A randomized double blinded placebo controlled study to evaluate motor unit abnormalities after experimentally induced sensitization using capsaicin

Valerie Evans, Ryan G L Koh, Felipe C K Duarte, Lukas Linde, Mohammadreza Amiri, Dinesh Kumbhare, Valerie Evans, Ryan G L Koh, Felipe C K Duarte, Lukas Linde, Mohammadreza Amiri, Dinesh Kumbhare

Abstract

Central sensitization is a condition that represents a cascade of neurological adaptations, resulting in an amplification of nociceptive responses from noxious and non-noxious stimuli. However, whether this abnormality translates into motor output and more specifically, ventral horn abnormalities, needs to be further explored. Twenty healthy participants aged 20-70 were randomly allocated to topical capsaicin or a placebo topical cream which was applied onto their left upper back to induce a transient state of sensitization. Visual analogue scale (VAS) ratings of pain intensity and brush allodynia score (BAS) were used to determine the presence of pain and secondary allodynia. Surface electromyography (sEMG) and intramuscular electromyography (iEMG) were used to record motor unit activity from the upper trapezius and infraspinatus muscles before and twenty minutes after application of capsaicin/placebo. Motor unit recruitment and variability were analyzed in the sEMG and iEMG, respectively. An independent t-test and Kruskal-Wallis H test were performed on the data. The sEMG results demonstrated a shift in the motor unit recruitment pattern in the upper trapezius muscle, while the iEMG showed a change in motor unit variability after application of capsaicin. These results suggest that capsaicin-induced central sensitization may cause changes in ventral horn excitability outside of the targeted spinal cord segment, affecting efferent pathway outputs. This preclinical evidence may provide some explanation for the influence of central sensitization on changes in movement patterns that occur in patients who have pain encouraging of further clinical investigation.Clinical Trials registration number: NCT04361149; date of registration: 24-Apr-2020.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
PRISMA flow chart.
Figure 2
Figure 2
(a, b) Surface electromyography electrode placement on upper trapezius muscle and infraspinatus. (c) Intramuscular needle electrode placement on trapezius muscle.
Figure 3
Figure 3
Location of the area of 10 cm by 10 cm application of topical placebo cream or capsaicin onto the skin.
Figure 4
Figure 4
Process of creating the motor unit signature from a set of recordings. Each column of the matrix corresponds to the recordings from all electrode contacts at a single time step up to the time T. The columns are then concatenated to create a single vector corresponding to motor unit signature.
Figure 5
Figure 5
(a) Example of motor unit action potentials detected pre and post-recording with the capsaicin treatment. Cross correlation = 0.995. (b) Example of motor unit action potentials detected pre and post-recording with the placebo condition. Cross correlation = 0.974.
Figure 6
Figure 6
Pre- and post-recording motor units recruitment order in the trapezius muscle. A slope of 1 would correspond to each pre-recording motor unit being recruited in the same order in the post-recording. Shape analysis threshold = 0.8 and amplitude margin = 20%. Capsaicin: R2 Linear = 0.464, y = 0.72x + 7.88; Placebo: R2 Linear = 0.589, y = 0.93x + 1.74.
Figure 7
Figure 7
(a) Pre- and post-recording motor unit recruitment order in the infraspinatus muscle. Shape analysis threshold = 0.8 and amplitude margin = 20%. Capsaicin: R2 Linear = 0.402, y = 1.06x + 1.02; Placebo: R2 Linear = 0.100, y = 0.43x + 5.49. (b) Pre- and post-recording motor unit recruitment order in the infraspinatus muscle. Shape analysis threshold = 0.7 and amplitude margin = 30%. Capsaicin: R2 Linear = 0.335, y = 0.77x + 2.71; Placebo: R2 Linear = 0.090, y = 0.26x + 4.87.

References

    1. IASP. Classification of chronic pain: descriptions of chronic pain syndromes and definitions of pain terms. Pain.Suppl 3, 1–226 (1994).
    1. Institute of Medicine, Board on Health Sciences Policy, Committee on Advancing Pain Research, Care, and Education. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. (The National Academies Press, 2011).
    1. Schopflocher D, Taenzer P, Jovey R. The prevalence of chronic pain in Canada. Pain Res. Manag. 2011;16(6):445–450. doi: 10.1155/2011/876306.
    1. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain. 2006;10(4):287–333. doi: 10.1016/j.ejpain.2005.06.009.
    1. Grossschadl F, et al. A 35-year trend analysis for back pain in Austria: The role of obesity. PLoS ONE. 2014;9(9):e107436. doi: 10.1371/journal.pone.0107436.
    1. McVinnie D. Obesity and pain. Br. J. Pain. 2013;7(4):163–170. doi: 10.1177/2049463713484296.
    1. Boyle J, et al. Projection of diabetes burden through 2050: impact of changing demography and disease prevalence. U. S. Diabetes Care. 2001;24(11):1936–1940. doi: 10.2337/diacare.24.11.1936.
    1. Langley P, Ruiz-Iban M, Molina J, De Andres J, Castellon J. The prevalence, correlates and treatment of pain in Spain. J Med Econ. 2011;14(3):367–380. doi: 10.3111/13696998.2011.583303.
    1. Leadley R, Armstrong N, Lee Y, Allen A, Kleijnen J. Chronic diseases in the European Union: the prevalence and health cost implications of chronic pain. J. Pain Palliat. Care Pharmacother. 2012;26(4):310–325. doi: 10.3109/15360288.2012.736933.
    1. Dueñas M, et al. A nationwide study of chronic pain prevalence in the general Spanish population: identifying clinical subgroups through cluster analysis. Pain Med. 2015;16(4):811–822. doi: 10.1111/pme.12640.
    1. Phillips, C.J., Schopflocher, D. The Economics of Chronic Pain. In Chronic pain: a health policy perspective. ch. 4, 41–50 (Weinheim, Wiley, 2008).
    1. Latremoliere A, Woolf C. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926. doi: 10.1016/j.jpain.2009.06.012.
    1. Woolf C. Central sensitization: Implications for the diagnosis and treatment of pain. Pain. 2011;152:S2–15. doi: 10.1016/j.pain.2010.09.030.
    1. Sterling M, Jull G, Wright A. The effect of musculoskeletal pain on motor activity and control. J. Pain. 2001;2(3):1135–1145. doi: 10.1054/jpai.2001.19951.
    1. Hossain MZ, Unno S, Ando H, Masuda Y, Kitagawa J. Neuron-Glia crosstalk and neuropathic pain: Involvement in the modulation of motor activity in the orofacial region. Int. J. Mol. Sci. 2017;18(10):2051. doi: 10.3390/ijms18102051.
    1. Henderson RD, McCombe PA. Assessment of motor units in neuromuscular disease. Neurotherapeutics. 2017;14(1):69–77. doi: 10.1007/s13311-016-0473-z.
    1. Henneman E, Somjen G, Carpenter D. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 1965;28(3):560–580. doi: 10.1152/jn.1965.28.3.560.
    1. Enoka R. Physiological validation of the decomposition of surface EMG signals. J. Electromyogr. Kinesiol. 2017;46:70–83. doi: 10.1016/j.jelekin.2019.03.010.
    1. Merletti R, Farina D. Analysis of intramuscular electromyogram signals. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008;367(1887):357–368. doi: 10.1098/rsta.2008.0235.
    1. Torebjörk HE, Lundberg LE, LaMotte RH. Central changes in processing of mechanoreceptive input in capsaicin-induced secondary hyperalgesia in humans. J. Physiol. 1992;448(1):765–780. doi: 10.1113/jphysiol.1992.sp019069.
    1. Willis W. Central sensitization and plasticity following intense noxious stimulation. In: Mayer E, Raybould H, editors. Basic and Clinic Aspect of Chronic Abdominal Pain. Elsevier; 1993. pp. 201–207.
    1. Willis W. Role of neurotransmitters in sensitization of pain responses. In: Sorg B, Bell I, editors. The Role of Neural Plasticity in Chemical Intolerance. The New York Academy of Sciences; 2001. pp. 142–156.
    1. Frymoyer A, Rowbotham M, Petersen K. Placebo-controlled comparison of a morphine/dextromethorphan combination with morphine on experimental pain and hyperalgesia in healthy volunteers. J. Pain. 2007;8(1):19–25. doi: 10.1016/j.jpain.2006.05.010.
    1. Grönroos M, Pertovaara A. Capsaicin-induced central facilitation of a nociceptive flexion reflex in humans. Neurosci. Lett. 1993;159:215–218. doi: 10.1016/0304-3940(93)90837-B.
    1. Qerama E, Fuglsang-Frederiksen A, Kasch H, Bach F, Jensen T. Effects of evoked pain on the electromyogram and compound muscle action potential of the brachial biceps muscle. Muscle Nerve. 2005;31:25–33. doi: 10.1002/mus.20182.
    1. Earle KM. The tract of Lissauer and its possible relation to the pain pathway. J. Comp. Neurol. 1952;96(1):93–111. doi: 10.1002/cne.900960104.
    1. World Medical Association World Medical Association Declaration of Helsinki. Bull. World Health Organ. 2001;79(4):373–374.
    1. Breivik H, et al. Assessment of pain. Brit. J. Anaesth. 2008;101(1):17–24. doi: 10.1093/bja/aen103.
    1. WHO. Body mass index—BMI (2020). [Online].
    1. Cavallone L, et al. Reproducibility of the heat/capsaicin skin sensitization model in healthy volunteers. J. Pain Res. 2013;6:771–784. doi: 10.2147/JPR.S53437.
    1. Delsys Inc. NeuroMap 1.1.0 [Internet]. [Updated: 2020; cited: 3 November 2019]. Available from: .
    1. Natus. Electromyography (EMG) Solutions [Internet]. [updated: 2020; cited: 3 November 2019]. Available from: .
    1. LaMotte RH, Lundberg LE, Torebjörk HE. Pain, hyperalgesia and activity in nociceptive C units in humans after intradermal injection of capsaicin. J. Physiol. 1992;448(1):749–764. doi: 10.1113/jphysiol.1992.sp019068.
    1. Nawab S, Chang S, De Luca C. High-yield decomposition of surface EMG signals. Clin. Neurophysiol. 2010;121(10):1602–1615. doi: 10.1016/j.clinph.2009.11.092.
    1. Koh R. G. L., Nachman A, Zariffa J. Use of spatiotemporal templates for pathway discrimination in peripheral nerve recordings—A simulation study. J. Neural Eng. 2017;14:016013. doi: 10.1088/1741-2552/14/1/016013.
    1. Matlab, 9.4.0.813654 (R2018a). Natick. (The Mathworks Inc, 2018).
    1. Martinez-Valdes E, Negro F, Laine C, Falla D, Mayer F, Farina D. Tracking motor units longitudinally across experimental sessions with high-densitiy surface electromyography. J. Physiol. 2017;595(5):1479–1496. doi: 10.1113/JP273662.
    1. Quian Quiroga R, Nadasdy Z, Ben-Shaul Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004;16:1661–1687. doi: 10.1162/089976604774201631.
    1. Sung-Min H, et al. Selective activation of the infraspinatus muscle. J. Athlet. Train. 2013;48(3):346–352. doi: 10.4085/1062-6050-48.2.18.
    1. Hoheisel U, Mense S, Simons D, Yu X. Appearance of new receptive fields in rat dorsal horn neurons following noxious stimulation of skeletal muscle: A model for refferal of muscle pain? Neurosci. Lett. 1993;153(1):9–12. doi: 10.1016/0304-3940(93)90064-R.
    1. Graven-Nielsen T, Arendt-Nielsen L. Assessment of mechanisms in localized and widespread musculoskeletal pain. Nat. Rev. Rheumatol. 2010;6(10):599–606. doi: 10.1038/nrrheum.2010.107.
    1. Umeda M, Corbin L, Maluf KS. Preliminary investigation of absent nociceptive flexion reflex responses among more symptomatic women with fibromyalgia syndrome. Rheumatol. Int. 2013;33(9):2365–2372. doi: 10.1007/s00296-013-2725-0.
    1. Ziegler EA, Magerl W, Meyer RA, Treede RD. Secondary hyperalgesia to punctate mechanical stimuli: Central sensitization to A-fibre nociceptor input. Brain. 1999;22(12):2245–2257. doi: 10.1093/brain/122.12.2245.
    1. Andersson LA, et al. Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exp. Brain Res. 1997;117:192–199. doi: 10.1007/s002210050215.
    1. Lim E, Choon W. Central hyperexcitability as measured with nociceptive flexor reflex threshold in chronic musculoskeletal pain: A systematic review. Pain. 2011;152(8):1811–1820. doi: 10.1016/j.pain.2011.03.033.
    1. Fernandez-Camero J, Ge H, Kimura Y, Fernandez-de-las-Penas C, Arendt-Nielsen L. Increased spontaneous electrical activity at a latent myofascial trigger point after nociceptive stimulation of another latent trigger point. Clin. J. Pain. 2010;26(2):138–143. doi: 10.1097/AJP.0b013e3181bad736.
    1. Stifani N. Motor neurons and the generation of spinal motor neurons diversity. Front. Cell. Neurosci. 2014;8:293. doi: 10.3389/fncel.2014.00293.

Source: PubMed

3
구독하다