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 10.1016/S0092-8674(00)81783-3
    1. Thaler J., Harrison K., Sharma K., Lettieri K., Kehrl J., Pfaff S. L. (1999). Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 10.1016/S0896-6273(01)80027-1
    1. Thaler J. P., Koo S. J., Kania A., Lettieri K., Andrews S., Cox C., et al. (2004). A postmitotic role for Isl-class LIM homeodomain proteins in the assignment of visceral spinal motor neuron identity. Neuron 41, 337–350 10.1016/S0896-6273(04)00011-X
    1. Thaler J. P., Lee S. K., Jurata L. W., Gill G. N., Pfaff S. L. (2002). LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell 110, 237–249 10.1016/S0092-8674(02)00823-1
    1. Theriault F. M., Roy P., Stifani S. (2004). AML1/Runx1 is important for the development of hindbrain cholinergic branchiovisceral motor neurons and selected cranial sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 101, 10343–10348 10.1073/pnas.0400768101
    1. Todd K. J., Lan-Chow-Wing N., Salin-Cantegrel A., Cotter A., Zagami C. J., Lo R., et al. (2012). Establishment of motor neuron-V3 interneuron progenitor domain boundary in ventral spinal cord requires Groucho-mediated transcriptional corepression. PLoS ONE 7:e31176 10.1371/journal.pone.0031176
    1. Tosney K. W., Hotary K. B., Lance-Jones C. (1995). Specifying the target identity of motoneurons. BioEssays 17, 379–382 10.1002/bies.950170503
    1. Tosney K. W., Landmesser L. T. (1985a). Development of the major pathways for neurite outgrowth in the chick hindlimb. Dev. Biol. 109, 193–214 10.1016/0012-1606(85)90360-4
    1. Tosney K. W., Landmesser L. T. (1985b). Specificity of early motoneuron growth cone outgrowth in the chick embryo. J. Neurosci. 5, 2336–2344
    1. Tripodi M., Stepien A. E., Arber S. (2011). Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479, 61–66 10.1038/nature10538
    1. Tsuchida T., Ensini M., Morton S. B., Baldassare M., Edlund T., Jessell T. M., et al. (1994). Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 10.1016/0092-8674(94)90027-2
    1. Ullah M., Mansor O., Ismail Z. I., Kapitonova M. Y., Sirajudeen K. N. (2007). Localization of the spinal nucleus of accessory nerve in rat: a horseradish peroxidase study. J. Anat. 210, 428–438 10.1111/j.1469-7580.2007.00709.x
    1. Ulloa F., Marti E. (2010). Wnt won the war: antagonistic role of Wnt over Shh controls dorso-ventral patterning of the vertebrate neural tube. Developmental Dyn. 239, 69–76 10.1002/dvdy.22058
    1. Vallstedt A., Muhr J., Pattyn A., Pierani A., Mendelsohn M., Sander M., et al. (2001). Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31, 743–755 10.1016/S0896-6273(01)00412-3
    1. Vermot J., Schuhbaur B., Le Mouellic H., Mccaffery P., Garnier J. M., Hentsch D., et al. (2005). Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1+ motoneurons and the correct distribution of Islet1+ motoneurons. Development 132, 1611–1621 10.1242/dev.01718
    1. Visvanathan J., Lee S., Lee B., Lee J. W., Lee S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749 10.1101/gad.1519107
    1. Vrieseling E., Arber S. (2006). Target-induced transcriptional control of dendritic patterning and connectivity in motor neurons by the ETS gene Pea3. Cell 127, 1439–1452 10.1016/j.cell.2006.10.042
    1. Wang G., Scott S. A. (2000). The “waiting period” of sensory and motor axons in early chick hindlimb: its role in axon pathfinding and neuronal maturation. J. Neurosci. 20, 5358–5366
    1. Wang L., Klein R., Zheng B., Marquardt T. (2011). Anatomical coupling of sensory and motor nerve trajectory via axon tracking. Neuron 71, 263–277 10.1016/j.neuron.2011.06.021
    1. Watanabe T., Ohmori Y. (1988). Location of motoneurons supplying upper neck muscles in the chicken studied by means of horseradish peroxidase. J. Comp. Neurol. 270, 271–278 10.1002/cne.902700207
    1. Webber C. L., Jr., Pleschka K. (1976). Structural and functional characteristics of individual phrenic motoneurons. Pflugers Arch. 364, 113–121 10.1007/BF00585178
    1. Westbury D. R. (1982). A comparison of the structures of alpha and gamma-spinal motoneurones of the cat. J. Physiol. 325, 79–91
    1. Wetts R., Vaughn J. E. (1994). Choline acetyltransferase and NADPH diaphorase are co-expressed in rat spinal cord neurons. Neuroscience 63, 1117–1124 10.1016/0306-4522(94)90577-0
    1. Wichterle H., Gifford D., Mazzoni E. (2013). Neuroscience. Mapping neuronal diversity one cell at a time. Science 341, 726–727 10.1126/science.1235884
    1. Yaginuma H., Tomita M., Takashita N., Mckay S. E., Cardwell C., Yin Q. W., et al. (1996). A novel type of programmed neuronal death in the cervical spinal cord of the chick embryo. J. Neurosci. 16, 3685–3703
    1. Yamada T., Pfaff S. L., Edlund T., Jessell T. M. (1993). Control of cell pattern in the neural tube: motor neuron induction by diffusible factors from notochord and floor plate. Cell 73, 673–686 10.1016/0092-8674(93)90248-O
    1. Yamada T., Placzek M., Tanaka H., Dodd J., Jessell T. M. (1991). Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647 10.1016/0092-8674(91)90247-V
    1. Yamamoto Y., Henderson C. E. (1999). Patterns of programmed cell death in populations of developing spinal motoneurons in chicken, mouse, and rat. Dev. Biol. 214, 60–71 10.1006/dbio.1999.9413
    1. Yan Y., Sabharwal P., Rao M., Sockanathan S. (2009). The antioxidant enzyme Prdx1 controls neuronal differentiation by thiol-redox-dependent activation of GDE2. Cell 138, 1209–1221 10.1016/j.cell.2009.06.042
    1. Yu W., Mcdonnell K., Taketo M. M., Bai C. B. (2008). Wnt signaling determines ventral spinal cord cell fates in a time-dependent manner. Development 135, 3687–3696 10.1242/dev.021899
    1. Zagami C. J., Zusso M., Stifani S. (2009). Runx transcription factors: lineage-specific regulators of neuronal precursor cell proliferation and post-mitotic neuron subtype development. J. Cell. Biochem. 107, 1063–1072 10.1002/jcb.22221
    1. Zhou Q., Anderson D. J. (2002). The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73 10.1016/S0092-8674(02)00677-3
    1. Zimmerman L. B., De Jesus-Escobar J. M., Harland R. M. (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 10.1016/S0092-8674(00)80133-6

Source: PubMed

3
구독하다