A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings

Andrea Gogos, Alyssa M Sbisa, Jeehae Sun, Andrew Gibbons, Madhara Udawela, Brian Dean, Andrea Gogos, Alyssa M Sbisa, Jeehae Sun, Andrew Gibbons, Madhara Udawela, Brian Dean

Abstract

Gender differences in schizophrenia have been extensively researched and it is being increasingly accepted that gonadal steroids are strongly attributed to this phenomenon. Of the various hormones implicated, the estrogen hypothesis has been the most widely researched one and it postulates that estrogen exerts a protective effect by buffering females against the development and severity of the illness. In this review, we comprehensively analyse studies that have investigated the effects of estrogen, in particular 17β-estradiol, in clinical, animal, and molecular research with relevance to schizophrenia. Specifically, we discuss the current evidence on estrogen dysfunction in schizophrenia patients and review the clinical findings on the use of estradiol as an adjunctive treatment in schizophrenia patients. Preclinical research that has used animal models and molecular probes to investigate estradiol's underlying protective mechanisms is also substantially discussed, with particular focus on estradiol's impact on the major neurotransmitter systems implicated in schizophrenia, namely, the dopamine, serotonin, and glutamate systems.

Figures

Figure 1
Figure 1
Putative mechanisms of estrogen action in the cell. Estrogen can act via either genomic or nongenomic mechanisms. Genomic mechanisms involve activation of the estrogen receptors (ERs) by estrogen, which then translocate to the cell nucleus as hetero- or homodimers to bind to estrogen response elements (EREs) or to activator protein 1 (AP-1) sites, resulting in transcription activation. Nongenomic actions occur via binding of estrogen to ERs or to a G protein coupled receptor GPR30, either intracellularly or at the plasma membrane (mERs) to activate second messenger systems, such as those involving mitogen-activated protein kinase (MAPK) or cyclic adenosine 3′,5′-monophosphate (cAMP) pathways, which can also activate transcription or have other effects.

References

    1. McGrath J., Saha S., Chant D., Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiologic Reviews. 2008;30(1):67–76. doi: 10.1093/epirev/mxn001.
    1. Mueser K. T., Jeste D. V. Clinical Handbook of Schizophrenia. New York, NY, USA: Guilford Press; 2011.
    1. Knapp M. Schizophrenia costs and treatment cost-effectiveness. Acta Psychiatrica Scandinavica. 2000;102(407):15–18. doi: 10.1046/j.1467-0658.2001.00137.x-i1.
    1. Ritsner M. S. Handbook of Schizophrenia Spectrum Disorders: Therapeutic Approaches, Comorbidity, and Outcomes. New York, NY, USA: Springer; 2011.
    1. Saha S., Chant D., McGrath J. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Archives of General Psychiatry. 2007;64(10):1123–1131. doi: 10.1001/archpsyc.64.10.1123.
    1. Lambert T. J. R., Newcomer J. W. Are the cardiometabolic complications of schizophrenia still neglected? Barriers to care. Medical Journal of Australia. 2009;190(4, article 39)
    1. Mueser K. T., McGurk S. R. Schizophrenia. The Lancet. 2004;363(9426):2063–2072. doi: 10.1016/s0140-6736(04)16458-1.
    1. Tandon R., Gaebel W., Barch D. M., et al. Definition and description of schizophrenia in the DSM-5. Schizophrenia Research. 2013;150(1):3–10. doi: 10.1016/j.schres.2013.05.028.
    1. Tamminga C. A. Accelerating new knowledge in schizophrenia. The American Journal of Psychiatry. 2008;165(8):949–951. doi: 10.1176/appi.ajp.2008.08060815.
    1. Steeds H., Carhart-Harris R. L., Stone J. M. Drug models of schizophrenia. Therapeutic Advances in Psychopharmacology. 2015;5(1):43–58. doi: 10.1177/2045125314557797.
    1. Acosta F. J., Chinea E., Hernández J. L., et al. Influence of antipsychotic treatment type and regimen on the functionality of patients with schizophrenia. Nordic Journal of Psychiatry. 2014;68(3):180–188. doi: 10.3109/08039488.2013.790475.
    1. Seeman P. All roads to schizophrenia lead to dopamine supersensitivity and elevated dopamine D2(high) receptors. CNS Neuroscience & Therapeutics. 2011;17(2):118–132.
    1. Meltzer H. Y. Treatment-resistant schizophrenia—the role of clozapine. Current Medical Research and Opinion. 1997;14(1):1–20. doi: 10.1185/03007999709113338.
    1. Seeman M. V. The role of estrogen in schizophrenia. Journal of Psychiatry and Neuroscience. 1996;21(2):123–127.
    1. Fink G., Sumner B. E. H., Rosie R., Grace O., Quinn J. P. Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cellular and Molecular Neurobiology. 1996;16(3):325–344. doi: 10.1007/bf02088099.
    1. Sayed Y., Taxel P. The use of estrogen therapy in men. Current Opinion in Pharmacology. 2003;3(6):650–654. doi: 10.1016/j.coph.2003.07.004.
    1. Cui J., Shen Y., Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends in Molecular Medicine. 2013;19(3):197–209. doi: 10.1016/j.molmed.2012.12.007.
    1. Legato M. J. Principles of Gender-Specific Medicine. New York, NY, USA: Academic Press; 2009.
    1. Rao M. L., Kölsch H. Effects of estrogen on brain development and neuroprotection—implications for negative symptoms in schizophrenia. Psychoneuroendocrinology. 2003;28(supplement 2):83–96. doi: 10.1016/s0306-4530(02)00126-9.
    1. Kulkarni J., Gavrilidis E., Wang W., et al. Estradiol for treatment-resistant schizophrenia: a large-scale randomized-controlled trial in women of child-bearing age. Molecular Psychiatry. 2015;20:695–702. doi: 10.1038/mp.2014.33.
    1. Gogos A., Kwek P., van den Buuse M. The role of estrogen and testosterone in female rats in behavioral models of relevance to schizophrenia. Psychopharmacology. 2012;219(1):213–224. doi: 10.1007/s00213-011-2389-y.
    1. Abel K. M., Drake R., Goldstein J. M. Sex differences in schizophrenia. International Review of Psychiatry. 2010;22(5):417–428. doi: 10.3109/09540261.2010.515205.
    1. Markham J. A. Sex steroids and schizophrenia. Reviews in Endocrine & Metabolic Disorders. 2012;13(3):187–207. doi: 10.1007/s11154-011-9184-2.
    1. Ochoa S., Usall J., Cobo J., Labad X., Kulkarni J. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophrenia Research and Treatment. 2012;2012:9. doi: 10.1155/2012/916198.916198
    1. Häfner H. Gender differences in schizophrenia. Psychoneuroendocrinology. 2003;28(2):17–54. doi: 10.1016/s0306-4530(02)00125-7.
    1. Eranti S. V., MacCabe J. H., Bundy H., Murray R. M. Gender difference in age at onset of schizophrenia: a meta-analysis. Psychological Medicine. 2013;43(1):155–167. doi: 10.1017/s003329171200089x.
    1. Häfner H., Riecher-Rössler A., an Der Heiden W., Maurer K., Fatkenheuer B., Loffler W. Generating and testing a causal explanation of the gender difference in age at first onset of schizophrenia. Psychological Medicine. 1993;23(4):925–940. doi: 10.1017/s0033291700026398.
    1. Aleman A., Kahn R. S., Selten J.-P. Sex differences in the risk of schizophrenia: evidence from meta-analysis. Archives of General Psychiatry. 2003;60(6):565–571. doi: 10.1001/archpsyc.60.6.565.
    1. McGrath J., Saha S., Welham J., El Saadi O., MacCauley C., Chant D. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Medicine. 2004;2, article 13 doi: 10.1186/1741-7015-2-13.
    1. Canuso C. M., Pandina G. Gender and schizophrenia. Psychopharmacology Bulletin. 2007;40(4):178–190.
    1. Hambrecht M., Maurer K., Häfner H., Sartorius N. Transnational stability of gender differences in schizophrenia? An analysis based on the WHO study on determinants of outcome of severe mental disorders. European Archives of Psychiatry and Clinical Neuroscience. 1992;242(1):6–12. doi: 10.1007/bf02190336.
    1. Goldstein J. M., Link B. G. Gender and the expression of schizophrenia. Journal of Psychiatric Research. 1988;22(2):141–155. doi: 10.1016/0022-3956(88)90078-7.
    1. Begemann M. J. H., Dekker C. F., van Lunenburg M., Sommer I. E. Estrogen augmentation in schizophrenia: a quantitative review of current evidence. Schizophrenia Research. 2012;141(2-3):179–184. doi: 10.1016/j.schres.2012.08.016.
    1. Seeman M. V. Interaction of sex, age, and neuroleptic dose. Comprehensive Psychiatry. 1983;24(2):125–128. doi: 10.1016/0010-440x(83)90100-1.
    1. Bryant N. L., Buchanan R. W., Vladar K., Breier A., Rothman M. Gender differences in temporal lobe structures of patients with schizophrenia: a volumetric MRI study. American Journal of Psychiatry. 1999;156(4):603–609.
    1. Narr K. L., Thompson P. M., Sharma T., et al. Three-dimensional mapping of temporo-limbic regions and the lateral ventricles in schizophrenia: gender effects. Biological Psychiatry. 2001;50(2):84–97. doi: 10.1016/s0006-3223(00)01120-3.
    1. Nopoulos P., Flaum M., Andreasen N. C. Sex differences in brain morphology in schizophrenia. The American Journal of Psychiatry. 1997;154(12):1648–1654. doi: 10.1176/ajp.154.12.1648.
    1. Cohen R. Z., Seeman M. V., Gotowiec A., Kopala L. Earlier puberty as a predictor of later onset of schizophrenia in women. The American Journal of Psychiatry. 1999;156(7):1059–1064.
    1. Halari R., Kumari V., Mehrotra R., Wheeler M., Hines M., Sharma T. The relationship of sex hormones and cortisol with cognitive functioning in schizophrenia. Journal of Psychopharmacology. 2004;18(3):366–374. doi: 10.1177/026988110401800307.
    1. Häfner H., an der Heiden W., Behrens S., et al. Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophrenia Bulletin. 1998;24(1):99–113. doi: 10.1093/oxfordjournals.schbul.a033317.
    1. Hayes E., Gavrilidis E., Kulkarni J. The role of oestrogen and other hormones in the pathophysiology and treatment of schizophrenia. Schizophrenia Research and Treatment. 2012;2012:8. doi: 10.1155/2012/540273.540273
    1. Kulkarni J., Gavrilidis E., Worsley R., Hayes E. Role of estrogen treatment in the management of schizophrenia. CNS Drugs. 2012;26(7):549–557. doi: 10.2165/11630660-000000000-00000.
    1. Wieck A. Oestradiol and psychosis: clinical findings and biological mechanisms. Current Topics in Behavioral Neurosciences. 2011;8:173–187. doi: 10.1007/7854_2011_127.
    1. Dalton K. Menstruation and acute psychiatric illnesses. British Medical Journal. 1959;1(5115):148–149. doi: 10.1136/bmj.1.5115.148.
    1. Chang S. S., Renshaw D. C. Psychosis and pregnancy. Comprehensive Therapy. 1986;12(10):36–41.
    1. Kendell R. E., Chalmers J. C., Platz C. Epidemiology of puerperal psychoses. The British Journal of Psychiatry. 1987;150:662–673. doi: 10.1192/bjp.150.5.662.
    1. Bergemann N., Parzer P., Nagl I., et al. Acute psychiatric admission and menstrual cycle phase in women with schizophrenia. Archives of Women's Mental Health. 2002;5(3):119–126. doi: 10.1007/s00737-002-0004-2.
    1. Bergemann N., Mundt C., Parzer P., et al. Plasma concentrations of estradiol in women suffering from schizophrenia treated with conventional versus atypical antipsychotics. Schizophrenia Research. 2005;73(2-3):357–366. doi: 10.1016/j.schres.2004.06.013.
    1. Riecher-Rössler A., Rössler H., Stumbaum M., Maurer K., Schmidt R. Can estradiol modulate schizophrenic symptomatology? Schizophrenia Bulletin. 1994;20(1):203–214. doi: 10.1093/schbul/20.1.203.
    1. Rubin L. H., Carter C. S., Drogos L., Pournajafi-Nazarloo H., Sweeney J. A., Maki P. M. Peripheral oxytocin is associated with reduced symptom severity in schizophrenia. Schizophrenia Research. 2010;124(1–3):13–21. doi: 10.1016/j.schres.2010.09.014.
    1. Huber T. J., Borsutzky M., Schneider U., Emrich H. M. Psychotic disorders and gonadal function: evidence supporting the oestrogen hypothesis. Acta Psychiatrica Scandinavica. 2004;109(4):269–274. doi: 10.1046/j.1600-0447.2003.00251.x.
    1. Hallonquist J. D., Seeman M. V., Lang M., Rector N. A. Variation in symptom severity over the menstrual cycle of Schizophrenics. Biological Psychiatry. 1993;33(3):207–209. doi: 10.1016/0006-3223(93)90141-Y.
    1. Bergemann N., Parzer P., Runnebaum B., Resch F., Mundt C. Estrogen, menstrual cycle phases, and psychopathology in women suffering from schizophrenia. Psychological Medicine. 2007;37(10):1427–1436. doi: 10.1017/S0033291707000578.
    1. Hochman K. M., Lewine R. R. Age of menarche and schizophrenia onset in women. Schizophrenia Research. 2004;69(2-3):183–188. doi: 10.1016/s0920-9964(03)00176-2.
    1. Huber T. J., Rollnik J., Wilhelms J., von Zur Mühlen A., Emrich H. M., Schneider U. Estradiol levels in psychotic disorders. Psychoneuroendocrinology. 2001;26(1):27–35. doi: 10.1016/s0306-4530(00)00034-2.
    1. Bergemann N., Riecher-Rössler A. Estrogen Effects in Psychiatric Disorders. New York, NY, USA: Springer; 2005.
    1. Diczfalusy E., Lauritzen C. Oestrogene Beim Menschen. Berlin, Germany: Springer; 1961.
    1. Zhang-Wong J. H., Seeman M. V. Antipsychotic drugs, menstrual regularity and osteoporosis risk. Archives of Women's Mental Health. 2002;5(3):93–98. doi: 10.1007/s00737-002-0002-4.
    1. Montgomery J., Winterbottom E., Jessani M., et al. Prevalence of hyperprolactinemia in schizophrenia: association with typical and atypical antipsychotic treatment. The Journal of Clinical Psychiatry. 2004;65(11):1491–1498. doi: 10.4088/jcp.v65n1108.
    1. Perkins D. O. Antipsychotic-induced hyperprolactinemia: pathophysiology and clinical consequences. Advanced Studies in Medicine. 2004;4(10):S982–S986.
    1. Schepp A. Pilotstudie zur Frage eines überdauernden relativen Hypoöstrogenismus bei schizophrenen Frauen [Inauguraldissertation zur Erlangung des medizinischen Doktorgrades] Heidelberg, Germany: Universität Heidelberg—Mannheim; 1997.
    1. Akhondzadeh S., Nejatisafa A. A., Amini H., et al. Adjunctive estrogen treatment in women with chronic schizophrenia: a double-blind, randomized, and placebo-controlled trial. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2003;27(6):1007–1012. doi: 10.1016/s0278-5846(03)00161-1.
    1. Kulkarni J., Riedel A., de Castella A. R., et al. Estrogen—a potential treatment for schizophrenia. Schizophrenia Research. 2001;48(1):137–144. doi: 10.1016/s0920-9964(00)00088-8.
    1. Kulkarni J., de Castella A., Smith D., Taffe J., Keks N., Copolov D. A clinical trial of the effects of estrogen in acutely psychotic women. Schizophrenia Research. 1996;20(3):247–252. doi: 10.1016/0920-9964(96)82949-5.
    1. Bergemann N., Mundt C., Parzer P., et al. Estrogen as an adjuvant therapy to antipsychotics does not prevent relapse in women suffering from schizophrenia: results of a placebo-controlled double-blind study. Schizophrenia Research. 2005;74(2-3):125–134. doi: 10.1016/j.schres.2004.12.009.
    1. Lindamer L. A., Buse D. C., Lohr J. B., Jeste D. V. Hormone replacement therapy in postmenopausal women with schizophrenia: positive effect on negative symptoms? Biological Psychiatry. 2001;49(1):47–51. doi: 10.1016/s0006-3223(00)00995-1.
    1. Kulkarni J., de Castella A., Headey B., et al. Estrogens and men with schizophrenia: is there a case for adjunctive therapy? Schizophrenia Research. 2011;125(2-3):278–283. doi: 10.1016/j.schres.2010.10.009.
    1. Ghafari E., Fararouie M., Shirazi H. G., Farhangfar A., Ghaderi F., Mohammadi A. Combination of estrogen and antipsychotics in the treatment of women with chronic schizophrenia: a double-blind, randomized, placebo-controlled clinical trial. Clinical Schizophrenia and Related Psychoses. 2013;6(4):172–176. doi: 10.3371/csrp.ghfa.01062013.
    1. Louzã M. R., Marques A. P., Elkis H., Bassitt D., Diegoli M., Gattaz W. F. Conjugated estrogens as adjuvant therapy in the treatment of acute schizophrenia: a double-blind study. Schizophrenia Research. 2004;66(2-3):97–100. doi: 10.1016/s0920-9964(03)00082-3.
    1. Kulkarni J., Gurvich C., Gilbert H., et al. Hormone modulation: a novel therapeutic approach for women with severe mental illness. Australian & New Zealand Journal of Psychiatry. 2008;42(1):83–88. doi: 10.1080/00048670701732715.
    1. Kulkarni J., Gurvich C., Lee S. J., et al. Piloting the effective therapeutic dose of adjunctive selective estrogen receptor modulator treatment in postmenopausal women with schizophrenia. Psychoneuroendocrinology. 2010;35(8):1142–1147. doi: 10.1016/j.psyneuen.2010.01.014.
    1. Usall J., Huerta-Ramos E., Iniesta R., et al. Raloxifene as an adjunctive treatment for postmenopausal women with schizophrenia: a double-blind, randomized, placebo-controlled trial. The Journal of Clinical Psychiatry. 2011;72(11):1552–1557. doi: 10.4088/jcp.10m06610.
    1. Huerta-Ramos E., Iniesta R., Ochoa S., et al. Effects of raloxifene on cognition in postmenopausal women with schizophrenia: a double-blind, randomized, placebo-controlled trial. European Neuropsychopharmacology. 2014;24(2):223–231. doi: 10.1016/j.euroneuro.2013.11.012.
    1. Weickert T. W., Weinberg D., Lenroot R., et al. Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia. Molecular Psychiatry. 2015;20(6):685–694. doi: 10.1038/mp.2015.11.
    1. Hoff A. L., Kremen W. S., Wieneke M. H., et al. Association of estrogen levels with neuropsychological performance in women with schizophrenia. The American Journal of Psychiatry. 2001;158(7):1134–1139. doi: 10.1176/appi.ajp.158.7.1134.
    1. Ko Y.-H., Joe S.-H., Cho W., et al. Estrogen, cognitive function and negative symptoms in female schizophrenia. Neuropsychobiology. 2006;53(4):169–175. doi: 10.1159/000093780.
    1. Bergemann N., Parzer P., Jaggy S., Auler B., Mundt C., Maier-Braunleder S. Estrogen and comprehension of metaphoric speech in women suffering from schizophrenia: results of a double-blind, placebo-controlled trial. Schizophrenia Bulletin. 2008;34(6):1172–1181. doi: 10.1093/schbul/sbm138.
    1. Chavez C., Hollaus M., Scarr E., Pavey G., Gogos A., van den Buuse M. The effect of estrogen on dopamine and serotonin receptor and transporter levels in the brain: an autoradiography study. Brain Research. 2010;1321:51–59. doi: 10.1016/j.brainres.2009.12.093.
    1. Sánchez M. G., Bourque M., Morissette M., Di Paolo T. Steroids-dopamine interactions in the pathophysiology and treatment of cns disorders. CNS Neuroscience and Therapeutics. 2010;16(3):e43–e71. doi: 10.1111/j.1755-5949.2010.00163.x.
    1. Dantas A. P. V., Tostes R. C. A., Fortes Z. B., Costa S. G., Nigro D., Carvalho M. H. C. In vivo evidence for antioxidant potential of estrogen in microvessels of female spontaneously hypertensive rats. Hypertension. 2002;39(2):405–411. doi: 10.1161/hy0202.102993.
    1. Kumar A., Foster T. C. 17β-estradiol benzoate decreases the AHP amplitude in CA1 pyramidal neurons. Journal of Neurophysiology. 2002;88(2):621–626.
    1. Wong M., Moss R. L. Long-term and short-term electrophysiological effects of estrogen on the synaptic properties of hippocampal CA1 neurons. The Journal of Neuroscience. 1992;12(8):3217–3225.
    1. McEwen B., Akama K., Alves S., et al. Tracking the estrogen receptor in neurons: implications for estrogen-induced synapse formation. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(13):7093–7100. doi: 10.1073/pnas.121146898.
    1. McEwen B. S., Alves S. E. Estrogen actions in the central nervous system. Endocrine Reviews. 1999;20(3):279–307.
    1. Aenlle K. K., Kumar A., Cui L., Jackson T. C., Foster T. C. Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiology of Aging. 2009;30(6):932–945. doi: 10.1016/j.neurobiolaging.2007.09.004.
    1. Humphreys G. I., Ziegler Y. S., Nardulli A. M. 17β-estradiol modulates gene expression in the female mouse cerebral cortex. PLoS ONE. 2014;9(11) doi: 10.1371/journal.pone.0111975.e111975
    1. Wang J., Cheng C. M., Zhou J., et al. Estradiol alters transcription factor gene expression in primate prefrontal cortex. Journal of Neuroscience Research. 2004;76(3):306–314. doi: 10.1002/jnr.20076.
    1. Pedram A., Razandi M., Aitkenhead M., Hughes C. C. W., Levin E. R. Integration of the non-genomic and genomic actions of estrogen: membrane-initiated signaling by steroid to transcription and cell biology. The Journal of Biological Chemistry. 2002;277(52):50768–50775. doi: 10.1074/jbc.m210106200.
    1. Polymeropoulos M. H., Licamele L., Volpi S., et al. Common effect of antipsychotics on the biosynthesis and regulation of fatty acids and cholesterol supports a key role of lipid homeostasis in schizophrenia. Schizophrenia Research. 2009;108(1–3):134–142. doi: 10.1016/j.schres.2008.11.025.
    1. Green S., Walter P., Kumar V., et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986;320(6058):134–139. doi: 10.1038/320134a0.
    1. Kuiper G. G., Enmark E., Pelto-Huikko M., et al. Cloning of a novel receptor expressed in rat prostate and ovary. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(12):5925–5930.
    1. Chu S., Fuller P. J. Identification of a splice variant of the rat estrogen receptor β gene. Molecular and Cellular Endocrinology. 1997;132(1-2):195–199. doi: 10.1016/s0303-7207(97)00133-0.
    1. Hanstein B., Liu H., Yancisin M. C., Brown M. Functional analysis of a novel estrogen receptor-β isoform. Molecular Endocrinology. 1999;13(1):129–137. doi: 10.1210/me.13.1.129.
    1. Maruyama K., Endoh H., Sasaki-Iwaoka H., et al. A novel isoform of rat estrogen receptor beta with 18 amino acid insertion in the ligand binding domain as a putative dominant negative regulator of estrogen action. Biochemical and Biophysical Research Communications. 1998;246(1):142–147. doi: 10.1006/bbrc.1998.8590.
    1. Shughrue P. J., Bushnell C. D., Dorsa D. M. Estrogen receptor messenger ribonucleic acid in female rat brain during the estrous cycle: a comparison with ovariectomized females and intact males. Endocrinology. 1992;131(1):381–388.
    1. Simerly R. B., Young B. J. Regulation of estrogen receptor messenger ribonucleic acid in rat hypothalamus by sex steroid hormones. Molecular Endocrinology. 1991;5(3):424–432. doi: 10.1210/mend-5-3-424.
    1. Zhou Y., Shughrue P. J., Dorsa D. M. Estrogen receptor protein is differentially regulated in the preoptic area of the brain and in the uterus during the rat estrous cycle. Neuroendocrinology. 1995;61(3):276–283. doi: 10.1159/000126849.
    1. Micevych P., Dominguez R. Membrane estradiol signaling in the brain. Frontiers in Neuroendocrinology. 2009;30(3):315–327. doi: 10.1016/j.yfrne.2009.04.011.
    1. Gundlah C., Kohama S. G., Mirkes S. J., Garyfallou V. T., Urbanski H. F., Bethea C. L. Distribution of estrogen receptor beta (ERβ) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: continued expression with hormone replacement. Molecular Brain Research. 2000;76(2):191–204. doi: 10.1016/s0006-8993(99)02475-0.
    1. Register T. C., Shively C. A., Lewis C. E. Expression of estrogen receptor α and β transcripts in female monkey hippocampus and hypothalamus. Brain Research. 1998;788(1-2):320–322. doi: 10.1016/s0006-8993(98)00036-5.
    1. Behl C., Skutella T., Lezoualc'h F., et al. Neuroprotection against oxidative stress by estrogens: structure—activity relationship. Molecular Pharmacology. 1997;51(4):535–541.
    1. Revankar C. M., Cimino D. F., Sklar L. A., Arterburn J. B., Prossnitz E. R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625–1630. doi: 10.1126/science.1106943.
    1. Thomas P., Pang Y., Filardo E. J., Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. 2005;146(2):624–632. doi: 10.1210/en.2004-1064.
    1. Brailoiu E., Dun S. L., Brailoiu G. C., et al. Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system. The Journal of Endocrinology. 2007;193(2):311–321. doi: 10.1677/joe-07-0017.
    1. Matsuda K., Sakamoto H., Mori H., et al. Expression and intracellular distribution of the G protein-coupled receptor 30 in rat hippocampal formation. Neuroscience Letters. 2008;441(1):94–99. doi: 10.1016/j.neulet.2008.05.108.
    1. Otto C., Rohde-Schulz B., Schwarz G., et al. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol. Endocrinology. 2008;149(10):4846–4856. doi: 10.1210/en.2008-0269.
    1. Akama K. T., Thompson L. I., Milner T. A., McEwen B. S. Post-synaptic density-95 (PSD-95) binding capacity of G-protein-coupled receptor 30 (GPR30), an estrogen receptor that can be identified in hippocampal dendritic spines. The Journal of Biological Chemistry. 2013;288(9):6438–6450. doi: 10.1074/jbc.m112.412478.
    1. Funakoshi T., Yanai A., Shinoda K., Kawano M. M., Mizukami Y. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochemical and Biophysical Research Communications. 2006;346(3):904–910. doi: 10.1016/j.bbrc.2006.05.191.
    1. Hammond R., Nelson D., Gibbs R. B. GPR30 co-localizes with cholinergic neurons in the basal forebrain and enhances potassium-stimulated acetylcholine release in the hippocampus. Psychoneuroendocrinology. 2011;36(2):182–192. doi: 10.1016/j.psyneuen.2010.07.007.
    1. Tang H., Zhang Q., Yang L., et al. Reprint of ‘GPR30 mediates estrogen rapid signaling and neuroprotection’. Molecular and Cellular Endocrinology. 2014;389(1-2):92–98. doi: 10.1016/j.mce.2014.05.005.
    1. Maggiolini M., Picard D. The unfolding stories of GPR30, a new membrane-bound estrogen receptor. Journal of Endocrinology. 2010;204(2):105–114. doi: 10.1677/joe-09-0242.
    1. Noel S. D., Keen K. L., Baumann D. I., Filardo E. J., Terasawa E. Involvement of G protein-coupled receptor 30 (GPR30) in rapid action of estrogen in primate LHRH neurons. Molecular Endocrinology. 2009;23(3):349–359. doi: 10.1210/me.2008-0299.
    1. Takanami K., Sakamoto H., Matsuda K.-I., et al. Expression of G protein-coupled receptor 30 in the spinal somatosensory system. Brain Research. 2010;1310:17–28. doi: 10.1016/j.brainres.2009.11.004.
    1. Wang C., Dehghani B., Magrisso I. J., et al. GPR30 contributes to estrogen-induced thymic atrophy. Molecular Endocrinology. 2008;22(3):636–648. doi: 10.1210/me.2007-0359.
    1. Hammond R., Mauk R., Ninaci D., Nelson D., Gibbs R. B. Chronic treatment with estrogen receptor agonists restores acquisition of a spatial learning task in young ovariectomized rats. Hormones and Behavior. 2009;56(3):309–314. doi: 10.1016/j.yhbeh.2009.06.008.
    1. Hammond R., Nelson D., Kline E., Gibbs R. B. Chronic treatment with a GPR30 antagonist impairs acquisition of a spatial learning task in young female rats. Hormones and Behavior. 2012;62(4):367–374. doi: 10.1016/j.yhbeh.2012.07.004.
    1. Hawley W. R., Grissom E. M., Moody N. M., Dohanich G. P., Vasudevan N. Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats. Behavioural Brain Research. 2014;262:68–73. doi: 10.1016/j.bbr.2014.01.006.
    1. Gabor C., Lymer J., Phan A., Choleris E. Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice. Physiology & Behavior. 2015;149:53–60. doi: 10.1016/j.physbeh.2015.05.017.
    1. Toran-Allerand C. D., Guan X., MacLusky N. J., et al. ER-X: a novel, plasma membrane-associated, putative estrogen receptor that is regulated during development and after ischemic brain injury. The Journal of Neuroscience. 2002;22(19):8391–8401.
    1. Soltysik K., Czekaj P. Membrane estrogen receptors—is it an alternative way of estrogen action? Journal of Physiology and Pharmacology. 2013;64(2):129–142.
    1. Green M. F. What are the functional consequences of neurocognitive deficits in schizophrenia? The American Journal of Psychiatry. 1996;153(3):321–330. doi: 10.1176/ajp.153.3.321.
    1. Tandon R., Keshavan M. S., Nasrallah H. A. Schizophrenia, ‘Just the Facts’: what we know in 2008. Part 1: overview. Schizophrenia Research. 2008;100(1–3):4–19. doi: 10.1016/j.schres.2008.01.022.
    1. Sinopoli K. J., Floresco S. B., Galea L. A. M. Systemic and local administration of estradiol into the prefrontal cortex or hippocampus differentially alters working memory. Neurobiology of Learning and Memory. 2006;86(3):293–304. doi: 10.1016/j.nlm.2006.04.003.
    1. Foster T. C., Rani A., Kumar A., Cui L., Semple-Rowland S. L. Viral vector-mediated delivery of estrogen receptor-α to the hippocampus improves spatial learning in estrogen receptor-α knockout mice. Molecular Therapy. 2008;16(9):1587–1593. doi: 10.1038/mt.2008.140.
    1. Fugger H. N., Cunningham S. G., Rissman E. F., Foster T. C. Sex differences in the activational effect of ERα on spatial learning. Hormones and Behavior. 1998;34(2):163–170. doi: 10.1006/hbeh.1998.1475.
    1. Han X., Aenlle K. K., Bean L. A., et al. Role of estrogen receptor α and β in preserving hippocampal function during aging. The Journal of Neuroscience. 2013;33(6):2671–2683. doi: 10.1523/jneurosci.4937-12.2013.
    1. Jacome L. F., Gautreaux C., Inagaki T., et al. Estradiol and ERβ agonists enhance recognition memory, and DPN, an ERβ agonist, alters brain monoamines. Neurobiology of Learning and Memory. 2010;94(4):488–498. doi: 10.1016/j.nlm.2010.08.016.
    1. Phan A., Lancaster K. E., Armstrong J. N., MacLusky N. J., Choleris E. Rapid effects of estrogen receptor α and β selective agonists on learning and dendritic spines in female mice. Endocrinology. 2011;152(4):1492–1502. doi: 10.1210/en.2010-1273.
    1. Luine V. N. Estradiol and cognitive function: past, present and future. Hormones and Behavior. 2014;66(4):602–618. doi: 10.1016/j.yhbeh.2014.08.011.
    1. DeLisi L. E., Szulc K. U., Bertisch H. C., Majcher M., Brown K. Understanding structural brain changes in schizophrenia. Dialogues in Clinical Neuroscience. 2006;8(1):71–78.
    1. Flashman L. A., Green M. F. Review of cognition and brain structure in schizophrenia: profiles, longitudinal course, and effects of treatment. Psychiatric Clinics of North America. 2004;27(1):1–18. doi: 10.1016/s0193-953x(03)00105-9.
    1. Iritani S. Neuropathology of schizophrenia: a mini review. Neuropathology. 2007;27(6):604–608. doi: 10.1111/j.1440-1789.2007.00798.x.
    1. Adams M. M., Shah R. A., Janssen W. G. M., Morrison J. H. Different modes of hippocampal plasticity in response to estrogen in young and aged female rats. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(14):8071–8076. doi: 10.1073/pnas.141215898.
    1. Woolley C. S., McEwen B. S. Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. The Journal of Comparative Neurology. 1993;336(2):293–306. doi: 10.1002/cne.903360210.
    1. Tanapat P., Hastings N. B., Reeves A. J., Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. The Journal of Neuroscience. 1999;19(14):5792–5801.
    1. Toran-Allerand C. D. The estrogen/neurotrophin connection during neural development: is co-localization of estrogen receptors with the neurotrophins and their receptors biologically relevant? Developmental Neuroscience. 1996;18(1-2):36–48. doi: 10.1159/000111393.
    1. Balthazart J., Ball G. F. Is brain estradiol a hormone or a neurotransmitter? Trends in Neurosciences. 2006;29(5):241–249. doi: 10.1016/j.tins.2006.03.004.
    1. Lauriello J., Hoff A., Wieneke M. H., et al. Similar extent of brain dysmorphology in severely ill women and men with schizophrenia. The American Journal of Psychiatry. 1997;154(6):819–825. doi: 10.1176/ajp.154.6.819.
    1. Arimatsu Y., Hatanaka H. Estrogen treatment enhances survival of cultured fetal rat amygdala neurons in a defined medium. Brain research. 1986;391(1):151–159.
    1. Bishop J., Simpkins J. W. Estradiol treatment increases viability of glioma and neuroblastoma cells in vitro. Molecular and Cellular Neurosciences. 1994;5(4):303–308. doi: 10.1006/mcne.1994.1036.
    1. Chowen J. A., Torres-Aleman I., Garcia-Segura L. M. Trophic effects of estradiol on fetal rat hypothalamic neurons. Neuroendocrinology. 1992;56(6):895–901. doi: 10.1159/000126321.
    1. Faivre-Bauman A., Rosenbaum E., Puymirat J., Grouselle D., Tixier-Vidal A. Differentiation of fetal mouse hypothalamic cells in serum-free medium. Developmental Neuroscience. 1981;4(2):118–129. doi: 10.1159/000112747.
    1. Goodman Y., Bruce A. J., Cheng B., Mattson M. P. Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid β-peptide toxicity in hippocampal neurons. Journal of Neurochemistry. 1996;66(5):1836–1844.
    1. Green P. S., Gridley K. E., Simpkins J. W. Estradiol protects against beta-amyloid (25-35)-induced toxicity in SK-N-SH human neuroblastoma cells. Neuroscience Letters. 1996;218(3):165–168. doi: 10.1016/s0304-3940(96)13148-7.
    1. Singer C. A., Rogers K. L., Strickland T. M., Dorsa D. M. Estrogen protects primary cortical neurons from glutamate toxicity. Neuroscience Letters. 1996;212(1):13–16. doi: 10.1016/0304-3940(96)12760-9.
    1. Behl C., Widmann M., Trapp T., Holsboer F. 17-β estradiol protects neurons from oxidative stress-induced cell death in vitro. Biochemical and Biophysical Research Communications. 1995;216(2):473–482. doi: 10.1006/bbrc.1995.2647.
    1. Sárvári M., Kalló I., Hrabovszky E., et al. Estradiol replacement alters expression of genes related to neurotransmission and immune surveillance in the frontal cortex of middle-aged, ovariectomized rats. Endocrinology. 2010;151(8):3847–3862. doi: 10.1210/en.2010-0375.
    1. Suzuki S., Brown C. M., Dela Cruz C. D., Yang E., Bridwell D. A., Wise P. M. Timing of estrogen therapy after ovariectomy dictates the efficacy of its neuroprotective and antiinflammatory actions. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(14):6013–6018. doi: 10.1073/pnas.0610394104.
    1. Garcia-Segura L. M., Cardona-Gomez P., Naftolin F., Chowen J. A. Estradiol upregulates Bcl-2 expression in adult brain neurons. NeuroReport. 1998;9(4):593–597. doi: 10.1097/00001756-199803090-00006.
    1. Mooradian A. D. Antioxidant properties of steroids. The Journal of Steroid Biochemistry and Molecular Biology. 1993;45(6):509–511. doi: 10.1016/0960-0760(93)90166-t.
    1. Simpkins J. W., Yi K. D., Yang S.-H., Dykens J. A. Mitochondrial mechanisms of estrogen neuroprotection. Biochimica et Biophysica Acta—General Subjects. 2010;1800(10):1113–1120. doi: 10.1016/j.bbagen.2009.11.013.
    1. Manatt M., Chandra S. B. The effects of mitochondrial dysfunction in schizophrenia. Journal of Medical Genetics and Genomics V. 2011;3(5):84–94.
    1. Perlman W. R., Tomaskovic-Crook E., Montague D. M., et al. Alteration in estrogen receptor α mRNA levels in frontal cortex and hippocampus of patients with major mental illness. Biological Psychiatry. 2005;58(10):812–824. doi: 10.1016/j.biopsych.2005.04.047.
    1. Weiland N. G., Orikasa C., Hayashi S., McEwen B. S. Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. The Journal of Comparative Neurology. 1997;388(4):603–612.
    1. Weickert C. S., Miranda-angulo A. L., Wong J., et al. Variants in the estrogen receptor alpha gene and its mRNA contribute to risk for schizophrenia. Human Molecular Genetics. 2008;17(15):2293–2309. doi: 10.1093/hmg/ddn130.
    1. Sweatt J. D. Hippocampal function in cognition. Psychopharmacology. 2004;174(1):99–110.
    1. Owen A. M. The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. The European Journal of Neuroscience. 1997;9(7):1329–1339. doi: 10.1111/j.1460-9568.1997.tb01487.x.
    1. Cyr M., Calon F., Morissette M., Di Paolo T. Estrogenic modulation of brain activity: implications for schizophrenia and Parkinson's disease. Journal of Psychiatry and Neuroscience. 2002;27(1):12–27.
    1. Howes O. D., Kapur S. The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophrenia Bulletin. 2009;35(3):549–562. doi: 10.1093/schbul/sbp006.
    1. Bymaster F. P., Calligaro D. O., Falcone J. F., et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology. 1996;14(2):87–96. doi: 10.1016/0893-133x(94)00129-n.
    1. Creese I., Burt D. R., Snyder S. H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192(4238):481–483. doi: 10.1126/science.3854.
    1. Di Paolo T. Modulation of brain dopamine transmission by sex steroids. Reviews in the Neurosciences. 1994;5(1):27–41.
    1. Leranth C., Roth R. H., Elswoth J. D., Naftolin F., Horvath T. L., Redmond D. E. Estrogen is essential for maintaining nigrostriatal dopamine neurons in primates: implications for Parkinson's disease and memory. Journal of Neuroscience. 2000;20(23):8604–8609.
    1. Cyr M., Calon F., Morissette M., Grandbois M., Callier S., Di Paolo T. Drugs with estrogen-like potency and brain activity potential therapeutic application for the CNS. Current Pharmaceutical Design. 2000;6(12):1287–1312. doi: 10.2174/1381612003399725.
    1. Pasqualini C., Olivier V., Guibert B., Frain O., Leviel V. Acute stimulatory effect of estradiol on striatal dopamine synthesis. Journal of Neurochemistry. 1995;65(4):1651–1657.
    1. Pecins-Thompson M., Brown N. A., Kohama S. G., Bethea C. L. Ovarian steroid regulation of tryptophan hydroxylase mRNA expression in rhesus macaques. The Journal of Neuroscience. 1996;16(21):7021–7029.
    1. Xiao L., Becker J. B. Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: effects of estrous cycle and gonadectomy. Neuroscience Letters. 1994;180(2):155–158. doi: 10.1016/0304-3940(94)90510-X.
    1. Sánchez M. G., Morissette M., Di Paolo T. Effect of a chronic treatment with 17β-estradiol on striatal dopamine neurotransmission and the Akt/GSK3 signaling pathway in the brain of ovariectomized monkeys. Psychoneuroendocrinology. 2012;37(2):280–291. doi: 10.1016/j.psyneuen.2011.06.012.
    1. Emamian E. S. AKT/GSK3 signaling pathway and schizophrenia. Frontiers in Molecular Neuroscience. 2012;5, article 33
    1. Kritzer M. F., Kohama S. G. Ovarian hormones differentially influence immunoreactivity for dopamine β- hydroxylase, choline acetyltransferase, and serotonin in the dorsolateral prefrontal cortex of adult rhesus monkeys. Journal of Comparative Neurology. 1999;409(3):438–451. doi: 10.1002/(sici)1096-9861(19990705)409:3lt;438::aid-cne8>;2-5.
    1. Nordström A.-L., Olsson H., Halldin C. A PET study of D2 dopamine receptor density at different phases of the menstrual cycle. Psychiatry Research—Neuroimaging. 1998;83(1):1–6. doi: 10.1016/s0925-4927(98)00021-3.
    1. Craig M. C., Cutter W. J., Wickham H., et al. Effect of long-term estrogen therapy on dopaminergic responsivity in post-menopausal women—a preliminary study. Psychoneuroendocrinology. 2004;29(10):1309–1316. doi: 10.1016/j.psyneuen.2004.03.008.
    1. Gogos A., Kwek P., Chavez C., van den Buuse M. Estrogen treatment blocks 8-Hydroxy-2-Dipropylaminotetralin- and apomorphine-induced disruptions of prepulse inhibition: involvement of dopamine D1 or D2 or serotonin 5-HT1A, 5-HT2A, or 5-HT7 receptors. The Journal of Pharmacology and Experimental Therapeutics. 2010;333(1):218–227. doi: 10.1124/jpet.109.162123.
    1. Madularu D., Shams W. M., Brake W. G. Estrogen potentiates the behavioral and nucleus accumbens dopamine response to continuous haloperidol treatment in female rats. The European Journal of Neuroscience. 2014;39(2):257–265. doi: 10.1111/ejn.12401.
    1. Purves-Tyson T. D., Handelsman D. J., Double K. L., Owens S. J., Bustamante S., Weickert C. S. Testosterone regulation of sex steroid-related mRNAs and dopamine-related mRNAs in adolescent male rat substantia nigra. BMC Neuroscience. 2012;13, article 95 doi: 10.1186/1471-2202-13-95.
    1. Meltzer H. Y. The importance of serotonin-dopamine interactions in the action of clozapine. The British Journal of Psychiatry. Supplement. 1992;(17):22–29.
    1. Stockmeier C. A., DiCarlo J. J., Zhang Y., Thompson P., Meltzer H. Y. Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. The Journal of Pharmacology and Experimental Therapeutics. 1993;266(3):1374–1384.
    1. Burnet P. W. J., Eastwood S. L., Harrison P. J. 5-HT1A5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology. 1996;15(5):442–455. doi: 10.1016/s0893-133x(96)00053-x.
    1. Burnet P. W. J., Eastwood S. L., Harrison P. J. [3H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: A comparison with [3H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochemistry International. 1997;30(6):565–574. doi: 10.1016/s0197-0186(96)00124-6.
    1. Sumiyoshi T., Stockmeier C. A., Overholser J. C., Dilley G. E., Meltzer H. Y. Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Research. 1996;708(1-2):209–214. doi: 10.1016/0006-8993(95)01361-x.
    1. Dean B., Hayes W. Decreased frontal cortical serotonin2A receptors in schizophrenia. Schizophrenia Research. 1996;21(3):133–139. doi: 10.1016/0920-9964(96)00034-5.
    1. Dean B., Hayes W., Hill C., Copolov D. Decreased serotonin2A receptors in brodmann's area 9 from schizophrenic subjects. A pathological or pharmacological phenomenon? Molecular and Chemical Neuropathology. 1998;34(2-3):133–145. doi: 10.1007/bf02815075.
    1. Zhang L., Ma W., Barker J. L., Rubinow D. R. Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: a possible role of testosterone. Neuroscience. 1999;94(1):251–259. doi: 10.1016/s0306-4522(99)00234-1.
    1. Inagaki T., Gautreaux C., Luine V. Acute estrogen treatment facilitates recognition memory consolidation and alters monoamine levels in memory-related brain areas. Hormones and Behavior. 2010;58(3):415–426. doi: 10.1016/j.yhbeh.2010.05.013.
    1. Kugaya A., Epperson C. N., Zoghbi S., et al. Increase in prefrontal cortex serotonin2A receptors following estrogen treatment in postmenopausal women. American Journal of Psychiatry. 2003;160(8):1522–1524. doi: 10.1176/appi.ajp.160.8.1522.
    1. Moses E. L., Drevets W. C., Smith G., et al. Effects of estradiol and progesterone administration on human serotonin 2A receptor binding: a PET Study. Biological Psychiatry. 2000;48(8):854–860. doi: 10.1016/s0006-3223(00)00967-7.
    1. Kranz G. S., Rami-Mark C., Kaufmann U., et al. Effects of hormone replacement therapy on cerebral serotonin-1A receptor binding in postmenopausal women examined with [carbonyl-11C]WAY-100635. Psychoneuroendocrinology. 2014;45:1–10. doi: 10.1016/j.psyneuen.2014.03.004.
    1. Blum I., Vered Y., Lifshitz A., et al. The effect of estrogen replacement therapy on plasma serotonin and catecholamines of postmenopausal women. Israel Journal of Medical Sciences. 1996;32(12):1158–1162.
    1. Epperson C. N., Amin Z., Ruparel K., Gur R., Loughead J. Interactive effects of estrogen and serotonin on brain activation during working memory and affective processing in menopausal women. Psychoneuroendocrinology. 2012;37(3):372–382. doi: 10.1016/j.psyneuen.2011.07.007.
    1. Frokjaer V. G., Erritzoe D., Juul A., et al. Endogenous plasma estradiol in healthy men is positively correlated with cerebral cortical serotonin 2A receptor binding. Psychoneuroendocrinology. 2010;35(9):1311–1320. doi: 10.1016/j.psyneuen.2010.03.002.
    1. Hiroi R., Handa R. J. Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element in the 5′ untranslated region. Journal of Neurochemistry. 2013;127(4):487–495. doi: 10.1111/jnc.12401.
    1. Bethea C. L., Smith A. W., Centeno M. L., Reddy A. P. Long-term ovariectomy decreases serotonin neuron number and gene expression in free ranging macaques. Neuroscience. 2011;192:675–688. doi: 10.1016/j.neuroscience.2011.06.003.
    1. Bethea C. L. Regulation of progestin receptors in raphe neurons of steroid-treated monkeys. Neuroendocrinology. 1994;60(1):50–61.
    1. Gogos A., van den Buuse M. Estrogen and progesterone prevent disruption of prepulse inhibition by the serotonin-1a receptor agonist 8-hydroxy-2-dipropylaminotetralin. The Journal of Pharmacology and Experimental Therapeutics. 2004;309(1):267–274. doi: 10.1124/jpet.103.061432.
    1. Gogos A., Nathan P. J., Guille V., Croft R. J., Van Den Buuse M. Estrogen prevents 5-HT1A receptor-induced disruptions of prepulse inhibition in healthy women. Neuropsychopharmacology. 2006;31(4):885–889. doi: 10.1038/sj.npp.1300933.
    1. Guille V., Gogos A., Nathan P. J., Croft R. J., van den Buuse M. Interaction of estrogen with central serotonergic mechanisms in human sensory processing: loudness dependence of the auditory evoked potential and mismatch negativity. Journal of Psychopharmacology. 2011;25(12):1614–1622. doi: 10.1177/0269881110370506.
    1. Juckel G. Serotonin: from sensory processing to schizophrenia using an electrophysiological method. Behavioural Brain Research. 2015;277:121–124. doi: 10.1016/j.bbr.2014.05.042.
    1. Wyss C., Hitz K., Hengartner M. P., et al. The loudness dependence of auditory evoked potentials (LDAEP) as an indicator of serotonergic dysfunction in patients with predominant schizophrenic negative symptoms. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0068650.e68650
    1. Javitt D. C., Zukin S. R. Recent advances in the phencyclidine model of schizophrenia. The American Journal of Psychiatry. 1991;148(10):1301–1308. doi: 10.1176/ajp.148.10.1301.
    1. Lahti A. C., Koffel B., LaPorte D., Tamminga C. A. Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology. 1995;13(1):9–19. doi: 10.1016/0893-133X(94)00131-I.
    1. Northoff G., Richter A., Bermpohl F., et al. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI. Schizophrenia Research. 2005;72(2-3):235–248. doi: 10.1016/j.schres.2004.04.009.
    1. Meador-Woodruff J. H., Hogg A. J., Jr., Smith R. E. Striatal ionotropic glutamate receptor expression in schizophrenia, bipolar disorder, and major depressive disorder. Brain Research Bulletin. 2001;55(5):631–640. doi: 10.1016/s0361-9230(01)00523-8.
    1. Scarr E., Beneyto M., Meador-Woodruff J. H., Dean B. Cortical glutamatergic markers in schizophrenia. Neuropsychopharmacology. 2005;30(8):1521–1531. doi: 10.1038/sj.npp.1300758.
    1. Dean B., Scarr E., Bradbury R., Copolov D. Decreased hippocampal (CA3) NMDA receptors in schizophrenia. Synapse. 1999;32(1):67–69. doi: 10.1002/(sici)1098-2396(199904)32:1lt;67::aid-syn9>;2-q.
    1. Matosin N., Frank E., Deng C., Huang X.-F., Newell K. A. Metabotropic glutamate receptor 5 binding and protein expression in schizophrenia and following antipsychotic drug treatment. Schizophrenia Research. 2013;146(1–3):170–176. doi: 10.1016/j.schres.2013.01.018.
    1. Frank E., Newell K. A., Huang X.-F. Density of metabotropic glutamate receptors 2 and 3 (mGluR2/3) in the dorsolateral prefrontal cortex does not differ with schizophrenia diagnosis but decreases with age. Schizophrenia Research. 2011;128(1–3):56–60. doi: 10.1016/j.schres.2011.01.008.
    1. Beneyto M., Kristiansen L. V., Oni-Orisan A., McCullumsmith R. E., Meador-Woodruff J. H. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology. 2007;32(9):1888–1902. doi: 10.1038/sj.npp.1301312.
    1. Gao X.-M., Sakai K., Roberts R. C., Conley R. R., Dean B., Tamminga C. A. Ionotropic glutamate receptors and expression of N-methyl-D-aspartate receptor subunits in subregions of human hippocampus: effects of schizophrenia. The American Journal of Psychiatry. 2000;157(7):1141–1149. doi: 10.1176/appi.ajp.157.7.1141.
    1. Cyr M., Ghribi O., Thibault C., Morissette M., Landry M., Di Paolo T. Ovarian steroids and selective estrogen receptor modulators activity on rat brain NMDA and AMPA receptors. Brain Research Reviews. 2001;37(1–3):153–161. doi: 10.1016/s0165-0173(01)00115-1.
    1. Adams M. M., Fink S. E., Janssen W. G. M., Shah R. A., Morrison J. H. Estrogen modulates synaptic N-methyl-D-aspartate receptor subunit distribution in the aged hippocampus. Journal of Comparative Neurology. 2004;474(3):419–426. doi: 10.1002/cne.20148.
    1. Kohama S. G., Garyfallou V. T., Urbanski H. F. Regional distribution of glutamate receptor mRNA in the monkey hippocampus and temporal cortex: influence of estradiol. Molecular Brain Research. 1998;53(1-2):328–332. doi: 10.1016/s0169-328x(97)00282-9.
    1. Kajta M., Lason W. Oestrogen effects on kainate-induced toxicity in primary cultures of rat cortical neurons. Acta Neurobiologiae Experimentalis. 2000;60(3):365–369.
    1. Kurata K., Takebayashi M., Morinobu S., Yamawaki S. β-estradiol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate protect against N-methyl-D-aspartate-induced neurotoxicity in rat hippocampal neurons by different mechanisms. The Journal of Pharmacology and Experimental Therapeutics. 2004;311(1):237–245. doi: 10.1124/jpet.104.067629.
    1. Galvin C., Ninan I. Regulation of the mouse medial prefrontal cortical synapses by endogenous estradiol. Neuropsychopharmacology. 2014;39(9):2086–2094. doi: 10.1038/npp.2014.56.
    1. Phillis J. W., Song D., O'Regan M. H. Tamoxifen, a chloride channel blocker, reduces glutamate and aspartate release from the ischemic cerebral cortex. Brain Research. 1998;780(2):352–355. doi: 10.1016/s0006-8993(97)01352-8.
    1. Karki P., Webb A., Smith K., et al. CAMP response element-binding protein (CREB) and nuclear factor κB mediate the tamoxifen-induced up-regulation of glutamate transporter 1 (GLT−1) in rat astrocytes. The Journal of Biological Chemistry. 2013;288(40):28975–28986. doi: 10.1074/jbc.m113.483826.
    1. Karki P., Webb A., Zerguine A., Choi J., Son D.-S., Lee E. Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia. 2014;62(8):1270–1283. doi: 10.1002/glia.22679.
    1. Lee E., Sidoryk-Wêgrzynowicz M., Wang N., et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. The Journal of Biological Chemistry. 2012;287(32):26817–26828. doi: 10.1074/jbc.m112.341867.
    1. Pawlak J., Brito V., Küppers E., Beyer C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Molecular Brain Research. 2005;138(1):1–7. doi: 10.1016/j.molbrainres.2004.10.043.
    1. Sutcliffe J. S., Rhaman F., Marshall K. M., Neill J. C. Oestradiol attenuates the cognitive deficit induced by acute phencyclidine treatment in mature female hooded-Lister rats. Journal of Psychopharmacology. 2008;22(8):918–922. doi: 10.1177/0269881107083839.
    1. Roseman A. S., McGregor C., Thornton J. E. Estradiol attenuates the cognitive deficits in the novel object recognition task induced by sub-chronic phencyclidine in ovariectomized rats. Behavioural Brain Research. 2012;233(1):105–112. doi: 10.1016/j.bbr.2012.04.037.
    1. Hermes G., Li N., Duman C., Duman R. Post-weaning chronic social isolation produces profound behavioral dysregulation with decreases in prefrontal cortex synaptic-associated protein expression in female rats. Physiology & Behavior. 2011;104(2):354–359. doi: 10.1016/j.physbeh.2010.12.019.

Source: PubMed

3
구독하다