Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

Ming-Ming Tsai, Chia-Siu Wang, Chung-Ying Tsai, Hsiang-Wei Huang, Hsiang-Cheng Chi, Yang-Hsiang Lin, Pei-Hsuan Lu, Kwang-Huei Lin, Ming-Ming Tsai, Chia-Siu Wang, Chung-Ying Tsai, Hsiang-Wei Huang, Hsiang-Cheng Chi, Yang-Hsiang Lin, Pei-Hsuan Lu, Kwang-Huei Lin

Abstract

Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients' survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

Keywords: biomarker; diagnosis; gastric cancer; microRNAs; prognosis.

References

    1. Heise K., Bertran E., Andia M.E., Ferreccio C. Incidence and survival of stomach cancer in a high-risk population of Chile. World J. Gastroenterol. 2009;15:1854–1862. doi: 10.3748/wjg.15.1854.
    1. Wu C.W., Hsiung C.A., Lo S.S., Hsieh M.C., Chen J.H., Li A.F., Lui W.Y., Whang-Peng J. Nodal dissection for patients with gastric cancer: A randomised controlled trial. Lancet Oncol. 2006;7:309–315. doi: 10.1016/S1470-2045(06)70623-4.
    1. Wu C.W., Lo S.S., Shen K.H., Hsieh M.C., Lui W.Y., P’Eng F.K. Surgical mortality, survival, and quality of life after resection for gastric cancer in the elderly. World J. Surg. 2000;24:465–472. doi: 10.1007/s002689910074.
    1. Sharma M.R., Schilsky R.L. GI cancers in 2010: New standards and a predictive biomarker for adjuvant therapy. Nat. Rev. Clin. Oncol. 2011;8:70–72. doi: 10.1038/nrclinonc.2010.219.
    1. Smyth E.C., Cunningham D. Gastric cancer in 2012: Defining treatment standards and novel insights into disease biology. Nat. Rev. Clin. Oncol. 2013;10:73–74. doi: 10.1038/nrclinonc.2012.228.
    1. Dassen A.E., Lemmens V.E., van de Poll-Franse L.V., Creemers G.J., Brenninkmeijer S.J., Lips D.J., Vd Wurff A.A., Bosscha K., Coebergh J.W. Trends in incidence, treatment and survival of gastric adenocarcinoma between 1990 and 2007: A population-based study in the Netherlands. Eur. J. Cancer. 2010;46:1101–1110. doi: 10.1016/j.ejca.2010.02.013.
    1. Oba K., Paoletti X., Bang Y.J., Bleiberg H., Burzykowski T., Fuse N., Michiels S., Morita S., Ohashi Y., Pignon J.P., et al. Role of chemotherapy for advanced/recurrent gastric cancer: An individual-patient-data meta-analysis. Eur. J. Cancer. 2013;49:1565–1577.
    1. Emoto S., Ishigami H., Yamashita H., Yamaguchi H., Kaisaki S., Kitayama J. Clinical significance of CA125 and CA72–4 in gastric cancer with peritoneal dissemination. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2012;15:154–161. doi: 10.1007/s10120-011-0091-8.
    1. Wang A.B., Cheng C.W., Lin I.C., Lu F.Y., Tsai H.J., Lin C.C., Yang C.H., Pan P.T., Kuan C.C., Chen Y.C., et al. A novel DNA selection and direct extraction process and its application in DNA recombination. Electrophoresis. 2011;32:423–430. doi: 10.1002/elps.201000449.
    1. Lee Y., Ahn C., Han J., Choi H., Kim J., Yim J., Lee J., Provost P., Radmark O., Kim S., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419. doi: 10.1038/nature01957.
    1. Fernandez L.A., Northcott P.A., Taylor M.D., Kenney A.M. Normal and oncogenic roles for microRNAs in the developing brain. Cell Cycle. 2009;8:4049–4054. doi: 10.4161/cc.8.24.10243.
    1. Tachibana A., Yamada Y., Ida H., Saito S., Tanabe T. LidNA, a novel miRNA inhibitor constructed with unmodified DNA. FEBS Lett. 2012;586:1529–1532. doi: 10.1016/j.febslet.2012.04.013.
    1. Weiler J., Hunziker J., Hall J. Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13:496–502. doi: 10.1038/sj.gt.3302654.
    1. Fujiwara T. Genetically engineered adenovirus for human cancer therapy. Nihon Rinsho Jpn. J. Clin. Med. 2010;68:627–633.
    1. Ihloff A.S., Petersen C., Hoffmann M., Knecht R., Tribius S. Human papilloma virus in locally advanced stage III/IV squamous cell cancer of the oropharynx and impact on choice of therapy. Oral Oncol. 2010;46:705–711. doi: 10.1016/j.oraloncology.2010.07.006.
    1. Cotter T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer. 2009;9:501–507. doi: 10.1038/nrc2663.
    1. Kim C.H., Kim H.K., Rettig R.L., Kim J., Lee E.T., Aprelikova O., Choi I.J., Munroe D.J., Green J.E. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med. Genom. 2011;4:945. doi: 10.1186/1755-8794-4-79.
    1. Wang Y.Y., Li L., Ye Z.Y., Zhao Z.S., Yan Z.L. MicroRNA-10b promotes migration and invasion through Hoxd10 in human gastric cancer. World J. Surg. Oncol. 2015;13:259. doi: 10.1186/s12957-015-0673-8.
    1. Hersey P., Zhang X.D. Treatment combinations targeting apoptosis to improve immunotherapy of melanoma. Cancer Immunol. Immunother. CII. 2009;58:1749–1759. doi: 10.1007/s00262-009-0732-5.
    1. Nakayama I., Shibazaki M., Yashima-Abo A., Miura F., Sugiyama T., Masuda T., Maesawa C. Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. Int. J. Oncol. 2013;43:63–71.
    1. Glatz J.F., Luiken J.J., van Bilsen M., van der Vusse G.J. Cellular lipid binding proteins as facilitators and regulators of lipid metabolism. Mol. Cell. Biochem. 2002;239:3–7. doi: 10.1023/A:1020529918782.
    1. Xiao B., Guo J., Miao Y., Jiang Z., Huan R., Zhang Y., Li D., Zhong J. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin. Chim. Acta Int. J. Clin. Chem. 2009;400:97–102. doi: 10.1016/j.cca.2008.10.021.
    1. Katada T., Ishiguro H., Kuwabara Y., Kimura M., Mitui A., Mori Y., Ogawa R., Harata K., Fujii Y. microRNA expression profile in undifferentiated gastric cancer. Int. J. Oncol. 2009;34:537–542.
    1. Ueda T., Volinia S., Okumura H., Shimizu M., Taccioli C., Rossi S., Alder H., Liu C.G., Oue N., Yasui W., et al. Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol. 2010;11:136–146. doi: 10.1016/S1470-2045(09)70343-2.
    1. Song J.H., Meltzer S.J. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology. 2012;143:35–47. doi: 10.1053/j.gastro.2012.05.003.
    1. Petrocca F., Visone R., Onelli M.R., Shah M.H., Nicoloso M.S., de Martino I., Iliopoulos D., Pilozzi E., Liu C.G., Negrini M., et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–286. doi: 10.1016/j.ccr.2008.02.013.
    1. Kim Y.K., Yu J., Han T.S., Park S.Y., Namkoong B., Kim D.H., Hur K., Yoo M.W., Lee H.J., Yang H.K., et al. Functional links between clustered microRNAs: Suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009;37:1672–1681. doi: 10.1093/nar/gkp002.
    1. Li X., Zhang Y., Shi Y., Dong G., Liang J., Han Y., Wang X., Zhao Q., Ding J., Wu K., et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J. Cell. Mol. Med. 2011;15:1887–1895. doi: 10.1111/j.1582-4934.2010.01194.x.
    1. Inoue T., Iinuma H., Ogawa E., Inaba T., Fukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol. Rep. 2012;27:1759–1764.
    1. Feng L., Xie Y., Zhang H., Wu Y. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med. Oncol. 2012;29:856–863. doi: 10.1007/s12032-011-9823-1.
    1. Yang O., Huang J., Lin S. Regulatory effects of miRNA on gastric cancer cells. Oncol. Lett. 2014;8:651–656. doi: 10.3892/ol.2014.2232.
    1. Fesler A., Zhai H., Ju J. miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer. OncoTargets Ther. 2014;7:1481–1485.
    1. Yu X., Luo L., Wu Y., Liu Y., Zhao X., Zhang X., Cui L., Ye G., Le Y., Guo J. Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med. Oncol. 2013;30:365. doi: 10.1007/s12032-012-0365-y.
    1. Du Y., Wang D., Luo L., Guo J. miR-129-1-3p promote BGC-823 cell proliferation by targeting PDCD2. Anat. Rec. 2014;297:2273–2279. doi: 10.1002/ar.23003.
    1. Shen R., Pan S., Qi S., Lin X., Cheng S. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem. Biophys. Res. Commun. 2010;394:1047–1052. doi: 10.1016/j.bbrc.2010.03.121.
    1. Jiang H., Yu W.W., Wang L.L., Peng Y. miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol. Rep. 2015;34:1153–1161. doi: 10.3892/or.2015.4099.
    1. Lai K.W., Koh K.X., Loh M., Tada K., Subramaniam M.M., Lim X.Y., Vaithilingam A., Salto-Tellez M., Iacopetta B., Ito Y., et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur. J. Cancer. 2010;46:1456–1463. doi: 10.1016/j.ejca.2010.01.036.
    1. Shin J.Y., Kim Y.I., Cho S.J., Lee M.K., Kook M.C., Lee J.H., Lee S.S., Ashktorab H., Smoot D.T., Ryu K.W., et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PLoS ONE. 2014;9:945. doi: 10.1371/journal.pone.0085205.
    1. Zhang X., Yan Z., Zhang J., Gong L., Li W., Cui J., Liu Y., Gao Z., Li J., Shen L., et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2011;22:2257–2266. doi: 10.1093/annonc/mdq758.
    1. Naito Y., Sakamoto N., Oue N., Yashiro M., Sentani K., Yanagihara K., Hirakawa K., Yasui W. MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 2014;105:228–235. doi: 10.1111/cas.12329.
    1. Gao P., Xing A.Y., Zhou G.Y., Zhang T.G., Zhang J.P., Gao C., Li H., Shi D.B. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene. 2013;32:491–501. doi: 10.1038/onc.2012.61.
    1. Naito Y., Yasuno K., Tagawa H., Sakamoto N., Oue N., Yashiro M., Sentani K., Goto K., Shinmei S., Oo H.Z., et al. MicroRNA-145 is a potential prognostic factor of scirrhous type gastric cancer. Oncol. Rep. 2014;32:1720–1726. doi: 10.3892/or.2014.3333.
    1. Sha M., Ye J., Zhang L.X., Luan Z.Y., Chen Y.B. Celastrol induces apoptosis of gastric cancer cells by miR-146a inhibition of NF-kappaB activity. Cancer Cell Int. 2013;13:50. doi: 10.1186/1475-2867-13-50.
    1. Xiao B., Zhu E.D., Li N., Lu D.S., Li W., Li B.S., Zhao Y.L., Mao X.H., Guo G., Yu P.W., et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol. Rep. 2012;27:559–566.
    1. Zhou L., Zhao X., Han Y., Lu Y., Shang Y., Liu C., Li T., Jin Z., Fan D., Wu K. Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J. 2013;27:4929–4939. doi: 10.1096/fj.13-233387.
    1. Tseng C.W., Lin C.C., Chen C.N., Huang H.C., Juan H.F. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst. Biol. 2011;5:945. doi: 10.1186/1752-0509-5-99.
    1. Xia L., Zhang D., Du R., Pan Y., Zhao L., Sun S., Hong L., Liu J., Fan D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer. 2008;123:372–379. doi: 10.1002/ijc.23501.
    1. Zhu W., Shan X., Wang T., Shu Y., Liu P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer. 2010;127:2520–2529. doi: 10.1002/ijc.25260.
    1. Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102.
    1. Zhu M., Wang M., Yang F., Tian Y., Cai J., Yang H., Fu H., Mao F., Zhu W., Qian H., et al. miR-155–5p inhibition promotes the transition of bone marrow mesenchymal stem cells to gastric cancer tissue derived MSC-like cells via NF-kappaB p65 activation. Oncotarget. 2016;7:16567–16580.
    1. Han S., Yang S., Cai Z., Pan D., Li Z., Huang Z., Zhang P., Zhu H., Lei L., Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des. Dev. Ther. 2015;9:2695–2703.
    1. Li H., Xie S., Liu M., Chen Z., Liu X., Wang L., Li D., Zhou Y. The clinical significance of downregulation of mir-124–3p, mir-146a-5p, mir-155–5p and mir-335–5p in gastric cancer tumorigenesis. Int. J. Oncol. 2014;45:197–208. doi: 10.3892/ijo.2014.2415.
    1. Liu L., Chen Q., Lai R., Wu X., Liu F., Xu G., Ji Y. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer. J. Biomed. Res. 2010;24:187–197. doi: 10.1016/S1674-8301(10)60028-0.
    1. Wang M., Gu H., Wang S., Qian H., Zhu W., Zhang L., Zhao C., Tao Y., Xu W. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol. Med. Rep. 2012;5:1514–1520.
    1. Cui M., Yue L., Fu Y., Yu W., Hou X., Zhang X. Association of microRNA-181c expression with the progression and prognosis of human gastric carcinoma. Hepato GasTroenterol. 2013;60:961–964.
    1. Hashimoto Y., Akiyama Y., Otsubo T., Shimada S., Yuasa Y. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis. 2010;31:777–784. doi: 10.1093/carcin/bgq013.
    1. Xu Y.J., Fan Y. MiR-215/192 participates in gastric cancer progression. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst Mex. 2015;17:34–40. doi: 10.1007/s12094-014-1194-6.
    1. Brenner B., Hoshen M.B., Purim O., David M.B., Ashkenazi K., Marshak G., Kundel Y., Brenner R., Morgenstern S., Halpern M., et al. MicroRNAs as a potential prognostic factor in gastric cancer. World J. Gastroenterol. 2011;17:3976–3985. doi: 10.3748/wjg.v17.i35.3976.
    1. Tsai M.M., Wang C.S., Tsai C.Y., Chen C.Y., Chi H.C., Tseng Y.H., Chung P.J., Lin Y.H., Chung I.H., Lin K.H. MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett. 2014;351:222–231. doi: 10.1016/j.canlet.2014.06.004.
    1. Mu Y.P., Tang S., Sun W.J., Gao W.M., Wang M., Su X.L. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer. Asian Pac. J. Cancer Prev. 2014;15:8893–8900. doi: 10.7314/APJCP.2014.15.20.8893.
    1. Li H.L., Xie S.P., Yang Y.L., Cheng Y.X., Zhang Y., Wang J., Wang Y., Liu D.L., Chen Z.F., Zhou Y.N., et al. Clinical significance of upregulation of miR-196a-5p in gastric cancer and enriched KEGG pathway analysis of target genes. Asian Pac. J. Cancer Prev. 2015;16:1781–1787. doi: 10.7314/APJCP.2015.16.5.1781.
    1. Sakurai K., Furukawa C., Haraguchi T., Inada K., Shiogama K., Tagawa T., Fujita S., Ueno Y., Ogata A., Ito M., et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 2011;71:1680–1689. doi: 10.1158/0008-5472.CAN-10-2345.
    1. Song G., Zeng H., Li J., Xiao L., He Y., Tang Y., Li Y. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol. Pharm. Bull. 2010;33:1822–1827. doi: 10.1248/bpb.33.1822.
    1. Zhao X., He L., Li T., Lu Y., Miao Y., Liang S., Guo H., Bai M., Xie H., Luo G., et al. SRF expedites metastasis and modulates the epithelial to mesenchymal transition by regulating miR-199a-5p expression in human gastric cancer. Cell Death Differ. 2014;21:1900–1913. doi: 10.1038/cdd.2014.109.
    1. Zhang Y., Fan K.J., Sun Q., Chen A.Z., Shen W.L., Zhao Z.H., Zheng X.F., Yang X. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-beta signalling pathway. Nucleic Acids Res. 2012;40:9286–9297. doi: 10.1093/nar/gks667.
    1. Xue T.M., Tao L.D., Zhang M., Xu G.C., Zhang J., Zhang P.J. miR-20b overexpression is predictive of poor prognosis in gastric cancer. OncoTargets Ther. 2015;8:1871–1876. doi: 10.2147/OTT.S85236.
    1. Chang L., Guo F., Wang Y., Lv Y., Huo B., Wang L., Liu W. MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. Pathol. Oncol. Res. 2014;20:93–98. doi: 10.1007/s12253-013-9664-7.
    1. Dejana E., Tournier-Lasserve E., Weinstein B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell. 2009;16:209–221. doi: 10.1016/j.devcel.2009.01.004.
    1. Xu Y., Sun J., Xu J., Li Q., Guo Y., Zhang Q. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer. Gastroenterol. Res. Pract. 2012;2012:640168. doi: 10.1155/2012/640168.
    1. Zhang B.G., Li J.F., Yu B.Q., Zhu Z.G., Liu B.Y., Yan M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol. Rep. 2012;27:1019–1026.
    1. Yamanaka S., Olaru A.V., An F., Luvsanjav D., Jin Z., Agarwal R., Tomuleasa C., Popescu I., Alexandrescu S., Dima S., et al. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver. 2012;44:589–596. doi: 10.1016/j.dld.2012.02.016.
    1. De Val S., Black B.L. Transcriptional control of endothelial cell development. Dev. Cell. 2009;16:180–195. doi: 10.1016/j.devcel.2009.01.014.
    1. Kiga K., Mimuro H., Suzuki M., Shinozaki-Ushiku A., Kobayashi T., Sanada T., Kim M., Ogawa M., Iwasaki Y.W., Kayo H., et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat. Commun. 2014;5:4497. doi: 10.1038/ncomms5497.
    1. Xiong X., Ren H.Z., Li M.H., Mei J.H., Wen J.F., Zheng C.L. Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol. Oncol. Res. 2011;17:931–937. doi: 10.1007/s12253-011-9406-7.
    1. Liu K., Li G., Fan C., Diao Y., Wu B., Li J. Increased Expression of MicroRNA-221 in gastric cancer and its clinical significance. J. Int. Med. Res. 2012;40:467–474. doi: 10.1177/147323001204000208.
    1. Li X., Zhang Y., Zhang H., Liu X., Gong T., Li M., Sun L., Ji G., Shi Y., Han Z., et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol. Cancer Res. 2011;9:824–833. doi: 10.1158/1541-7786.MCR-10-0529.
    1. Zhu L.H., Liu T., Tang H., Tian R.Q., Su C., Liu M., Li X. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010;277:3726–3734. doi: 10.1111/j.1742-4658.2010.07773.x.
    1. Ma G., Dai W., Sang A., Yang X., Gao C. Upregulation of microRNA-23a/b promotes tumor progression and confers poor prognosis in patients with gastric cancer. Int. J. Clin. Exp. Pathol. 2014;7:8833–8840.
    1. Liu X., Ru J., Zhang J., Zhu L.H., Liu M., Li X., Tang H. miR-23a targets interferon regulatory factor 1 and modulates cellular proliferation and paclitaxel-induced apoptosis in gastric adenocarcinoma cells. PLoS ONE. 2013;8:945. doi: 10.1371/journal.pone.0064707.
    1. Gong J., Cui Z., Li L., Ma Q., Wang Q., Gao Y., Sun H. MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2015;36:7831–7840. doi: 10.1007/s13277-015-3510-3.
    1. Liu T., Tang H., Lang Y., Liu M., Li X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009;273:233–242. doi: 10.1016/j.canlet.2008.08.003.
    1. Yan Z., Xiong Y., Xu W., Gao J., Cheng Y., Wang Z., Chen F., Zheng G. Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS ONE. 2012;7:945. doi: 10.1371/journal.pone.0040037.
    1. Yang B., Huang J., Liu H., Guo W., Li G. miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2015;37:1771–1779. doi: 10.1007/s13277-015-3951-8.
    1. Kim J.M., Yoon M.Y., Kim J., Kim S.S., Kang I., Ha J. Phosphatidylinositol 3-kinase regulates differentiation of H9c2 cardiomyoblasts mainly through the protein kinase B/Akt-independent pathway. Arch. Biochem. Biophys. 1999;367:67–73. doi: 10.1006/abbi.1999.1232.
    1. Lo S.S., Hung P.S., Chen J.H., Tu H.F., Fang W.L., Chen C.Y., Chen W.T., Gong N.R., Wu C.W. Overexpression of miR-370 and downregulation of its novel target TGFbeta-RII contribute to the progression of gastric carcinoma. Oncogene. 2012;31:226–237. doi: 10.1038/onc.2011.226.
    1. Ikeda-Kawakatsu K., Yasuno N., Oikawa T., Iida S., Nagato Y., Maekawa M., Kyozuka J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol. 2009;150:736–747. doi: 10.1104/pp.109.136739.
    1. Ding L., Xu Y., Zhang W., Deng Y., Si M., Du Y., Yao H., Liu X., Ke Y., Si J., et al. miR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010;20:784–793. doi: 10.1038/cr.2010.79.
    1. Migliore C., Petrelli A., Ghiso E., Corso S., Capparuccia L., Eramo A., Comoglio P.M., Giordano S. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008;68:10128–10136. doi: 10.1158/0008-5472.CAN-08-2148.
    1. Yoon J.H., Swiderski P.M., Kaplan B.E., Takao M., Yasui A., Shen B., Pfeifer G.P. Processing of UV damage in vitro by FEN-1 proteins as part of an alternative DNA excision repair pathway. Biochemistry. 1999;38:4809–4817. doi: 10.1021/bi990105i.
    1. Zhang X., Cui L., Ye G., Zheng T., Song H., Xia T., Yu X., Xiao B., Le Y., Guo J. Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2012;33:2349–2355. doi: 10.1007/s13277-012-0497-x.
    1. Kang C.D., Do I.R., Kim K.W., Ahn B.K., Kim S.H., Chung B.S., Jhun B.H., Yoo M.A. Role of Ras/ERK-dependent pathway in the erythroid differentiation of K562 cells. Exp. Mol. Med. 1999;31:76–82. doi: 10.1038/emm.1999.13.
    1. Guo X., Jing C., Li L., Zhang L., Shi Y., Wang J., Liu J., Li C. Down-regulation of VEZT gene expression in human gastric cancer involves promoter methylation and miR-43c. Biochem. Biophys. Res. Commun. 2011;404:622–627. doi: 10.1016/j.bbrc.2010.12.026.
    1. Omura T., Shimada Y., Nagata T., Okumura T., Fukuoka J., Yamagishi F., Tajika S., Nakajima S., Kawabe A., Tsukada K. Relapse-associated microRNA in gastric cancer patients after S-1 adjuvant chemotherapy. Oncol. Rep. 2014;31:613–618. doi: 10.3892/or.2013.2900.
    1. Davidson G., Shen J., Huang Y.L., Su Y., Karaulanov E., Bartscherer K., Hassler C., Stannek P., Boutros M., Niehrs C. Cell cycle control of wnt receptor activation. Dev. Cell. 2009;17:788–799. doi: 10.1016/j.devcel.2009.11.006.
    1. Blanchet E., Annicotte J.S., Fajas L. Cell cycle regulators in the control of metabolism. Cell Cycle. 2009;8:4029–4031. doi: 10.4161/cc.8.24.10110.
    1. Moran-Jones K., Grindlay J., Jones M., Smith R., Norman J.C. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res. 2009;69:9219–9227. doi: 10.1158/0008-5472.CAN-09-1852.
    1. Wang T., Ge G., Ding Y., Zhou X., Huang Z., Zhu W., Shu Y., Liu P. MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin. Med. J. 2014;127:2357–2362.
    1. Saito Y., Suzuki H., Tsugawa H., Nakagawa I., Matsuzaki J., Kanai Y., Hibi T. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene. 2009;28:2738–2744. doi: 10.1038/onc.2009.140.
    1. Altunoglu E., Guntas G., Erdenen F., Akkaya E., Topac I., Irmak H., Derici H., Yavuzer H., Gelisgen R., Uzun H. Ischemia-modified albumin and advanced oxidation protein products as potential biomarkers of protein oxidation in Alzheimer’s disease. Geriatr. Gerontol. Int. 2014;15:872–880. doi: 10.1111/ggi.12361.
    1. Chu D., Zhao Z., Li Y., Li J., Zheng J., Wang W., Zhao Q., Ji G. Increased microRNA-630 expression in gastric cancer is associated with poor overall survival. PLoS ONE. 2014;9:945. doi: 10.1371/journal.pone.0090526.
    1. Zhang X., Zhu W., Zhang J., Huo S., Zhou L., Gu Z., Zhang M. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem. Biophys. Res. Commun. 2010;395:275–280. doi: 10.1016/j.bbrc.2010.04.005.
    1. Li H., Wu W.K., Zheng Z., Che C.T., Yu L., Li Z.J., Wu Y.C., Cheng K.W., Yu J., Cho C.H., et al. 2,3′,4,4′,5′-Pentamethoxy-trans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochem. Pharmacol. 2009;78:1224–1232. doi: 10.1016/j.bcp.2009.06.109.
    1. Duan J.H., Fang L. MicroRNA-92 promotes gastric cancer cell proliferation and invasion through targeting FXR. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014;35:11013–11019. doi: 10.1007/s13277-014-2342-x.
    1. Tang Y., Zheng J., Sun Y., Wu Z., Liu Z., Huang G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J. 2009;50:377–387. doi: 10.1536/ihj.50.377.
    1. Zhang H.H., Wang X.J., Li G.X., Yang E., Yang N.M. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J. Gastroenterol. 2007;13:2883–2888.
    1. Yang Q., Jie Z., Cao H., Greenlee A.R., Yang C., Zou F., Jiang Y. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis. 2011;32:713–722. doi: 10.1093/carcin/bgr035.
    1. Briscoe J. Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO J. 2009;28:457–465. doi: 10.1038/emboj.2009.12.
    1. Yoo Y.D., Choi J.Y., Lee S.J., Kim J.S., Min B.R., Lee Y.I., Kang Y.K. TGF-beta-induced cell-cycle arrest through the p21(WAF1/CIP1)-G1 cyclin/Cdks-p130 pathway in gastric-carcinoma cells. Int. J. Cancer. 1999;83:512–517. doi: 10.1002/(SICI)1097-0215(19991112)83:4<512::AID-IJC13>;2-Z.
    1. Wu X.M., Shao X.Q., Meng X.X., Zhang X.N., Zhu L., Liu S.X., Lin J., Xiao H.S. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol. Sin. 2011;32:259–269. doi: 10.1038/aps.2010.204.
    1. Okada E., Murai Y., Matsui K., Isizawa S., Cheng C., Masuda M., Takano Y. Survivin expression in tumor cell nuclei is predictive of a favorable prognosis in gastric cancer patients. Cancer Lett. 2001;163:109–116. doi: 10.1016/S0304-3835(00)00677-7.
    1. Gravante G., Ong S.L., Metcalfe M.S., Bhardwaj N., Maddern G.J., Lloyd D.M., Dennison A.R. Experimental application of electrolysis in the treatment of liver and pancreatic tumours: Principles, preclinical and clinical observations and future perspectives. Surg. Oncol. 2011;20:106–120. doi: 10.1016/j.suronc.2009.12.002.
    1. Zhang Y., Chen Z.D., Du C.J., Xu G., Luo W. siRNA targeting survivin inhibits growth and induces apoptosis in human renal clear cell carcinoma 786-O cells. Pathol. Res. Pract. 2009;205:823–827. doi: 10.1016/j.prp.2009.06.018.
    1. Gobeil P.A., Yuan Z., Gault E.A., Morgan I.M., Campo M.S., Nasir L. Small interfering RNA targeting bovine papillomavirus type 1 E2 induces apoptosis in equine sarcoid transformed fibroblasts. Virus Res. 2009;145:162–165. doi: 10.1016/j.virusres.2009.06.019.
    1. Cai M., Wang G.B., Tao K.X., Cai C.X. Apoptosis induction effect of siRNA recombinant expression vector targeting Livin and Survivin gene simultaneously on human colon cancer cells. Chin. J. Gastrointest. Surg. 2009;12:399–403.
    1. Foster F.M., Owens T.W., Tanianis-Hughes J., Clarke R.B., Brennan K., Bundred N.J., Streuli C.H. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res. BCR. 2009;11:R41. doi: 10.1186/bcr2328.
    1. Kim K., Lee H.C., Park J.L., Kim M., Kim S.Y., Noh S.M., Song K.S., Kim J.C., Kim Y.S. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics. 2011;6:740–751. doi: 10.4161/epi.6.6.15874.
    1. Betin V.M., Lane J.D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 2009;122:2554–2566. doi: 10.1242/jcs.046250.
    1. Zhou X., Xia Y., Li L., Zhang G. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol. Ther. 2015;16:160–169. doi: 10.4161/15384047.2014.987523.
    1. Rubenstein M., Tsui P., Guinan P. Treatment of prostate and breast tumors employing mono- and bi-specific antisense oligonucleotides targeting apoptosis inhibitory proteins clusterin and bcl-2. Med. Oncol. 2010;27:592–599. doi: 10.1007/s12032-009-9254-4.
    1. Gao J., Zhang R.L., Zhou C.Q., Ma Y., Zhuang G.L. RNA interference targeting of sphingomyelin phosphodiesterase 1 protects human granulosa cells from apoptosis. J. Obstet. Gynaecol. Res. 2009;35:421–428. doi: 10.1111/j.1447-0756.2008.00974.x.
    1. Huang K.H., Lan Y.T., Fang W.L., Chen J.H., Lo S.S., Li A.F., Chiou S.H., Wu C.W., Shyr Y.M. The correlation between miRNA and lymph node metastasis in gastric cancer. BioMed Res. Int. 2015;2015:543163. doi: 10.1155/2015/543163.
    1. Hu C.B., Li Q.L., Hu J.F., Zhang Q., Xie J.P., Deng L. miR-124 inhibits growth and invasion of gastric cancer by targeting ROCK1. Asian Pac. J. Cancer Prev. 2014;15:6543–6546. doi: 10.7314/APJCP.2014.15.16.6543.
    1. Pei L., Xia J.Z., Huang H.Y., Zhang R.R., Yao L.B., Zheng L., Hong B. Role of miR-124a methylation in patients with gastric cancer. Chin. J. Gastrointest. Surg. 2011;14:136–139.
    1. Hirasawa K., Jun H.S., Han H.S., Zhang M.L., Hollenberg M.D., Yoon J.W. Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibition of the tyrosine kinase signalling pathway and subsequent suppression of nitric oxide production in macrophages. J. Virol. 1999;73:8541–8548.
    1. Hashiguchi Y., Nishida N., Mimori K., Sudo T., Tanaka F., Shibata K., Ishii H., Mochizuki H., Hase K., Doki Y., et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int. J. Oncol. 2012;40:1477–1482.
    1. Nishida N., Mimori K., Fabbri M., Yokobori T., Sudo T., Tanaka F., Shibata K., Ishii H., Doki Y., Mori M. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011;17:2725–2733. doi: 10.1158/1078-0432.CCR-10-2132.
    1. Xu Y., Huang Z., Liu Y. Reduced miR-125a-5p expression is associated with gastric carcinogenesis through the targeting of E2F3. Mol. Med. Rep. 2014;10:2601–2608. doi: 10.3892/mmr.2014.2567.
    1. Feng R., Chen X., Yu Y., Su L., Yu B., Li J., Cai Q., Yan M., Liu B., Zhu Z. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 2010;298:50–63. doi: 10.1016/j.canlet.2010.06.004.
    1. Liu L.Y., Wang W., Zhao L.Y., Guo B., Yang J., Zhao X.G., Hou N., Ni L., Wang A.Y., Song T.S., et al. Mir-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk, and the tumor suppressor PLK2. Int. J. Oncol. 2014;45:1257–1265. doi: 10.3892/ijo.2014.2516.
    1. Li X., Wang F., Qi Y. MiR-126 inhibits the invasion of gastric cancer cell in part by targeting Crk. Eur. Rev. Med. Pharmacol. Sci. 2014;18:2031–2037.
    1. Li L.P., Wu W.J., Sun D.Y., Xie Z.Y., Ma Y.C., Zhao Y.G. miR-449a and CDK6 in gastric carcinoma. Oncol. Lett. 2014;8:1533–1538. doi: 10.3892/ol.2014.2370.
    1. Zuo Q.F., Zhang R., Li B.S., Zhao Y.L., Zhuang Y., Yu T., Gong L., Li S., Xiao B., Zou Q.M. MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis. 2015;6:e1623. doi: 10.1038/cddis.2014.573.
    1. Takagi T., Iio A., Nakagawa Y., Naoe T., Tanigawa N., Akao Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology. 2009;77:12–21. doi: 10.1159/000218166.
    1. Kogo R., Mimori K., Tanaka F., Komune S., Mori M. Clinical significance of miR-146a in gastric cancer cases. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011;17:4277–4284. doi: 10.1158/1078-0432.CCR-10-2866.
    1. Zheng B., Liang L., Wang C., Huang S., Cao X., Zha R., Liu L., Jia D., Tian Q., Wu J., et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011;17:7574–7583. doi: 10.1158/1078-0432.CCR-11-1714.
    1. Zhu A., Xia J., Zuo J., Jin S., Zhou H., Yao L., Huang H., Han Z. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med. Oncol. 2012;29:2701–2709. doi: 10.1007/s12032-011-0134-3.
    1. Guo S.L., Peng Z., Yang X., Fan K.J., Ye H., Li Z.H., Wang Y., Xu X.L., Li J., Wang Y.L., et al. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int. J. Biol. Sci. 2011;7:567–574. doi: 10.7150/ijbs.7.567.
    1. Song Y.X., Yue Z.Y., Wang Z.N., Xu Y.Y., Luo Y., Xu H.M., Zhang X., Jiang L., Xing C.Z., Zhang Y. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol. Cancer. 2011;10:1. doi: 10.1186/1476-4598-10-1.
    1. Zhang Z., Sun J., Bai Z., Li H., He S., Chen R., Che X. MicroRNA-153 acts as a prognostic marker in gastric cancer and its role in cell migration and invasion. OncoTargets Ther. 2015;8:357–364.
    1. Tan Z., Jiang H., Wu Y., Xie L., Dai W., Tang H., Tang S. miR-185 is an independent prognosis factor and suppresses tumor metastasis in gastric cancer. Mol. Cell. Biochem. 2014;386:223–231. doi: 10.1007/s11010-013-1860-y.
    1. Fulda S., Kroemer G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov. Today. 2009;14:885–890. doi: 10.1016/j.drudis.2009.05.015.
    1. Chiang Y., Zhou X., Wang Z., Song Y., Liu Z., Zhao F., Zhu J., Xu H. Expression levels of microRNA-192 and -215 in gastric carcinoma. Pathol. Oncol. Res. 2012;18:585–591. doi: 10.1007/s12253-011-9480-x.
    1. Kurashige J., Kamohara H., Watanabe M., Hiyoshi Y., Iwatsuki M., Tanaka Y., Kinoshita K., Saito S., Baba Y., Baba H. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann. Surg. Oncol. 2012;19:S656–S664. doi: 10.1245/s10434-012-2217-6.
    1. Shinozaki A., Sakatani T., Ushiku T., Hino R., Isogai M., Ishikawa S., Uozaki H., Takada K., Fukayama M. Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 2010;70:4719–4727. doi: 10.1158/0008-5472.CAN-09-4620.
    1. Korpal M., Lee E.S., Hu G., Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 2008;283:14910–14914. doi: 10.1074/jbc.C800074200.
    1. Park S.M., Gaur A.B., Lengyel E., Peter M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907. doi: 10.1101/gad.1640608.
    1. Xia H.F., He T.Z., Liu C.M., Cui Y., Song P.P., Jin X.H., Ma X. miR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2009;23:347–358. doi: 10.1159/000218181.
    1. Zhou X., Xu G., Yin C., Jin W., Zhang G. Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK. Oncotarget. 2014;5:11631–11640. doi: 10.18632/oncotarget.2600.
    1. Zhou X., Li L., Su J., Zhang G. Decreased miR-204 in H. pylori-associated gastric cancer promotes cancer cell proliferation and invasion by targeting SOX4. PLoS ONE. 2014;9:945. doi: 10.1371/journal.pone.0101457.
    1. Zhang L., Liu X., Jin H., Guo X., Xia L., Chen Z., Bai M., Liu J., Shang X., Wu K., et al. miR-206 inhibits gastric cancer proliferation in part by repressing cyclinD2. Cancer Lett. 2013;332:94–101. doi: 10.1016/j.canlet.2013.01.023.
    1. Yang Q., Zhang C., Huang B., Li H., Zhang R., Huang Y., Wang J. Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur. J. Gastroenterol. Hepatol. 2013;25:953–957. doi: 10.1097/MEG.0b013e32835ed691.
    1. Wada R., Akiyama Y., Hashimoto Y., Fukamachi H., Yuasa Y. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int. J. Cancer. 2010;127:1106–1114. doi: 10.1002/ijc.25126.
    1. Chen D.L., Zhang D.S., Lu Y.X., Chen L.Z., Zeng Z.L., He M.M., Wang F.H., Li Y.H., Zhang H.Z., Pelicano H., et al. microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget. 2015;6:10868–10879. doi: 10.18632/oncotarget.3451.
    1. Tie J., Pan Y., Zhao L., Wu K., Liu J., Sun S., Guo X., Wang B., Gang Y., Zhang Y., et al. miR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010;6:945. doi: 10.1371/journal.pgen.1000879.
    1. Gao C., Zhang Z., Liu W., Xiao S., Gu W., Lu H. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer. 2010;116:41–49. doi: 10.1002/cncr.24743.
    1. Forger N.G. Control of cell number in the sexually dimorphic brain and spinal cord. J. Neuroendocrinol. 2009;21:393–399. doi: 10.1111/j.1365-2826.2009.01825.x.
    1. Huertas P., Jackson S.P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 2009;284:9558–9565. doi: 10.1074/jbc.M808906200.
    1. Aguilo J.I., Garaude J., Pardo J., Villalba M., Anel A. Protein kinase C-theta is required for NK cell activation and in vivo control of tumor progression. J. Immunol. 2009;182:1972–1981. doi: 10.4049/jimmunol.0801820.
    1. Cooks T., Arazi L., Efrati M., Schmidt M., Marshak G., Kelson I., Keisari Y. Interstitial wires releasing diffusing alpha emitters combined with chemotherapy improved local tumor control and survival in squamous cell carcinoma-bearing mice. Cancer. 2009;115:1791–1801. doi: 10.1002/cncr.24191.
    1. Su Y.Q., Sugiura K., Eppig J.J. Mouse oocyte control of granulosa cell development and function: Paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 2009;27:32–42. doi: 10.1055/s-0028-1108008.
    1. Guo M.M., Hu L.H., Wang Y.Q., Chen P., Huang J.G., Lu N., He J.H., Liao C.G. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med. Oncol. 2013;30:542. doi: 10.1007/s12032-013-0542-7.
    1. Xingi E., Smirlis D., Myrianthopoulos V., Magiatis P., Grant K.M., Meijer L., Mikros E., Skaltsounis A.L., Soteriadou K. 6-Br-5methylindirubin-3′oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: Exploitation of GSK-3 for treating leishmaniasis. Int. J. Parasitol. 2009;39:1289–1303. doi: 10.1016/j.ijpara.2009.04.005.
    1. Bhutia S.K., Mallick S.K., Maiti S., Mishra D., Maiti T.K. Abrus abrin derived peptides induce apoptosis by targeting mitochondria in HeLa cells. Cell Biol. Int. 2009;33:720–727. doi: 10.1016/j.cellbi.2009.04.012.
    1. Shen W.W., Wu J., Cai L., Liu B.Y., Gao Y., Chen G.Q., Fu G.H. Expression of anion exchanger 1 sequestrates p16 in the cytoplasm in gastric and colonic adenocarcinoma. Neoplasia. 2007;9:812–819. doi: 10.1593/neo.07403.
    1. Wu J., Zhang Y.C., Suo W.H., Liu X.B., Shen W.W., Tian H., Fu G.H. Induction of anion exchanger-1 translation and its opposite roles in the carcinogenesis of gastric cancer cells and differentiation of K562 cells. Oncogene. 2010;29:1987–1996. doi: 10.1038/onc.2009.481.
    1. Ryu S.J., Park S.C. Targeting major vault protein in senescence-associated apoptosis resistance. Expert Opin. Ther. Targets. 2009;13:479–484. doi: 10.1517/14728220902832705.
    1. Contassot E., French L.E. Targeting apoptosis defects in cutaneous T-cell lymphoma. J. Investig. Dermatol. 2009;129:1059–1061. doi: 10.1038/jid.2009.14.
    1. Liu T.B., Zou S.B., Chen Z.Z. Apoptosis of human myeloid leukemia cell line HL-60 cells induced by siRNA targeting gene c-myc. J. Exp. Hematol. Chin. Assoc. Pathophysiol. 2009;17:331–334.
    1. Gong J., Li J., Wang Y., Liu C., Jia H., Jiang C., Luo M., Zhao H., Dong L., Song W., et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis. 2014;35:497–506. doi: 10.1093/carcin/bgt337.
    1. Zhu E.D., Li N., Li B.S., Li W., Zhang W.J., Mao X.H., Guo G., Zou Q.M., Xiao B. miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS ONE. 2014;9:945. doi: 10.1371/journal.pone.0106049.
    1. Xu Y., Zhao F., Wang Z., Song Y., Luo Y., Zhang X., Jiang L., Sun Z., Miao Z., Xu H. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene. 2012;31:1398–1407. doi: 10.1038/onc.2011.340.
    1. Ji Q., Hao X., Meng Y., Zhang M., Desano J., Fan D., Xu L. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer. 2008;8:945. doi: 10.1186/1471-2407-8-266.
    1. Zhang H., Li S., Yang J., Liu S., Gong X., Yu X. The prognostic value of miR-34a expression in completely resected gastric cancer: Tumor recurrence and overall survival. Int. J. Clin. Exp. Med. 2015;8:2635–2641.
    1. Luo H., Zhang H., Zhang Z., Zhang X., Ning B., Guo J., Nie N., Liu B., Wu X. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J. Exp. Clin. Cancer Res. CR. 2009;28:82. doi: 10.1186/1756-9966-28-82.
    1. Xu Y., Jin J., Liu Y., Huang Z., Deng Y., You T., Zhou T., Si J., Zhuo W. Snail-regulated MiR-375 inhibits migration and invasion of gastric cancer cells by targeting JAK2. PLoS ONE. 2014;9:945. doi: 10.1371/journal.pone.0099516.
    1. Shen J., Niu W., Zhou M., Zhang H., Ma J., Wang L. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer. PLoS ONE. 2014;9:945. doi: 10.1371/journal.pone.0104510.
    1. Sun T., Wang C., Xing J., Wu D. miR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur. J. Cancer. 2011;47:2552–2559. doi: 10.1016/j.ejca.2011.05.021.
    1. Bou Kheir T., Futoma-Kazmierczak E., Jacobsen A., Krogh A., Bardram L., Hother C., Gronbaek K., Federspiel B., Lund A.H., Friis-Hansen L. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer. 2011;10:29. doi: 10.1186/1476-4598-10-29.
    1. Tsiftsoglou A.S., Bonovolias I.D., Tsiftsoglou S.A. Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol. Ther. 2009;122:264–280. doi: 10.1016/j.pharmthera.2009.03.001.
    1. Flygare J.A., Vucic D. Development of novel drugs targeting inhibitors of apoptosis. Future Oncol. 2009;5:141–144. doi: 10.2217/14796694.5.2.141.
    1. Wang J., Zhang J., Wu J., Luo D., Su K., Shi W., Liu J., Tian Y., Wei L. MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur. J. Cancer. 2012;48:1904–1913. doi: 10.1016/j.ejca.2011.11.026.
    1. Zhao X., Dou W., He L., Liang S., Tie J., Liu C., Li T., Lu Y., Mo P., Shi Y., et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene. 2013;32:1363–1372. doi: 10.1038/onc.2012.156.
    1. Wan H.Y., Guo L.M., Liu T., Liu M., Li X., Tang H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol. Cancer. 2010;9:16. doi: 10.1186/1476-4598-9-16.
    1. Konishi H., Ichikawa D., Komatsu S., Shiozaki A., Tsujiura M., Takeshita H., Morimura R., Nagata H., Arita T., Kawaguchi T., et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br. J. Cancer. 2012;106:740–747. doi: 10.1038/bjc.2011.588.
    1. Tsujiura M., Ichikawa D., Komatsu S., Shiozaki A., Takeshita H., Kosuga T., Konishi H., Morimura R., Deguchi K., Fujiwara H., et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer. 2010;102:1174–1179. doi: 10.1038/sj.bjc.6605608.
    1. Zhang R., Wang W., Li F., Zhang H., Liu J. MicroRNA-106b~25 expressions in tumor tissues and plasma of patients with gastric cancers. Med. Oncol. 2014;31:243. doi: 10.1007/s12032-014-0243-x.
    1. Su Z.X., Zhao J., Rong Z.H., Wu Y.G., Geng W.M., Qin C.K. Diagnostic and prognostic value of circulating miR-18a in the plasma of patients with gastric cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014;35:12119–12125. doi: 10.1007/s13277-014-2516-6.
    1. Tsujiura M., Komatsu S., Ichikawa D., Shiozaki A., Konishi H., Takeshita H., Moriumura R., Nagata H., Kawaguchi T., Hirajima S., et al. Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2015;18:271–279. doi: 10.1007/s10120-014-0363-1.
    1. Chen Q., Ge X., Zhang Y., Xia H., Yuan D., Tang Q., Chen L., Pang X., Leng W., Bi F. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol. Rep. 2014;31:1863–1870.
    1. Li C., Li J.F., Cai Q., Qiu Q.Q., Yan M., Liu B.Y., Zhu Z.G. MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J. Surg. Oncol. 2013;108:89–92. doi: 10.1002/jso.23358.
    1. Li C., Li J.F., Cai Q., Qiu Q.Q., Yan M., Liu B.Y., Zhu Z.G. miRNA-199a-3p in plasma as a potential diagnostic biomarker for gastric cancer. Ann. Surg. Oncol. 2013;20:S397–S405. doi: 10.1245/s10434-012-2600-3.
    1. Valladares-Ayerbes M., Reboredo M., Medina-Villaamil V., Iglesias-Diaz P., Lorenzo-Patino M.J., Haz M., Santamarina I., Blanco M., Fernandez-Tajes J., Quindos M., et al. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J. Transl. Med. 2012;10:186. doi: 10.1186/1479-5876-10-186.
    1. Zhu W., Xu H., Zhu D., Zhi H., Wang T., Wang J., Jiang B., Shu Y., Liu P. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol. 2012;69:723–731. doi: 10.1007/s00280-011-1752-3.
    1. Wang B., Zhang Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J. Cancer Res. Clin. Oncol. 2012;138:1659–1666. doi: 10.1007/s00432-012-1244-9.
    1. Ma G.J., Gu R.M., Zhu M., Wen X., Li J.T., Zhang Y.Y., Zhang X.M., Chen S.Q. Plasma post-operative miR-21 expression in the prognosis of gastric cancers. Asian Pac. J. Cancer Prev. 2013;14:7551–7554. doi: 10.7314/APJCP.2013.14.12.7551.
    1. Komatsu S., Ichikawa D., Tsujiura M., Konishi H., Takeshita H., Nagata H., Kawaguchi T., Hirajima S., Arita T., Shiozaki A., et al. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res. 2013;33:271–276.
    1. Song J., Bai Z., Zhang J., Meng H., Cai J., Deng W., Bi J., Ma X., Zhang Z. Serum microRNA-21 levels are related to tumor size in gastric cancer patients but cannot predict prognosis. Oncol. Lett. 2013;6:1733–1737.
    1. Xin S.Y., Feng X.S., Zhou L.Q., Sun J.J., Gao X.L., Yao G.L. Reduced expression of circulating microRNA-218 in gastric cancer and correlation with tumor invasion and prognosis. World J. Gastroenterol. WJG. 2014;20:6906–6911. doi: 10.3748/wjg.v20.i22.6906.
    1. Song M.Y., Pan K.F., Su H.J., Zhang L., Ma J.L., Li J.Y., Yuasa Y., Kang D., Kim Y.S., You W.C. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS ONE. 2012;7:945. doi: 10.1371/journal.pone.0033608.
    1. Chun-Zhi Z., Lei H., An-Ling Z., Yan-Chao F., Xiao Y., Guang-Xiu W., Zhi-Fan J., Pei-Yu P., Qing-Yu Z., Chun-Sheng K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:945
    1. Li N., Tang B., Zhu E.D., Li B.S., Zhuang Y., Yu S., Lu D.S., Zou Q.M., Xiao B., Mao X.H. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 2012;586:722–728. doi: 10.1016/j.febslet.2012.01.025.
    1. Fu Z., Qian F., Yang X., Jiang H., Chen Y., Liu S. Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer. Med. Oncol. 2014;31:164. doi: 10.1007/s12032-014-0164-8.
    1. Li B.S., Zuo Q.F., Zhao Y.L., Xiao B., Zhuang Y., Mao X.H., Wu C., Yang S.M., Zeng H., Zou Q.M., et al. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene. 2015;34:2556–2565. doi: 10.1038/onc.2014.214.
    1. Huang D., Wang H., Liu R., Li H., Ge S., Bai M., Deng T., Yao G., Ba Y. miRNA27a is a biomarker for predicting chemosensitivity and prognosis in metastatic or recurrent gastric cancer. J. Cell. Biochem. 2014;115:549–556. doi: 10.1002/jcb.24689.
    1. Zhang Z., Liu S., Shi R., Zhao G. miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011;204:486–491. doi: 10.1016/j.cancergen.2011.07.004.
    1. Liu H., Zhu L., Liu B., Yang L., Meng X., Zhang W., Ma Y., Xiao H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012;316:196–203. doi: 10.1016/j.canlet.2011.10.034.
    1. Wu J., Li G., Yao Y., Wang Z., Sun W., Wang J. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2015;20:58–63. doi: 10.3109/1354750X.2014.992812.
    1. Zhou H., Guo J.M., Lou Y.R., Zhang X.J., Zhong F.D., Jiang Z., Cheng J., Xiao B.X. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J. Mol. Med. 2010;88:709–717. doi: 10.1007/s00109-010-0617-2.
    1. Meder B., Backes C., Haas J., Leidinger P., Stahler C., Grossmann T., Vogel B., Frese K., Giannitsis E., Katus H.A., et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin. Chem. 2014;60:1200–1208. doi: 10.1373/clinchem.2014.224238.
    1. Zhang W.H., Gui J.H., Wang C.Z., Chang Q., Xu S.P., Cai C.H., Li Y.N., Tian Y.P., Yan L., Wu B. The identification of miR-375 as a potential biomarker in distal gastric adenocarcinoma. Oncol. Res. 2012;20:139–147. doi: 10.3727/096504012X13522227232156.
    1. Imaoka H., Toiyama Y., Okigami M., Yasuda H., Saigusa S., Ohi M., Tanaka K., Inoue Y., Mohri Y., Kusunoki M. Circulating microRNA-203 predicts metastases, early recurrence, and poor prognosis in human gastric cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2015 doi: 10.1007/s10120-015-0521-0.
    1. Canepa E.T., Scassa M.E., Ceruti J.M., Marazita M.C., Carcagno A.L., Sirkin P.F., Ogara M.F. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life. 2007;59:419–426. doi: 10.1080/15216540701488358.
    1. Shou W., Dunphy W.G. Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Mol. Biol. Cell. 1996;7:457–469. doi: 10.1091/mbc.7.3.457.
    1. Pateras I.S., Apostolopoulou K., Niforou K., Kotsinas A., Gorgoulis V.G. p57KIP2: “Kip”ing the cell under control. Mol. Cancer Res. MCR. 2009;7:1902–1919. doi: 10.1158/1541-7786.MCR-09-0317.
    1. Wu Q., Jin H., Yang Z., Luo G., Lu Y., Li K., Ren G., Su T., Pan Y., Feng B., et al. MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem. Biophys. Res. Commun. 2010;392:340–345. doi: 10.1016/j.bbrc.2009.12.182.
    1. Cory S., Adams J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer. 2002;2:647–656. doi: 10.1038/nrc883.
    1. Qiao L., Wong B.C. Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2009;12:55–64. doi: 10.1016/j.drup.2009.02.002.
    1. Ning S., Tian J., Marshall D.J., Knox S.J. Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats. Cancer Res. 2010;70:7591–7599. doi: 10.1158/0008-5472.CAN-10-1639.
    1. Hosono Y., Osada S., Nawa M., Takahashi T., Yamaguchi K., Kawaguchi Y., Yoshida K. Combination therapy of 5-fluorouracil with rapamycin for hormone receptor-negative human breast cancer. Anticancer Res. 2010;30:2625–2630.
    1. Talebi Bezmin Abadi A., Rafiei A., Ajami A., Hosseini V., Taghvaei T., Jones K.R., Merrell D.S. Helicobacter pylori homB, but not cagA, is associated with gastric cancer in Iran. J. Clin. Microbiol. 2011;49:3191–3197. doi: 10.1128/JCM.00947-11.
    1. Gilad S., Meiri E., Yogev Y., Benjamin S., Lebanony D., Yerushalmi N., Benjamin H., Kushnir M., Cholakh H., Melamed N., et al. Serum microRNAs are promising novel biomarkers. PLoS ONE. 2008;3:945. doi: 10.1371/journal.pone.0003148.
    1. Mitchell P.S., Parkin R.K., Kroh E.M., Fritz B.R., Wyman S.K., Pogosova-Agadjanyan E.L., Peterson A., Noteboom J., O’Briant K.C., Allen A., et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA. 2008;105:10513–10518. doi: 10.1073/pnas.0804549105.
    1. Shimizu Y., Takamori A., Utsunomiya A., Kurimura M., Yamano Y., Hishizawa M., Hasegawa A., Kondo F., Kurihara K., Harashima N., et al. Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer Sci. 2009;100:481–489. doi: 10.1111/j.1349-7006.2008.01054.x.
    1. Wickliffe K., Williamson A., Jin L., Rape M. The multiple layers of ubiquitin-dependent cell cycle control. Chem. Rev. 2009;109:1537–1548. doi: 10.1021/cr800414e.
    1. Hsu H.J., Drummond-Barbosa D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc. Natl. Acad. Sci. USA. 2009;106:1117–1121. doi: 10.1073/pnas.0809144106.
    1. Ahn H.S., Shin Y.S., Park P.J., Kang K.N., Kim Y., Lee H.J., Yang H.K., Kim C.W. Serum biomarker panels for the diagnosis of gastric adenocarcinoma. Br. J. Cancer. 2012;106:733–739. doi: 10.1038/bjc.2011.592.
    1. Zhang Z., Li M., Zhang G., Fang P., Yao H., Xiao Z., Chen Z. Identification of human gastric carcinoma biomarkers by differential protein expression analysis using 18O labeling and nanoLC-MS/MS coupled with laser capture microdissection. Med. Oncol. 2010;27:296–303.
    1. Wang Y.Y., Ye Z.Y., Zhao Z.S., Li L., Wang Y.X., Tao H.Q., Wang H.J., He X.J. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum. Pathol. 2013;44:1278–1285. doi: 10.1016/j.humpath.2012.10.014.
    1. Li X., Zhang Y., Ding J., Wu K., Fan D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut. 2010;59:579–585. doi: 10.1136/gut.2008.175497.
    1. Bandres E., Bitarte N., Arias F., Agorreta J., Fortes P., Agirre X., Zarate R., Diaz-Gonzalez J.A., Ramirez N., Sola J.J., et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009;15:2281–2290. doi: 10.1158/1078-0432.CCR-08-1818.
    1. Lee Y.S., Dutta A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007;21:1025–1030. doi: 10.1101/gad.1540407.
    1. Saito Y., Liang G., Egger G., Friedman J.M., Chuang J.C., Coetzee G.A., Jones P.A. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–443. doi: 10.1016/j.ccr.2006.04.020.
    1. Lujambio A., Calin G.A., Villanueva A., Ropero S., Sanchez-Cespedes M., Blanco D., Montuenga L.M., Rossi S., Nicoloso M.S., Faller W.J., et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA. 2008;105:13556–13561. doi: 10.1073/pnas.0803055105.
    1. Sotiropoulou G., Pampalakis G., Lianidou E., Mourelatos Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA. 2009;15:1443–1461. doi: 10.1261/rna.1534709.
    1. Ebert M.S., Neilson J.R., Sharp P.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat. Methods. 2007;4:721–726. doi: 10.1038/nmeth1079.
    1. Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol. Biol. 2011;676:43–49.
    1. Elmen J., Lindow M., Schutz S., Lawrence M., Petri A., Obad S., Lindholm M., Hedtjarn M., Hansen H.F., Berger U., et al. LNA-mediated microRNA silencing in non-human primates. Nature. 2008;452:896–899. doi: 10.1038/nature06783.
    1. Kota J., Chivukula R.R., O’Donnell K.A., Wentzel E.A., Montgomery C.L., Hwang H.W., Chang T.C., Vivekanandan P., Torbenson M., Clark K.R., et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137:1005–1017. doi: 10.1016/j.cell.2009.04.021.
    1. Xiang S., Fruehauf J., Li C.J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 2006;24:697–702. doi: 10.1038/nbt1211.
    1. Cheng J., Zhou Y., Zuo M., Dai L., Guo X. Application of dispersive liquid-liquid microextraction and reversed phase-high performance liquid chromatography for the determination of two fungicides in environmental water samples. Int. J. Environ. Anal. Chem. 2010;90:845–855. doi: 10.1080/03067310903180468.
    1. Chen L., Lu M.H., Zhang D., Hao N.B., Fan Y.H., Wu Y.Y., Wang S.M., Xie R., Fang D.C., Zhang H., et al. miR-1207–5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis. 2014;5:e1034. doi: 10.1038/cddis.2013.553.
    1. Wu Y., Crawford M., Yu B., Mao Y., Nana-Sinkam S.P., Lee L.J. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol. Pharm. 2011;8:1381–1389. doi: 10.1021/mp2002076.
    1. Yang X., Haurigot V., Zhou S., Luo G., Couto L.B. Inhibition of hepatitis C virus replication using adeno-associated virus vector delivery of an exogenous anti-hepatitis C virus microRNA cluster. Hepatology. 2010;52:1877–1887. doi: 10.1002/hep.23908.
    1. Ng E.K., Chong W.W., Jin H., Lam E.K., Shin V.Y., Yu J., Poon T.C., Ng S.S., Sung J.J. Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut. 2009;58:1375–1381. doi: 10.1136/gut.2008.167817.

Source: PubMed

3
구독하다