Effects of adenotonsillectomy on plasma inflammatory biomarkers in obese children with obstructive sleep apnea: A community-based study

L Kheirandish-Gozal, A Gileles-Hillel, M L Alonso-Álvarez, E Peris, R Bhattacharjee, J Terán-Santos, J Duran-Cantolla, D Gozal, L Kheirandish-Gozal, A Gileles-Hillel, M L Alonso-Álvarez, E Peris, R Bhattacharjee, J Terán-Santos, J Duran-Cantolla, D Gozal

Abstract

Background: Obesity and obstructive sleep apnea syndrome (OSA) are highly prevalent and frequently overlapping conditions in children that lead to systemic inflammation, the latter being implicated in the various end-organ morbidities associated with these conditions.

Aim: To examine the effects of adenotonsillectomy (T&A) on plasma levels of inflammatory markers in obese children with polysomnographically diagnosed OSA who were prospectively recruited from the community.

Methods: Obese children prospectively diagnosed with OSA, underwent T&A and a second overnight polysomnogram (PSG) after surgery. Plasma fasting morning samples obtained after each of the two PSGs were assayed for multiple inflammatory and metabolic markers including interleukin (IL)-6, IL-18, plasminogen activator inhibitor-1 (PAI-1), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9), adiponectin, apelin C, leptin and osteocrin.

Results: Out of 122 potential candidates, 100 obese children with OSA completed the study with only one-third exhibiting normalization of their PSG after T&A (that is, apnea-hypopnea index (AHI) ≤1/hour total sleep time). However, overall significant decreases in MCP-1, PAI-1, MMP-9, IL-18 and IL-6, and increases in adropin and osteocrin plasma concentrations occurred after T&A. Several of the T&A-responsive biomarkers exhibited excellent sensitivity and moderate specificity to predict residual OSA (that is, AHI⩾5/hTST).

Conclusions: A defined subset of systemic inflammatory and metabolic biomarkers is reversibly altered in the context of OSA among community-based obese children, further reinforcing the concept on the interactive pro-inflammatory effects of sleep disorders such as OSA and obesity contributing to downstream end-organ morbidities.

Trial registration: ClinicalTrials.gov NCT01322763.

Conflict of interest statement

Conflict of Interest: The authors have no conflicts of interest to declare.

Figures

Figure 1
Figure 1
Receiver operator curves using individual plasma metabolic or inflammatory markers defined cut-off values for prediction of residual OSA after T&A in obese children.

References

    1. Marcus CL, Brooks LJ, Draper KA, Gozal D, Halbower AC, Jones J, et al. American Academy of Pediatrics. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130(3):e714–55.
    1. Gozal D, Sans Capdevila O, Kheirandish-Gozal L. Metabolic alterations and systemic inflammation in obstructive sleep apnea among non-obese and obese pre-pubertal children. Am J Resp Crit Care Med. 2008;177(10):1142–1149.
    1. Gozal D, Serpero LD, Sans Capdevila O, Kheirandish-Gozal L. Systemic inflammation in non-obese children with obstructive sleep apnea. Sleep Med. 2008;9(3):254–259.
    1. Khalyfa A, Sans Capdevila O, Boazza M, Serpero LD, Kheirandish-Gozal L, Gozal D. Genome-wide gene expression profiling in children with obstructive sleep apnea. Sleep Med. 2009;10(1):75–86.
    1. Gileles-Hillel A, Alonso-Álvarez ML, Kheirandish-Gozal L, Peris E, Cordero-Guevara JA, Terán-Santos J, et al. Inflammatory markers and obstructive sleep apnea in obese children: the NANOS study. Mediators Inflamm. 2014;2014 605280.
    1. Kheirandish-Gozal L, Sans Capdevila O, Tauman R, Gozal D. Plasma C-reactive protein in non-obese children with obstructive sleep apnea before and after adenotonsillectomy. J Clin Sleep Med. 2006;2:301–304.
    1. Gozal D, Serpero LD, Kheirandish-Gozal L, Sans Capdevila O, Khalyfa A, Tauman R. Sleep measures and morning plasma TNF-α levels in children with sleep-disordered breathing. Sleep. 2010;33(3):319–325.
    1. Kheirandish-Gozal L, Sans Capdevila O, Kheirandish E, Gozal D. Elevated liver enzymes in children at risk for obstructive sleep apnea. Chest. 2008;133:92–99.
    1. Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Kim J. C-Reactive Protein and obstructive sleep apnea syndrome in children. Frontiers in Bioscience. 2012;4:2410–22.
    1. De Luca Canto G, Pachêco-Pereira C, Aydinoz S, Major PW, Flores-Mir C, Gozal D. Biomarkers associated with obstructive sleep apnea: A scoping review. Sleep Med Rev. 2014 Nov 28;23C:28–45. doi: 10.1016/j.smrv.2014.11.004. Epub ahead of print.
    1. De Luca Canto G, Pachêco-Pereira C, Aydinoz S, Major PW, Flores-Mir C, Gozal D. Diagnostic capability of biological markers in assessment of obstructive sleep apnea: a systematic review and meta-analysis. J Clin Sleep Med. 2014 Oct 17; Epub ahead of print.
    1. Alonso-Álvarez M, Cordero-Guevara JA, Terán-Santos J, Gonzalez Martinez M, Jurado-Luque MJ, Corral-Peñafiel J, et al. the Spanish Sleep Network. Obstructive sleep apnea in obese community dwelling children: The NANOS study. Sleep. 2014;37(5):943–949.
    1. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597–619.
    1. Montgomery-Downs HE, O’Brien LM, Gulliver TE, Gozal D. Polysomnographic characteristics in normal preschool and early school-aged children. Pediatrics. 2006;117(3):741–53.
    1. Alonso-Álvarez ML, Canet T, Cubell-Alarco M, Estivill E, Fernández-Julián E, Gozal D, et al. Documento de consenso del síndrome de apneas-hipopneas durante el sueño en niños. Arch Bronconeumol. 2011;47(Supl 5):2–18.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845.
    1. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda) 2013;28(6):391–403.
    1. Boden G, Song WW. Effects of insulin and free fatty acids on matrix metalloproteinases. Curr Diab Rep. 2008;8(3):239–42.
    1. Berg G, Schreier L, Miksztowicz V. Circulating and adipose tissue matrix metalloproteinases in cardiometabolic risk environments: pathophysiological aspects. Horm Mol Biol Clin Investig. 2014;17(2):79–87.
    1. Belo VA, Souza-Costa DC, Lana CM, Caputo FL, Marcaccini AM, Gerlach RF, et al. Assessment of matrix metalloproteinase (MMP)-2, MMP-8, MMP-9, and their inhibitors, the tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in obese children and adolescents. Clin Biochem. 2009;42(10-11):984–90.
    1. Belo VA, Souza-Costa DC, Luizon MR, Lanna CM, Carneiro PC, Izidoro-Toledo TC, et al. Matrix metalloproteinase-9 genetic variations affect MMP-9 levels in obese children. Int J Obes (Lond) 2012;36(1):69–75.
    1. Olza J, Gil-Campos M, Leis R, Rupérez AI, Tojo R, Cañete R, et al. Influence of variants in the NPY gene on obesity and metabolic syndrome features in Spanish children. Peptides. 2013;45:22–7.
    1. Chuang LP, Chen NH, Lin SW, Chang YL, Chao IJ, Pang JH. Increased matrix metalloproteinases-9 after sleep in plasma and in monocytes of obstructive sleep apnea patients. Life Sci. 2013;93(5-6):220–5.
    1. Volná J, Kemlink D, Kalousová M, Vávrová J, Majerová V, Mestek O, et al. Biochemical oxidative stress-related markers in patients with obstructive sleep apnea. Med Sci Monit. 2011;17(9):CR491–7.
    1. Kaditis AG, Alexopoulos EI, Karathanasi A, Ntamagka G, Oikonomidi S, Kiropoulos TS, et al. Adiposity and low-grade systemic inflammation modulate matrix metalloproteinase-9 levels in Greek children with sleep apnea. Pediatr Pulmonol. 2010;45(7):693–9.
    1. Stoppa-Vaucher S, Dirlewanger MA, Meier CA, de Moerloose P, Reber G, Roux-Lombard P, et al. Inflammatory and prothrombotic states in obese children of European descent. Obesity (Silver Spring) 2012;20(8):1662–8.
    1. Breslin WL, Johnston CA, Strohacker K, Carpenter KC, Davidson TR, Moreno JP, et al. Obese Mexican American children have elevated MCP-1, TNF-α, monocyte concentration, and dyslipidemia. Pediatrics. 2012;129(5):e1180–6.
    1. Roth CL, Kratz M, Ralston MM, Reinehr T. Changes in adipose-derived inflammatory cytokines and chemokines after successful lifestyle intervention in obese children. Metabolism. 2011;60(4):445–52.
    1. Ohga E, Tomita T, Wada H, Yamamoto H, Nagase T, Ouchi Y. Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1. J Appl Physiol (1985) 2003;94(1):179–84.
    1. Stanke-Labesque F, Pépin JL, de Jouvencel T, Arnaud C, Baguet JP, Petri MH, et al. Leukotriene B4 pathway activation and atherosclerosis in obstructive sleep apnea. J Lipid Res. 2012;53(9):1944–51.
    1. Kim SH, Lee JW, Im JA, Hwang HJ. Monocyte chemoattractant protein-1 is related to metabolic syndrome and homocysteine in subjects without clinically significant atherosclerotic cardiovascular disease. Scand J Clin Lab Invest. 2011;71(1):1–6.
    1. Gustafson B. Adipose tissue, inflammation and atherosclerosis. J Atheroscler Thromb. 2010;17(4):332–41.
    1. Tauman R, Serpero LD, Capdevila OS, O’Brien LM, Goldbart AD, Kheirandish-Gozal L, et al. Adipokines in children with sleep disordered breathing. Sleep. 2007;30(4):443–9.
    1. Li AM, Ng C, Ng SK, Chan MM, So HK, Chan I, et al. Adipokines in children with obstructive sleep apnea and the effects of treatment. Chest. 2010;137(3):529–35.
    1. Kelly A, Dougherty S, Cucchiara A, Marcus CL, Brooks LJ. Catecholamines, adiponectin, and insulin resistance as measured by HOMA in children with obstructive sleep apnea. Sleep. 2010;33(9):1185–91.
    1. Canapari CA, Hoppin AG, Kinane TB, Thomas BJ, Torriani M, Katz ES. Relationship between sleep apnea, fat distribution, and insulin resistance in obese children. J Clin Sleep Med. 2011;7(3):268–73.
    1. Smits MM, Woudstra P, Utzschneider KM, Tong J, Gerchman F, Faulenbach M, et al. Adipocytokines as features of the metabolic syndrome determined using confirmatory factor analysis. Ann Epidemiol. 2013;23(7):415–21.
    1. Adly AA, Elbarbary NS, Ismail EA, Hassan SR. Plasminogen activator inhibitor-1 (PAI-1) in children and adolescents with type 1 diabetes mellitus: relation to diabetic microvascular complications and carotid intima media thickness. J Diabetes Complications. 2014;28(3):340–7.
    1. Rångemark C, Hedner JA, Carlson JT, Gleerup G, Winther K. Platelet function and fibrinolytic activity in hypertensive and normotensive sleep apnea patients. Sleep. 1995;18(3):188–94.
    1. Bagai K, Muldowney JA, 3rd, Song Y, Wang L, Bagai J, Artibee KJ, et al. Circadian variability of fibrinolytic markers and endothelial function in patients with obstructive sleep apnea. Sleep. 2014;37(2):359–67.
    1. von Känel R, Natarajan L, Ancoli-Israel S, Mills PJ, Wolfson T, Gamst AC, et al. Effect of continuous positive airway pressure on day/night rhythm of prothrombotic markers in obstructive sleep apnea. Sleep Med. 2013;14(1):58–65.
    1. Phillips CL, McEwen BJ, Morel-Kopp MC, Yee BJ, Sullivan DR, Ward CM, et al. Effects of continuous positive airway pressure on coagulability in obstructive sleep apnoea: a randomised, placebo-controlled crossover study. Thorax. 2012;67(7):639–44.
    1. von Känel R, Loredo JS, Ancoli-Israel S, Mills PJ, Dimsdale JE. Elevated plasminogen activator inhibitor 1 in sleep apnea and its relation to the metabolic syndrome: an investigation in 2 different study samples. Metabolism. 2007;56(7):969–76.
    1. Gozal D, Kheirandish-Gozal L, Serpero LD, Sans Capdevila O, Dayyat E. Obstructive sleep apnea and endothelial function in school-aged nonobese children: effect of adenotonsillectomy. Circulation. 2007;116(20):2307–14.
    1. Bhattacharjee R, Kim J, Alotaibi WH, Kheirandish-Gozal L, Capdevila OS, Gozal D. Endothelial dysfunction in children without hypertension: potential contributions of obesity and obstructive sleep apnea. Chest. 2012;141(3):682–91.
    1. Kheirandish-Gozal L, Etzioni T, Bhattacharjee R, Tan HL, Samiei A, Molero Ramirez H, et al. Obstructive sleep apnea in children is associated with severity-dependent deterioration in overnight endothelial function. Sleep Med. 2013;14(6):526–31.
    1. Chan KC, Au CT, Chook P, Lee DL, Lam HS, Wing YK, et al. Endothelial Function in Children with Obstructive Sleep Apnea and the Effects of Adenotonsillectomy. Chest. 2014 Oct 2; doi: 10.1378/chest.14-1307. Epub ahead of print.
    1. Tauman R, O’Brien LM, Gozal D. Hypoxemia and obesity modulate plasma C-reactive protein and interleukin-6 levels in sleep-disordered breathing. Sleep Breath. 2007 Jun;11(2):77–84.
    1. Nadeem R, Molnar J, Madbouly EM, Nida M, Aggarwal S, Sajid H, et al. Serum inflammatory markers in obstructive sleep apnea: a meta-analysis. J Clin Sleep Med. 2013;9(10):1003–12.
    1. Kaditis AG, Gozal D, Khalyfa A, Kheirandish-Gozal L, Capdevila OS, Gourgoulianis K, et al. Variants in C-reactive protein and IL-6 genes and susceptibility to obstructive sleep apnea in children: a candidate-gene association study in European American and Southeast European populations. Sleep Med. 2014;15(2):228–35.
    1. Chu L, Li Q. The evaluation of adenotonsillectomy on TNF-α and IL-6 levels in obese children with obstructive sleep apnea. Int J Pediatr Otorhinolaryngol. 2013;77(5):690–4.
    1. Gozal D, Kheirandish-Gozal L, Bhattacharjee R, Molero-Ramirez H, Tan HL, Bandla HP. Circulating adropin concentrations in pediatric obstructive sleep apnea: potential relevance to endothelial function. J Pediatr. 2013;163(4):1122–6.
    1. Bhattacharjee R, Kim J, Kheirandish-Gozal L, Gozal D. Obesity and obstructive sleep apnea syndrome in children: a tale of inflammatory cascades. Pediatr Pulmonol. 2011;46(4):313–23.
    1. Tauman R, Gulliver TE, Krishna J, Montgomery-Downs HE, O’Brien LM, Ivanenko A, et al. Persistence of obstructive sleep apnea syndrome in children after adenotonsillectomy. J Pediatr. 2006;149(6):803–8.
    1. Mitchell RB, Kelly J. Adenotonsillectomy for obstructive sleep apnea in obese children. Otolaryngol Head Neck Surg. 2004;131(1):104–8.
    1. Costa DJ, Mitchell R. Adenotonsillectomy for obstructive sleep apnea in obese children: a meta-analysis. Otolaryngol Head Neck Surg. 2009;140(4):455–60.
    1. Bhattacharjee R, Kheirandish-Gozal L, Spruyt K, Mitchell RB, Promchiarak J, Simakajornboon N, et al. Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med. 2010;182(5):676–83.
    1. Hsu WC, Kang KT, Weng WC, Lee PL. Impacts of body weight after surgery for obstructive sleep apnea in children. Int J Obes (Lond) 2013;37(4):527–31.
    1. Huang YS, Guilleminault C, Lee LA, Lin CH, Hwang FM. Treatment outcomes of adenotonsillectomy for children with obstructive sleep apnea: a prospective longitudinal study. Sleep. 2014;37(1):71–6.
    1. Nino G, Gutierrez MJ, Ravindra A, Nino CL, Rodriguez-Martinez CE. Abdominal adiposity correlates with adenotonsillectomy outcome in obese adolescents with severe obstructive sleep apnea. Pulm Med. 2012;2012 doi: 10.1155/2012/351037. 351037. Epub 2012 Nov 18.
    1. Marcus CL, Moore RH, Rosen CL, Giordani B, Garetz SL, Taylor HG, et al. Childhood Adenotonsillectomy Trial (CHAT). A randomized trial of adenotonsillectomy for childhood sleep apnea. N Engl J Med. 2013;368(25):2366–76.
    1. Bhushan B, Sheldon S, Wang E, Schroeder JW., Jr Clinical indicators that predict the presence of moderate to severe obstructive sleep apnea after adenotonsillectomy in children. Am J Otolaryngol. 2014;35(4):487–95.
    1. Amin R, Anthony L, Somers V, Fenchel M, McConnell K, Jefferies J, et al. Growth velocity predicts recurrence of sleep-disordered breathing 1 year after adenotonsillectomy. Am J Respir Crit Care Med. 2008;177(6):654–9.
    1. Katz ES, Moore RH, Rosen CL, Mitchell RB, Amin R, Arens R, et al. Growth after adenotonsillectomy for obstructive sleep apnea: an RCT. Pediatrics. 2014;134(2):282–9.

Source: PubMed

3
구독하다